1
|
Luo Y, Chen X, Han Y, Zhang X, Zhang L, Zheng Z, Ma W, Lou G, Huang D, Li J, Wang H. Base-controlled regio-divergent C-H bond functionalization. Chem Commun (Camb) 2025; 61:5688-5703. [PMID: 40130273 DOI: 10.1039/d4cc06431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The choice of appropriate directing groups, catalysts, ligands, bases, and solvents to give different regioisomers from the same precursors can improve the efficiency and atom economy in synthetic organic chemistry, while minimizing costs and expanding know chemical space. Base-controlled regio-divergent C-H bond functionalization is an important control strategy in organic synthesis, with the advantages of being operationally simple, and using cheap and available bases with low-toxicity that are easily separable. This highlight is classified into three sections: base-controlled, base-controlled transition metal-catalysed and base-controlled photocatalytic regio-divergent C-H bond functionalization. By summarizing the C-H bond activation model, the mechanisms underlying the regio-divergence and the influencing factors, this highlight aims to deepen the understanding of selective C-H bond functionalization at a molecular level. We expect that this highlight article will provide valuable information for understanding the mechanism of C-H bond functionalization, whilst providing a reference for developing green, efficient C-H bond transformation strategies.
Collapse
Affiliation(s)
- Yanlong Luo
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Xi Chen
- Tianshui YiFu Experimental Middle School, Tianshui, Gansu 741001, China
| | - Yongfang Han
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Xiangyun Zhang
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Lixia Zhang
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Zongqi Zheng
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Wenzhuo Ma
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Guolong Lou
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Dongdong Huang
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Jianlong Li
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Hebin Wang
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| |
Collapse
|
2
|
Chauhan RS, Bairagi Y, Desai O, Kowalczyk R, Maiti D. Palladium catalyzed regioselective distal C (sp 2)-H functionalization. Chem Commun (Camb) 2025; 61:4293-4315. [PMID: 39982443 DOI: 10.1039/d4cc06546h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The selective functionalization of C-H bonds in arenes remains a challenging task in organic synthesis. While directing group (DG)-assisted strategies for proximal C-H activation are well-established, distal meta and para-C-H functionalization has proven more elusive and has attracted significant interest. Palladium-catalyzed C-H activation, in particular, has emerged as a promising approach for achieving site-selectivity in these transformations. This review provides a comprehensive overview of recent advances in palladium-catalyzed distal C-H functionalization, delving into mechanistic details and the scope of these strategies. By summarizing the successes and challenges in this field, we aim to illuminate potential avenues for future research and development in synthetic methodology.
Collapse
Affiliation(s)
| | - Yogesh Bairagi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | - Om Desai
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | | | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
3
|
Dutta A, Jeganmohan M. Synthesis of Aryl Naphthoquinones and Maleimides via Pd(II)-Catalyzed Template-Assisted m-C(sp 2)-H Functionalization Reaction. Chemistry 2024; 30:e202402162. [PMID: 39133892 DOI: 10.1002/chem.202402162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
An efficient approach for the synthesis of substituted aryl naphthoquinones via a Pd(II)-catalyzed template-assisted m-C(sp2)-H bond functionalization reaction of arylmethane sulfonates have been demonstrated. The method involves usage of less expensive and abundant pharmacologically important scaffold naphthoquinone. A wide range of arylmethane sulfonates were examined and found to be compatible with the protocol. The protocol has also been further extended to the synthesis of various substituted aryl maleimide scaffolds. A plausible reaction mechanism has also been proposed to account for the selective distal m-C(sp2)-H bond functionalization reaction.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
4
|
Mounika K, Satyanarayana G. Aliphatic Nitrile Template Enabled meta-C-H Olefination of Indene Enoate Esters under Microwave Accelerating Conditions. Org Lett 2024; 26:8899-8903. [PMID: 39387653 DOI: 10.1021/acs.orglett.4c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Site-selective activation of a particular remote C-H bond in molecules with multiple C-H bonds remains challenging in organic synthesis. In addition, evolving such transformations via the utilization of unconventional techniques is highly desirable. We demonstrated hitherto unexplored double bond geometry-guided and end-on nitrile-template-assisted meta-C-H functionalization of indene enoate esters under microwave-accelerated conditions. Significantly, the strategy exhibited broad compatibility concerning the substrates and olefin coupling partners. Remarkably, drug diversification has also been showcased.
