1
|
Li H, Zhang Y, Han F, Zhang Z, Yin M, Han P, Jing L. Photoredox Catalyzed Tandem Denitrogenative [4 + 2] Annulation of 1,2,3-Benzotriazin-4(3H)-ones with Terminal Olefins. J Org Chem 2024; 89:16043-16048. [PMID: 39402890 DOI: 10.1021/acs.joc.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The dihydroisoquinolones skeleton is ubiquitous in natural products and biological molecules. Reported strategies for constructing dihydroisoquinolones usually require noble metal catalysts or stoichiometric oxidants, which limit their wide applications. Herein, we developed a photoredox catalyzed tandem denitrogenative [4 + 2] annulation reaction of 1,2,3-benzotriazin-4(3H)-ones with terminal olefins. A variety of dihydroisoquinolones can be accessed in moderate to excellent yield. This protocol features high atom-economy, mild reaction conditions, and is external oxidant-free, enabling the synthesis of various substituted dihydroisoquinolones.
Collapse
Affiliation(s)
- Haiqiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
- Panzhihua No. 3 Senior High School, Panzhihua 617000, P. R. China
| | - Yu Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Zhengbing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Mengyun Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| |
Collapse
|
2
|
Das A, Kumaran S, Ravi Sankar HS, Premkumar JR, Sundararaju B. A Dual Cobalt-Photoredox Catalytic Approach for Asymmetric Dearomatization of Indoles with Aryl Amides via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202406195. [PMID: 38896502 DOI: 10.1002/anie.202406195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
In this study, we unveil a novel method for the asymmetric dearomatization of indoles under cobalt/photoredox catalysis. By strategically activating C-H bonds of amides and subsequent migratory insertion of π-bonds present in indole as reactive partner, we achieve syn-selective tetrahydro-5H-indolo[2,3-c]isoquinolin-5-one derivatives with excellent yields and enantiomeric excesses of up to >99 %. The developed method operates without a metal oxidant, relying solely on oxygen as the oxidant and employing an organic dye as a photocatalyst under irradiation. Control experiments and stoichiometric studies elucidate the reversible nature of the enantiodetermining C-H activation step, albeit not being rate-determining. This study not only expands the horizon of cobalt-catalyzed asymmetric C-H bond functionalization, but also showcases the potential synergy between cobalt and photoredox catalysis in enabling asymmetric synthesis of complex molecules.
Collapse
Affiliation(s)
- Abir Das
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | - Subramani Kumaran
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | | | - J Richard Premkumar
- PG & Research Department of Chemistry, Bishop Heber College, Tiruchirappalli, 620017, Tamil Nadu, India
| | - Basker Sundararaju
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| |
Collapse
|
3
|
Xu Y, Lin Y, Homölle SL, Oliveira JC, Ackermann L. Enantioselective Cobaltaphotoredox-Catalyzed C-H Activation. J Am Chem Soc 2024; 146:24105-24113. [PMID: 39143928 PMCID: PMC11363020 DOI: 10.1021/jacs.4c08459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The quest for sustainable strategies in molecular synthesis has spurred the emergence of photocatalysis as a particularly powerful technique. In recent years, the application of photocatalysis in this context has greatly promoted the development of asymmetric catalysis. Despite the impressive advances, enantioselective photoinduced strong arene C-H activations by cobalt catalysis remain unexplored. Herein, we report a strategy that merges organic photoredox catalysis and enantioselective cobalt-catalyzed C-H activation, enabling the regio- and stereoselective dual functionalization of indoles in an enantioselective fashion. Thereby, the assembly of various chiral indolo[2,3-c]isoquinolin-5-ones was realized with high enantioselectivities of up to 99%. The robustness of the cobaltaphotoredox catalysis was demonstrated through enantioselective C-H activation and annulations in a continuous flow to provide straightforward access to central and axially chiral molecules.
Collapse
Affiliation(s)
| | | | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| | - João C.