Collapse
Affiliation(s)
- Kurella Mounika
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
5
|
Guria S, Hassan MMM, Dey S, Singh KN, Chattopadhyay B. Sterically Controlled Lewis Acid-Base Interaction Toward para-Selective Borylation of Aromatic Aldimines and Benzylamines. Angew Chem Int Ed Engl 2024; 63:e202409010. [PMID: 39012678 DOI: 10.1002/anie.202409010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024]
Abstract
Site-selective C-H bond functionalization of arenes at the para position remains extremely challenging primarily due to its relative inaccessibility from the catalytic site. As a consequence, it is significantly restricted to limited molecular scaffolds. Herein, we report a method for the para-C-H borylation of aromatic aldimines and benzylamines using commercially available ligands under iridium catalysis. The established method displays excellent para selectivity for variously substituted aromatic aldimines, benzylamines and bioactive molecules. Based on several control experiments, it is proposed that a Lewis acid-base interaction between the nitrogen and boron functionality guides the para selectivity via a steric shield for the aromatic aldimines, where Bpin acts as a transient directing group. However, the steric shield of the in situ generated N-Bpin moiety controlled the overall selectivity for the para borylation of benzylamines.
Collapse
Affiliation(s)
- Saikat Guria
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Mirja Md Mahamudul Hassan
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Sayan Dey
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Buddhadeb Chattopadhyay
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| |
Collapse
|
6
|
Ali W, Oliver GA, Werz DB, Maiti D. Pd-catalyzed regioselective activation of C(sp 2)-H and C(sp 3)-H bonds. Chem Soc Rev 2024; 53:9904-9953. [PMID: 39212454 DOI: 10.1039/d4cs00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Differentiating between two highly similar C-H bonds in a given molecule remains a fundamental challenge in synthetic organic chemistry. Directing group assisted strategies for the functionalisation of proximal C-H bonds has been known for the last few decades. However, distal C-H bond functionalisation is strenuous and requires distinctly specialised techniques. In this review, we summarise the advancement in Pd-catalysed distal C(sp2)-H and C(sp3)-H bond activation through various redox manifolds including Pd(0)/Pd(II), Pd(II)/Pd(IV) and Pd(II)/Pd(0). Distal C-H functionalisation, where a Pd-catalyst is directly involved in the C-H activation step, either through assistance of an external directing group or directed by an inherent functionality or functional group incorporated at the site of the Pd-C bond is covered. The purpose of this review is to portray the current state of art in Pd-catalysed distal C(sp2)-H and C(sp3)-H functionalisation reactions, their mechanism and application in the late-stage functionalisation of medicinal compounds along with highlighting its limitations, thus leaving the field open for further synthetic adjustment.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| | - Gwyndaf A Oliver
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Yin F, Chen Y, Luo Z, Li S, Zhang Y, Wan S, Li X, Kong L, Wang X. Regioselective Olefination and Arylation of Arene-Tethered Diols Using the Easily Foldable Directing Groups. Org Lett 2024; 26:1463-1467. [PMID: 38349252 DOI: 10.1021/acs.orglett.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Arene-tethered diols constitute a valuable class of structural motifs of drug and bioactive natural product molecules. In this study, a regioselective protocol for olefination and arylation of arene-tethered 1,2-diols and 1,3-diols has been developed using easily foldable acetal structures for attaching pyridine and nitrile directing groups. The method overcomes the steric hindrance effect of the short-chain diols and affords products in high yield and regioselectivity. This efficient cascaded catalysis has been successfully utilized in the syntheses of natural products such as peucedanol, decursinol, and marmesin.