A. Oliveira
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
4
|
Zhang J, Wang Y, Zhou X. Lanthanide-catalyzed deamidative cyclization of secondary amides and ynones through tandem C-H and C-N activation. Chem Commun (Camb) 2023; 59:3253-3256. [PMID: 36815667 DOI: 10.1039/d3cc00216k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The tandem inert α-C-H and C-N bond activation of amides represents a highly valuable but challenging transformation in organic synthesis. Herein, a simple rare earth metal amido complex has been shown to catalyse unprecedented cyclization of amides with ynones to form trisubstituted 2-pyrones. This protocol significantly enables the selective merger of inert α-C-H and C-N bond activations of amides and indicates a particular role of rare earth catalysts in enhancing the selectivity for the α-C-H bond of amides in the presence of N-H bonds.
Collapse
Affiliation(s)
- Junxi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Yitu Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Xigeng Zhou
- Department of Chemistry, Fudan University, Shanghai, 200438, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai, 200032, China
| |
Collapse
|
5
|
Yang D, Zhang X, Wang X, Si XJ, Wang J, Wei D, Song MP, Niu JL. Cobalt-Catalyzed Enantioselective C–H Annulation with Alkenes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xian Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinghua Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
6
|
Wang C, Azofra LM, Dam P, Espinoza-Suarez EJ, Do HT, Rabeah J, Brückner A, El-Sepelgy O. Photoexcited cobalt catalysed endo-selective alkyl Heck reaction. Chem Commun (Camb) 2023; 59:3862-3865. [PMID: 36883973 DOI: 10.1039/d2cc06967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Herein, we report an intramolecular endo-selective Heck reaction of iodomethylsilyl ethers of phenols and alkenols. The reaction leads to the formation of seven- and eight-membered siloxycycles in excellent yields, which could be further converted into the corresponding allylic alcohols upon oxidation. Thus, this method could be used for the selective (Z)-hydroxymethylation of o-hydroxystyrenes and alkenols. Rapid scan EPR experiments and DFT calculations suggest a concerted β-hydrogen elimination event to take place in the triplet state.
Collapse
Affiliation(s)
- Chenyang Wang
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Luis Miguel Azofra
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, Las Palmas de Gran Canaria 35017, Spain
| | - Phong Dam
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | | | - Hieu Trung Do
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Jabor Rabeah
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Angelika Brückner
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Osama El-Sepelgy
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| |
Collapse
|
7
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
8
|
Yadav SK, Jeganmohan M. Cobalt(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-Chlorobenzamides with Substituted Alkenes. J Org Chem 2022; 87:13073-13088. [PMID: 36163013 DOI: 10.1021/acs.joc.2c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Co(III)-catalyzed redox-neutral [4 + 2] annulation of N-chlorobenzamides/acrylamides with substituted alkenes at ambient temperature is demonstrated. Using this protocol, pharmaceutically important 3,4-dihydroisoquinolinone derivatives were synthesized in good yields. Intriguingly, the synthetically useful functional group of allylic coupling partners such as sulfonyl, carbonate, acetate, phosphate, amide, nitrile, and silane were retained in the final cyclized product. The present annulation reaction was compatible with various substituted benzamides and allylic coupling partners. To support the proposed reaction mechanism, competition experiments, deuterium labeling studies, and kinetic isotope effect studies were performed.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
9
|
Kumar S, Nair AM, Volla CMR. Dual Photoredox Cobalt Catalyzed [4+1] Annulation and C-H Alkoxylation. Chem Asian J 2022; 17:e202200801. [PMID: 35939065 DOI: 10.1002/asia.202200801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/05/2022] [Indexed: 11/06/2022]
Abstract
Herein, we developed two distinct pyridine N-oxide directed C-H activation protocols to achieve [4+1] annulation and alkoxylation of benzamide derivatives by merging Co-catalysis with visible light photoredox catalysis. The protocols deliver the respective products in good yields under facile conditions at room temperature. The use of cheap photocatalyst coupled with molecular oxygen bypassing the need of stoichiometric oxidants forms the chief highlight of the work. The protocols are scalable and the products could be further modified. Additionally, preliminary studies were carried out to probe the reaction mechanism.