Collapse
Affiliation(s)
- Fucheng Yin
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yifan Chen
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Zhongwen Luo
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Shang Li
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yonglei Zhang
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Siyuan Wan
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xinxin Li
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
8
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
9
|
Wang H, Fu L, Zhou C, Li G. Pd(ii)-catalyzed meta-C-H bromination and chlorination of aniline and benzoic acid derivatives. Chem Sci 2022; 13:8686-8692. [PMID: 35974770 PMCID: PMC9337732 DOI: 10.1039/d2sc01834a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
The classic electrophilic bromination leads to ortho- and para-bromination of anilines due to their electron-rich properties. Herein we report the development of an unprecedented Pd-catalyzed meta-C-H bromination of aniline derivatives using commercially available N-bromophthalimide (NBP), which overcomes the competing ortho/para-selectivity of electrophilic bromination of anilines. The addition of acid additives is crucial for the success of this reaction. A broad range of substrates with various substitution patterns can be tolerated in this reaction. Moreover, benzoic acid derivatives bearing complex substitution patterns are also viable with this mild bromination reaction, and meta-C-H chlorination is also feasible under similar reaction conditions. The ease of the directing group removal and subsequent diverse transformations of the brominated products demonstrate the application potential of this method and promise new opportunities for drug discovery.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| | - Lei Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| | - Chunlin Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| | - Gang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
10
|
Ramesh P, Sreenivasulu C, Kishore DR, Srinivas D, Gorantla KR, Mallik BS, Satyanarayana G. Recyclable Aliphatic Nitrile-Template Enabled Remote meta-C-H Functionalization at Room Temperature. J Org Chem 2022; 87:2204-2221. [PMID: 35143206 DOI: 10.1021/acs.joc.1c02865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article describes the development of a new aliphatic nitrile-template-directed remote meta-selective C-H olefin functionalization reaction of arenes. Remarkably, unlike the previous reports, this process is feasible at room temperature and enabled the formation of products with excellent regioselectivity. The present protocol encompasses a broad spectrum of substituted dihydrocinnamic acids and olefins, producing meta-C-H olefinated products (up to 96% yield). In addition, the efficacy of the present method has been showcased by the synthesis of various drug analogues (e.g., cholesterol, estrone, ibuprofen, and naproxen). Significantly, the robustness of meta-olefination was also demonstrated by gram-scale synthesis. The new nitrile-based meta-directing template, in particular, could be easily synthesized in two steps and recycled under mild conditions.
Collapse
Affiliation(s)
- Perla Ramesh
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| | | | - Dakoju Ravi Kishore
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| | - Dasari Srinivas
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| | - Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| |
Collapse
|
11
|
Atkin L, Priebbenow DL. Cobalt-catalysed acyl silane directed ortho C–H functionalisation of benzoyl silanes. Chem Commun (Camb) 2022; 58:12604-12607. [DOI: 10.1039/d2cc05350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acyl silanes can be engaged as weakly coordinating directing groups in cobalt catalysed C–H functionalisation reactions to prepare benzoyl silanes that are highly amenable to subsequent synthetic manipulations yet inaccessible via existing methods.
Collapse
Affiliation(s)
- Liselle Atkin
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Daniel L. Priebbenow
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
- School of Chemistry, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
12
|
Tali JA, Kumar G, Singh D, Shankar R. Palladium(II) catalyzed site-selective C-H olefination of imidazo[1,2- a]pyridines. Org Biomol Chem 2021; 19:9401-9406. [PMID: 34705920 DOI: 10.1039/d1ob01683k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we disclose an efficient Pd(II)-catalyzed site selective C8 alkenylation of imidazo[1,2-a]pyridines with electronically biased olefinic substrates. Notably, besides the presence of four C-H sites available, selective mono-alkenylation was achieved by N-chelation overriding O-chelation. The versatility and scalability of the catalysis enabled the selective late-stage functionalization of a marketed drug, zolimidine. Various substituted heteroaryl alkenes can be afforded with moderate to good yields with high C8 regioselectivity.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Davinder Singh
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
13
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
14
|
Srinivas D, Satyanarayana G. Palladium-Catalyzed Distal m-C-H Functionalization of Arylacetic Acid Derivatives. Org Lett 2021; 23:7353-7358. [PMID: 34519504 DOI: 10.1021/acs.orglett.1c02460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we present m-C-H olefination on derivatives of phenylacetic acids by tethering with a simple nitrile-based template through palladium catalysis. Notably, the versatility of the method is evaluated with a wide range of phenylacetic acid derivatives for obtaining the meta-olefination products in fair to excellent yields with outstanding selectivities under mild conditions. Significantly, the present strategy is successfully exemplified for the synthesis of drugs/natural product analogues (naproxen, ibuprofen, paracetamol, and cholesterol).