Collapse
Affiliation(s)
- Shreemoyee Kumar
- IIT Bombay: Indian Institute of Technology Bombay, Department of Chemistry, INDIA
| | - Akshay M Nair
- IIT Bombay: Indian Institute of Technology Bombay, Department of Chemistry, INDIA
| | - Chandra M R Volla
- IIT-Bombay, Chemistry, Lab no. 418B, 3rd FLOOR, DEPARTMENT OF CHEMISTRY, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, Lab no. 418B, 3rd FLOOR, DEPARTMENT OF CHEMISTRY, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, 400076, POWAI, MUMBAI, INDIA
| |
Collapse
|
10
|
Aravindan N, Vinayagam V, Jeganmohan M. A Ruthenium-Catalyzed Cyclization to Dihydrobenzo[ c]phenanthridinone from 7-Azabenzonorbornadienes with Aryl Amides. Org Lett 2022; 24:5260-5265. [PMID: 35838244 DOI: 10.1021/acs.orglett.2c01734] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An efficient ruthenium(II)-catalyzed tandem C-C/C-N bond formation with aryl amides and 7-azabenzonorbornadienes has been developed to synthesize cis-fused dihydrobenzo[c]phenanthridinones. The amide group functions as a directing group as well as a leaving group and provides an easy access to the pharmaceutically useful benzo[c]phenanthridine alkaloids such as nitidine and fagaronine analogues. The present methodology is compatible with various functional groups with respect to azabicyclic alkenes and aromatic amides. The reaction mechanism involving directing-group-assisted C-H activation was proposed and supported by the deuterium labeling studies.
Collapse
Affiliation(s)
- Narasingan Aravindan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Varathan Vinayagam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
11
|
Sarkar T, Shah TA, Maharana PK, Debnath B, Punniyamurthy T. Dual Metallaphotoredox Catalyzed Directed C(sp2)‐H Functionalization: Access to C‐C/C‐Heteroatom Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tanumay Sarkar
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry INDIA
| | | | | | - Bijoy Debnath
- Indian Institute of Technology Guwahati Chemistry INDIA
| | | |
Collapse
|
12
|
|
13
|
Logeswaran R, Jeganmohan M. Transition‐Metal‐Catalyzed, Chelation‐Assisted C−H Alkenylation and Allylation of Organic Molecules with Unactivated Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Bajya KR, Sermadurai S. Dual Photoredox and Cobalt Catalysis Enabled Transformations. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Selvakumar Sermadurai
- Indian Institute of Technology Indore Chemistry Khandwa road Simrol 453552 Indore INDIA
| |
Collapse
|
15
|
Thakur A, - M, Kumar I, Sharma U. Visible Light Induced Functionalization of C‐H Bonds: Opening of New Avenues in Organic Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ankita Thakur
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Manisha -
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Inder Kumar
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Upendra Sharma
- CSIR-Institute of Himalayan Bioresource Technology Natural Product Chemistry and Process Development Division Palampur, IndiaPalampur 176061 Palampur INDIA
| |
Collapse
|
16
|
Liu J, Xiao X, Lai Y, Zhang Z. Recent advances in transition metal-catalyzed heteroannulative difunctionalization of alkenes via C-H activation for the synthesis of heterocycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00081d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterocyclic compounds are the fundamental structural motifs distributed in natural products, pharmaceuticals and biologically active compounds. Thus, there is increasing interest in the development of novel synthetic strategies for the...
Collapse
|
17
|
Ramani A, Desai B, Dholakiya BZ, Naveen T. Recent advances in visible-light mediated functionalization of olefins and alkynes using copper catalysts. Chem Commun (Camb) 2022; 58:7850-7873. [DOI: 10.1039/d2cc01611g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decade, visible-light photoredox catalysis has blossomed as a powerful strategy and offers a discrete activation mode complementary to thermal controlled reactions. Visible-light-mediated photoredox catalysis also offers exciting...