Collapse
Affiliation(s)
- Dasari Srinivas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
15
|
Li G, Yan Y, Zhang P, Xu X, Jin Z. Palladium-Catalyzed meta-Selective C–H Functionalization by Noncovalent H-Bonding Interaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Guoshuai Li
- State Key Laboratory of Elementoorganic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yifei Yan
- State Key Laboratory of Elementoorganic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pengfei Zhang
- State Key Laboratory of Elementoorganic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaohua Xu
- State Key Laboratory of Elementoorganic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhong Jin
- State Key Laboratory of Elementoorganic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Enviromental Science, Kashi University, Kashgar 844007, China
| |
Collapse
|
16
|
Tali JA, Singh D, Kumar G, Shankar R. Regioselective Base‐controlled Pd‐catalyzed Arylation of Imidazo[1,2‐a]pyridines: leading selectivity at C8 position by N‐chelation over O‐chelation. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Javeed Ahmad Tali
- Natural Products and Medicinal Chemistry (NPMC) CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Jammu 180001 India
| | - Davinder Singh
- Natural Products and Medicinal Chemistry (NPMC) CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Jammu 180001 India
| | - Gulshan Kumar
- Natural Products and Medicinal Chemistry (NPMC) CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Jammu 180001 India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry (NPMC) CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Jammu 180001 India
| |
Collapse
|
17
|
Luo J, Fu Q. Aldehyde‐Directed C(
sp
2
)−H Functionalization under Transition‐Metal Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junfei Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Qiang Fu
- School of Pharmacy Southwest Medical University Luzhou 610041 P. R. China
- Department of Pharmacy The Affiliated Hospital of Southwest Medical University Luzhou 646000 P. R. China
| |
Collapse
|
18
|
Ali W, Prakash G, Maiti D. Recent development in transition metal-catalysed C-H olefination. Chem Sci 2021; 12:2735-2759. [PMID: 34164039 PMCID: PMC8179420 DOI: 10.1039/d0sc05555g] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Transition metal-catalysed functionalizations of inert C-H bonds to construct C-C bonds represent an ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and ligands has played a crucial role in selective C-H bond (sp2 or sp3) activation. Recent developments in these areas have assured a high level of regioselectivity in C-H olefination reactions. In this review, we have summarized the recent progress in the oxidative olefination of sp2 and sp3 C-H bonds with special emphasis on distal, atroposelective, non-directed sp2 and directed sp3 C-H olefination. The scope, limitation, and mechanism of various transition metal-catalysed olefination reactions have been described briefly.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Gaurav Prakash
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
- Tokyo Tech World Research Hub Initiative (WRHI), Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
19
|
Ramesh P, Sreenivasulu C, Gorantla KR, Mallik BS, Satyanarayana G. A simple removable aliphatic nitrile template 2-cyano-2,2-di-isobutyl acetic acid for remote meta-selective C–H functionalization. Org Chem Front 2021. [DOI: 10.1039/d1qo00140j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The remote meta-selective C–H functionalization of arenes using first aliphatic nitrile template 2-cyano-2,2-di-isobutyl acetic acid under mild conditions is presented.