Collapse
|
18
|
Chakraborty P, Mandal R, Paira S, Sundararaju B. C-H bond functionalization by dual catalysis: merging of high-valent cobalt and photoredox catalysis. Chem Commun (Camb) 2021; 57:13075-13083. [PMID: 34779804 DOI: 10.1039/d1cc04872d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The merger of transition metal catalysis and photocatalysis has emerged as a versatile platform that opened the gateway to diverse low-energy pathways for several synthetic transformations. However, amidst the first-row transition metals, directed C-H bond functionalization mediated by high-valent cobalt catalysis has advanced with rising momentum owing to its unique reactivity and the ability to participate in both one- and two-electron transfer reactions. However, the use of expensive, privileged Cp* ligands or use of stoichiometric silver(I) or manganese(III) is unavoidable. Despite significant advances in their respective fields, the combination of these two "green" approaches to further the vested interest of the scientific research community towards the development of ecofriendly and sustainable protocols is noticeably limited. Thus, the methodology based on high-cobalt-photoredox dual-catalytic strategy has high dormant potential and is worthy to explore. Herein, we highlight the recent advances in the high-valent cobalt-catalyzed sustainable catalytic approach by harnessing light energy for oxidative C-H bond functionalization. With this, we hope to inspire the development of unexplored cobalt-photoredox-catalyzed reactions with improved efficiency and selectivity.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Soumen Paira
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| |
Collapse
|
19
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 652] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
20
|
Mandal R, Barsu N, Garai B, Das A, Perekalin D, Sundararaju B. Room-temperature C-H bond alkynylation by merging cobalt and photocatalysts. Chem Commun (Camb) 2021; 57:12167-12170. [PMID: 34726212 DOI: 10.1039/d1cc05263b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new protocol is developed for the mono- and bis-ortho-C-H alkynylation of easily accessible benzamide derivatives using alkynyl bromides at room temperature by merging cobalt and photocatalysts. The diverse reactivity of various alkynyl bromides towards the C-H alkynylation and competing C-H/N-H bond annulation reactions has been demonstrated to give the corresponding products in good yields with excellent functional group tolerance.
Collapse
Affiliation(s)
- Rajib Mandal
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Nagaraju Barsu
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Bholanath Garai
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Abir Das
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Dmitry Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| | - Basker Sundararaju
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
21
|
Xu Z, Hu Y, Wang L, Sun M, Li P. Merging cobalt and photoredox catalysis for the C8-H alkoxylation of 1-naphthylamine derivatives with alcohols. Org Biomol Chem 2021; 19:10112-10119. [PMID: 34757369 DOI: 10.1039/d1ob01721g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined cobalt and photoredox catalysis system to realize the C8-H alkoxylation of 1-naphthylamine derivatives with alcohols was developed. Using commercially available alkyl alcohols as raw materials and Co(OAc)2 and rose bengal as catalysts, 1-naphthylamine derivatives reacted with alcohols to generate the corresponding C8-H alkoxylation products in good yields.
Collapse
Affiliation(s)
- Zhaoliang Xu
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
| | - Yu Hu
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China.
| | - Lei Wang
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Mingli Sun
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
| | - Pinhua Li
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Department of Chemistry, Anhui Polytechnic University, Wuhu, Anhui, 241000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
22
|
Zhai H, Liu M, Wang C, Qiu S, Wei J, Yang H, Wu Y. Cobalt-Catalyzed 2-(1-Methylhydrazinyl)pyridine-Assisted C-H Alkylation/Annulation: Mechanistic Insights and Rapid Access to Cyclopenta[ c]isoquinolinone Derivatives. J Org Chem 2021; 86:14915-14927. [PMID: 34570982 DOI: 10.1021/acs.joc.1c01658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have developed cobalt-catalyzed, bidentate 2-(1-methylhydrazinyl)pyridine (MHP)-directed C(sp2)-H alkylation/annulation of benzoic hydrazides with various alkenes. Notably, diverse cyclopenta[c]isoquinolinones and dihydroisoquinolinones were obtained via this functional group-tolerant protocol. The reaction can be performed on a gram scale while maintaining an excellent yield, and the directing group can be removed efficiently under mild conditions. Furthermore, density-functional theory (DFT) calculations provide an incisive understanding of the observed regioselectivities for different olefins.
Collapse
Affiliation(s)
- Hongbin Zhai
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Miao Liu
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Chao Wang
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Shuxian Qiu
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Department of Chemistry, Guangdong University of Education, Guangzhou 510303, China
| | - Jian Wei
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Hongjian Yang
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yundong Wu
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
23
|
Zhu Y, He Y, Tian W, Wang M, Zhou Z, Song X, Ding H, Xiao Q. Dual Cobalt and Photoredox Catalysis Enabled Redox‐Neutral Annulation of 2‐Propynolphenols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yao Zhu
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Yong‐Qin He
- School of Pharmaceutical Science Nanchang University Nanchang 330006 People's Republic of China
| | - Wan‐Fa Tian
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Mei Wang
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Zhao‐Zhao Zhou
- Department of Chemistry Nanchang Normal University Nanchang People's Republic of China
| | - Xian‐Rong Song
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Hai‐Xin Ding
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Qiang Xiao
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| |
Collapse
|
24
|
Bosveli A, Montagnon T, Kalaitzakis D, Vassilikogiannakis G. Eosin: a versatile organic dye whose synthetic uses keep expanding. Org Biomol Chem 2021; 19:3303-3317. [PMID: 33899893 DOI: 10.1039/d1ob00301a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic dyes, which absorb light in the visible region of the electromagnetic spectrum, offer a lower cost, greener alternative to precious metals in photocatalysis. In this context, the organic dye eosin's uses are currently expanding at a significant rate. For a long time, its action as an energy transfer agent dominated, more recently, however, there has been a growing interest in its potential as an electron transfer agent. In this short review, we highlight some recent (from 2016 onwards) contributions to the field with a focus on the breadth of the reactions eosin can catalyse.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | | |
Collapse
|
25
|
Ban YL, You L, Wang T, Wu LZ, Liu Q. Metallaphotoredox Dearomatization of Indoles by a Benzamide-Empowered [4 + 2] Annulation: Facile Access to Indolo[2,3-c]isoquinolin-5-ones. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yong-Liang Ban
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Long You
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
26
|
Zhong R, Xu Y, Sun M, Wang Y. Palladium-Catalyzed Regioselective C-H Functionalization/Annulation Reaction of Amides and Allylbenzenes for the Synthesis of Isoquinolinones and Pyridinones. J Org Chem 2021; 86:5255-5264. [PMID: 33750119 DOI: 10.1021/acs.joc.1c00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A regioselective C-H functionalization/annulation reaction of N-sulfonyl amides and allylbenzenes through a palladium-catalyzed C(sp2)-H allylation/aminopalladation/β-H elimination/isomerization sequence has been reported. Various aryl and alkenyl carboxamides are found to be efficient substrates to construct isoquinolinones and pyridinones in up to 96% yield. Using ambient air as the terminal oxidant is another advantage regarding environmental friendliness and operational simplicity.
Collapse
Affiliation(s)
- Rong Zhong
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Yong Xu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Yurong Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
27
|
Tian W, Zhu Y, He Y, Wang M, Song X, Bai J, Xiao Q. Hydroxyl Assisted, Photoredox/Cobalt Co‐catalyzed Semi‐Hydrogenation and Tandem Cyclization of
o
‐Alkynylphenols for Access to 2,3‐Dihydrobenzofurans. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202000986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wan‐Fa Tian
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Yao Zhu
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Yong‐Qin He
- School of Pharmaceutical Science Nanchang University Nanchang 330006 People's Republic of China
| | - Mei Wang
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Xian‐Rong Song
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Jiang Bai
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Qiang Xiao
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| |
Collapse
|
28
|
Li T, Li J, Zhu Z, Chen Y, Li X, Yang Q, Xia J, Zhang W, Zhang C, Pan W, Wu S. Metallaphotoredox-catalyzed C–H activation: regio-selective annulation of allenes with benzamide. Org Chem Front 2021. [DOI: 10.1039/d0qo01127d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed an efficient annulation of benzamides with allenes using cobalt and photoredox dual catalysis under an oxygen atmosphere. The transformation features an alternative strategy for the regeneration of a cobalt catalyst with the aid of Eosin Y.