Collapse
Affiliation(s)
- Perla Ramesh
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy 502285
- India
| | | | | | - Bhabani S. Mallik
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy 502285
- India
| | - Gedu Satyanarayana
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy 502285
- India
| |
Collapse
|
20
|
Iqbal Z, Joshi A, Ranjan De S. Recent Advancements on Transition‐Metal‐Catalyzed, Chelation‐Induced
ortho
‐Hydroxylation of Arenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zafar Iqbal
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| | - Asha Joshi
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| | - Saroj Ranjan De
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| |
Collapse
|
21
|
Higham JI, Bull JA. Transient imine directing groups for the C-H functionalisation of aldehydes, ketones and amines: an update 2018-2020. Org Biomol Chem 2020; 18:7291-7315. [PMID: 32926032 DOI: 10.1039/d0ob01587c] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The use of pre-installed directing groups has become a popular and powerful strategy to control site selectivity in transition metal catalysed C-H functionalisation reactions. However, the necessity for directing group installation and removal reduces the efficiency of a directed C-H functionalisation method. To overcome this limitation, taking inspiration from organocatalytic methodologies, the use of transient directing groups has arisen. These methods allow for a transient ligand to be used, potentially in catalytic quantities, without the need for discrete installation or removal steps, enabling the discovery of more efficient, and mechanistically intriguing, dual catalytic methods. This review summarises recent developments in this fast moving field covering >70 new methodologies, highlighting new directing group designs and advances in mechanistic understanding. It covers progress since 2018, providing an update to our previous review of the field.
Collapse
Affiliation(s)
- Joe I Higham
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | - James A Bull
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
22
|
Spencer ARA, Korde R, Font M, Larrosa I. meta-Selective olefination of fluoroarenes with alkynes using CO 2 as a traceless directing group. Chem Sci 2020; 11:4204-4208. [PMID: 34122883 PMCID: PMC8152615 DOI: 10.1039/d0sc01138j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022] Open
Abstract
Over the last few decades C-H olefination has received significant interest, due to the importance and usefulness of aryl olefins both as synthetic targets and intermediates. While a wide range of ortho-olefination protocols have been developed, only a small number of meta-olefinations are currently available. Importantly, the most common approach to meta-olefination, using a large meta-directing template, is not suitable for substrates such as fluorobenzenes, which cannot be derivatised. We report that the meta-selective olefination of fluoroarenes can be achieved via the use of CO2 as a traceless directing group, which can be easily installed and removed in a one-pot process. Furthermore, this approach avoids the use of stoichiometric Ag(i)-salts, commonly used in C-H olefinations, and affords complete meta- over ortho/para-regioselectivity.
Collapse
Affiliation(s)
- Andrew R A Spencer
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Rishi Korde
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Marc Font
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Igor Larrosa
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
23
|
Yang S, Yan B, Zhong L, Jia C, Yao D, Yang C, Sun K, Li G. AIBN for Ru-catalyzed meta-C Ar–H alkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00703j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The meta-CAr–H alkylation of arenes with radicals produced from AIBN in the presence of a RuCl3 catalyst is presented.
Collapse
Affiliation(s)
- Suling Yang
- College of Chemistry and Chemical Engineering
- Henan Province Key Laboratory of New Optoelectronic Functional Materials
- Anyang Normal University
- Anyang 455002
- PR China
| | - Bingxu Yan
- College of Chemistry and Chemical Engineering
- Henan Province Key Laboratory of New Optoelectronic Functional Materials
- Anyang Normal University
- Anyang 455002
- PR China
| | - Lei Zhong
- College of Chemistry and Chemical Engineering
- Henan Province Key Laboratory of New Optoelectronic Functional Materials
- Anyang Normal University
- Anyang 455002
- PR China
| | - Chunqi Jia
- Engineering Research Center of Molecular Medicine of Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
- Huaqiao University
| | - Dan Yao
- College of Chemistry and Chemical Engineering
- Henan Province Key Laboratory of New Optoelectronic Functional Materials
- Anyang Normal University
- Anyang 455002
- PR China
| | - Chunli Yang
- College of Chemistry and Chemical Engineering
- Henan Province Key Laboratory of New Optoelectronic Functional Materials
- Anyang Normal University
- Anyang 455002
- PR China
| | - Kai Sun
- College of Chemistry and Chemical Engineering
- Henan Province Key Laboratory of New Optoelectronic Functional Materials
- Anyang Normal University
- Anyang 455002
- PR China
| | - Gang Li
- College of Chemistry and Chemical Engineering
- Henan Province Key Laboratory of New Optoelectronic Functional Materials
- Anyang Normal University
- Anyang 455002
- PR China
| |
Collapse
|