Collapse
|
29
|
Gualandi A, Anselmi M, Calogero F, Potenti S, Bassan E, Ceroni P, Cozzi PG. Metallaphotoredox catalysis with organic dyes. Org Biomol Chem 2021; 19:3527-3550. [DOI: 10.1039/d1ob00196e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here…comes the fun…Combination of metals and organic photocatalysts allows the practical invention of new methodologies!
Collapse
Affiliation(s)
- Andrea Gualandi
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| | - Michele Anselmi
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| | - Francesco Calogero
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| | - Simone Potenti
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
- Laboratorio SMART
| | - Elena Bassan
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| | - Paola Ceroni
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| | - Pier Giorgio Cozzi
- ALMA MATER STUDIORUM Università di Bologna
- Dipartimento di Chimica “G. Ciamician”
- 40126 Bologna
- Italy
| |
Collapse
|
30
|
Dhawa U, Kaplaneris N, Ackermann L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org Chem Front 2021. [DOI: 10.1039/d1qo00727k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sustainable strategies for the activation of inert C–H bonds towards improved resource-economy.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
31
|
Singh S, Roy VJ, Dagar N, Sen PP, Roy SR. Photocatalysis in Dual Catalysis Systems for Carbon‐Nitrogen Bond Formation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001176] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Swati Singh
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India Phone number
| | - Vishal Jyoti Roy
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India Phone number
| | - Neha Dagar
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India Phone number
| | - Partha Pratim Sen
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India Phone number
| | - Sudipta Raha Roy
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India Phone number
| |
Collapse
|
32
|
Sen C, Sarvaiya B, Sarkar S, Ghosh SC. Room-Temperature Synthesis of Isoindolone Spirosuccinimides: Merger of Visible-Light Photocatalysis and Cobalt-Catalyzed C-H Activation. J Org Chem 2020; 85:15287-15304. [PMID: 33141591 DOI: 10.1021/acs.joc.0c02120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A room-temperature C-H bond functionalization of benzamides has been developed by merging a photocatalyst with a cobalt catalyst for the synthesis of isoindolone spirosuccinimides. The reaction proceeds in aerobic conditions and does not require any sacrificial external oxidants such as Ag(I) or Mn(III) salts. Visible light activates the photocatalyst, and it acts as an electron-transfer reagent and helps in the fundamental organometallic steps by modulating the oxidation state of the cobalt complex. This C-H bond functionalization and spirocyclization showed wide substrate scope and good functional group tolerance. A possible reaction mechanism was proposed from the experimental outcome, showing that C-H bond activation is irreversible and not the rate-determining step.
Collapse
Affiliation(s)
- Chiranjit Sen
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavesh Sarvaiya
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Souvik Sarkar
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
33
|
Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. Cobalt-Catalyzed Oxidative C-H Activation: Strategies and Concepts. CHEMSUSCHEM 2020; 13:3306-3356. [PMID: 32065843 DOI: 10.1002/cssc.202000024] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Inexpensive cobalt-catalyzed oxidative C-H functionalization has emerged as a powerful tool for the construction of C-C and C-Het bonds, which offers unique potential for transformative applications to modern organic synthesis. In the early stage, these transformations typically required stoichiometric and toxic transition metals as sacrificial oxidants; thus, the formation of metal-containing waste was inevitable. In contrast, naturally abundant molecular O2 has more recently been successfully employed as a green oxidant in cobalt catalysis, thus considerably improving the sustainability of such transformations. Recently, a significant momentum was gained by the use of electricity as a sustainable and environmentally benign redox reagent in cobalt-catalyzed C-H functionalization, thereby preventing the consumption of cost-intensive chemicals while at the same time addressing the considerable safety hazards related to the use of molecular oxygen in combination with flammable organic solvents. Considering the unparalleled potential of the aforementioned approaches for sustainable green synthesis, this Review summarizes the recent progress in cobalt-catalyzed oxidative C-H activation until early 2020.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100, Pavia, Italy
| |
Collapse
|
34
|
|
35
|
Bolsakova J, Lukasevics L, Grigorjeva L. Cobalt-Catalyzed, Directed C-H Functionalization/Annulation of Phenylglycinol Derivatives with Alkynes. J Org Chem 2020; 85:4482-4499. [PMID: 32118423 DOI: 10.1021/acs.joc.0c00207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new method for cobalt-catalyzed C(sp2)-H functionalization of phenylglycinol derivatives with terminal and internal alkynes directed by picolinamide auxiliary has been developed. This method offers an efficient and highly regioselective route for the synthesis of 1-hydroxymethyltetrahydroisoquinolines. The reaction employs commercially available Co(II) catalyst in the presence of Mn(III) cooxidant and oxygen as a terminal oxidant and proceeds with full preservation of original stereochemistry.
Collapse
Affiliation(s)
| | - Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
36
|
Kumaran S, Parthasarathy K. Cobalt(III)-Catalyzed Synthesis of Fused Quinazolinones by C-H/N-H Annulation of 2-Arylquinazolinones with Alkynes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Subramani Kumaran
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai Tamilnadu India
| | - Kanniyappan Parthasarathy
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai Tamilnadu India
| |
Collapse
|
37
|
Dewanji A, Bülow RF, Rueping M. Photoredox/Nickel Dual-Catalyzed Reductive Cross Coupling of Aryl Halides Using an Organic Reducing Agent. Org Lett 2020; 22:1611-1617. [DOI: 10.1021/acs.orglett.0c00199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abhishek Dewanji
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Raoul F. Bülow
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
38
|
Khan B, Dwivedi V, Sundararaju B. Cp*Co(III)‐Catalyzed
o
‐Amidation of Benzaldehydes with Dioxazolones Using Transient Directing Group Strategy. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901267] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bhuttu Khan
- Department of ChemistryIndian Institute of Technology Kanpur, Kanpur Uttar Pradesh India- 208 016
| | - Vikas Dwivedi
- Department of ChemistryIndian Institute of Technology Kanpur, Kanpur Uttar Pradesh India- 208 016
| | - Basker Sundararaju
- Department of ChemistryIndian Institute of Technology Kanpur, Kanpur Uttar Pradesh India- 208 016
| |
Collapse
|
39
|
Casali E, Kalra P, Brochetta M, Borsari T, Gandini A, Patra T, Zanoni G, Maiti D. Overriding ortho selectivity by template assisted meta-C–H activation of benzophenones. Chem Commun (Camb) 2020; 56:7281-7284. [DOI: 10.1039/d0cc03172k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A regioselective meta-C–H activation strategy for benzophenone was successfully developed by overriding the inherent ketone-directed ortho-selectivity.
Collapse
Affiliation(s)
- Emanuele Casali
- Dipartimento di Chimica, Università di Pavia
- 27100 Pavia
- Italy
| | | | | | - Tania Borsari
- Dipartimento di Chimica, Università di Pavia
- 27100 Pavia
- Italy
| | - Andrea Gandini
- Dipartimento di Chimica, Università di Pavia
- 27100 Pavia
- Italy
| | - Tuhin Patra
- Department of Chemistry
- IIT Bombay
- Mumbai 400076
- India
| | - Giuseppe Zanoni
- Dipartimento di Chimica, Università di Pavia
- 27100 Pavia
- Italy
| | | |
Collapse
|
40
|
Yang J, Hu X, Liu Z, Li X, Dong Y, Liu G. Cp*CoIII-catalyzed formal [4+2] cycloaddition of benzamides to afford quinazolinone derivatives. Chem Commun (Camb) 2019; 55:13840-13843. [DOI: 10.1039/c9cc07173c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Cp*CoIII-catalyzed arene C–H bond amidation/annulation of benzamides was developed to afford quinazolinone derivatives in one-pot with high yields and broad substrate scope.
Collapse
Affiliation(s)
- Jingshu Yang
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Xiao Hu
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Zijie Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Xueyuan Li
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Gang Liu
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|