1
|
Gao R, Xue M, Shen N, Zhao X, Zhang JC, Cao C, Cai J. Development of Low-Toxicity Antimicrobial Polycarbonates Bearing Lysine Residues. Chemistry 2024; 30:e202402302. [PMID: 39327935 PMCID: PMC11537833 DOI: 10.1002/chem.202402302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Antibiotic resistance has been threatening public health for a long period, while the COVID pandemic aggravated the scenario. To combat antibiotic resistance strains, host defense peptides (HDPs) mimicking molecules have attracted considerable attention. Herein, we reported a series of polycarbonates bearing cationic lysine amino acid residues that could mimic the mechanism of action of HDPs and possess broad-spectrum antimicrobial activity. Moreover, those polymers had negligible toxicity toward red blood cells and mammalian cells. The membrane-disruption mechanism endows the lysine-containing polycarbonates with low possibility of resistance development and the fast killing kinetics, making them promising candidates for antimicrobial development.
Collapse
Affiliation(s)
- Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Menglin Xue
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Ning Shen
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Xue Zhao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Justin C Zhang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Chuanhai Cao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| |
Collapse
|
2
|
Chen Y, Jiang H, Sun Z, Liu F, Su M. Hydantoin derivative dimers as broad-spectrum antimicrobial agents against ESKAPE pathogens with enhanced killing rate and stability. RSC Med Chem 2024; 15:2340-2350. [PMID: 39026634 PMCID: PMC11253853 DOI: 10.1039/d4md00374h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
A new series of hydantoin derivative dimers as potential broad-spectrum antibiotic agents is designed and synthesized to combat ESKAPE pathogens. As membrane-active antimicrobial agents, in addition to cationic charged and hydrophobic groups that mimic AMPs (antimicrobial peptides), hydantoin backbones and aromatic linkers increased the rigidity and lipophilicity of the designed compounds, thus improving the stability and bactericidal killing rate. After whole cell phenotypic screening against eight bacterial strains, including MRSA (methicillin-resistant S. aureus), compound 18 was chosen as the lead compound with overall excellent broad-spectrum antibacterial activity (GM = 7.32 μg mL-1) and good selectivity. Kill-kinetic studies of compound 18 showed that the bacterial growth of both Gram-positive and Gram-negative was completely inhibited within one hour, which demonstrated excellent sterilization efficiency of 18. Furthermore, drug resistance and mechanism studies showed that compound 18 exhibited a steady antibacterial performance during 25 passages and could disrupt bacterial cell membrane integrity and cause cell death. Along with the facile synthesis procedures in solution, this series of hydantoin derivative dimer compounds could be an appealing next generation of antibiotic agents to combat emergent drug resistance.
Collapse
Affiliation(s)
- Yating Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Huiqin Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Zibin Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| |
Collapse
|
3
|
Adak A, Castelletto V, de Sousa A, Karatzas KA, Wilkinson C, Khunti N, Seitsonen J, Hamley IW. Self-Assembly and Antimicrobial Activity of Lipopeptides Containing Lysine-Rich Tripeptides. Biomacromolecules 2024; 25:1205-1213. [PMID: 38204421 PMCID: PMC10865344 DOI: 10.1021/acs.biomac.3c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
The conformation and self-assembly of two pairs of model lipidated tripeptides in aqueous solution are probed using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). The palmitoylated lipopeptides comprise C16-YKK or C16-WKK (with two l-lysine residues) or their respective derivatives containing d-lysine (k), i.e., C16-Ykk and C16-Wkk. All four molecules self-assemble into spherical micelles which show structure factor effects in SAXS profiles due to intermicellar packing in aqueous solution. Consistent with micellar structures, the tripeptides in the coronas have a largely unordered conformation, as probed using spectroscopic methods. The molecules are found to have good cytocompatibility with fibroblasts at sufficiently low concentrations, although some loss of cell viability is noted at the highest concentrations examined (above the critical aggregation concentration of the lipopeptides, determined from fluorescence dye probe measurements). Preliminary tests also showed antimicrobial activity against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Ana de Sousa
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Kimon-Andreas Karatzas
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Callum Wilkinson
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Nikul Khunti
- Diamond
Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| |
Collapse
|
4
|
Gao R, Li X, Xue M, Shen N, Wang M, Zhang J, Cao C, Cai J. Development of lipidated polycarbonates with broad-spectrum antimicrobial activity. Biomater Sci 2023; 11:1840-1852. [PMID: 36655904 PMCID: PMC10848156 DOI: 10.1039/d2bm01995g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antimicrobial resistance is a global challenge owing to the lack of discovering effective antibiotic agents. Antimicrobial polymers containing the cationic groups and hydrophobic groups which mimic natural host-defense peptides (HDPs) show great promise in combating bacteria. Herein, we report the synthesis of lipidated polycarbonates bearing primary amino groups and hydrophobic moieties (including both the terminal long alkyl chain and hydrophobic groups in the sequences) by ring-opening polymerization. The hydrophobic/hydrophilic group ratios were adjusted deliberately and the lengths of the alkyl chains at the end of the polymers were modified to achieve the optimized combination for the lead polymers, which exhibited potent and broad-spectrum bactericidal activity against a panel of Gram-positive and Gram-negative bacteria. The polymers only showed very limited hemolytic activity, demonstrating their excellent selectivity. Comprehensive analyses using biochemical and biophysical assays revealed the strong interaction between the polymers and bacteria membranes. Moreover, the polymers also showed strong biofilm inhibition activity and did not readily induce antibiotic resistance. Our results suggest that lipidated polycarbonates could be a new class of antimicrobial agents.
Collapse
Affiliation(s)
- Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Xuming Li
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Menglin Xue
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Ning Shen
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Jingyao Zhang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Chuanhai Cao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
5
|
Harris PWR, Siow A, Yang SH, Wadsworth AD, Tan L, Hermant Y, Mao Y, An C, Hanna CC, Cameron AJ, Allison JR, Chakraborty A, Ferguson SA, Mros S, Hards K, Cook GM, Williamson DA, Carter GP, Chan STS, Painter GA, Sander V, Davidson AJ, Brimble MA. Synthesis, Antibacterial Activity, and Nephrotoxicity of Polymyxin B Analogues Modified at Leu-7, d-Phe-6, and the N-Terminus Enabled by S-Lipidation. ACS Infect Dis 2022; 8:2413-2429. [PMID: 36413173 DOI: 10.1021/acsinfecdis.1c00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS). We then designed and synthesized 38 polymyxin analogues, incorporating these unique building blocks at the N-terminus, or to replace hydrophobic residues at positions 6 and 7 of the native lipopeptides. Several polymyxin analogues bearing one or more S-linked lipids were found to be equipotent to polymyxin, showed minimal kidney nephrotoxicity, and demonstrated activity against several World Health Organisation (WHO) priority pathogens. The S-lipidation strategy has demonstrated potential as a novel approach to prepare innovative new lipopeptide antibiotics.
Collapse
Affiliation(s)
- Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Andrew D Wadsworth
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Lyndia Tan
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Yann Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Yubing Mao
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Chalice An
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Cameron C Hanna
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Jane R Allison
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Aparajita Chakraborty
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Sonya Mros
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Kiel Hards
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.,Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Susanna T S Chan
- Ferrier Research Institute, Te Herenga Waka─Victoria University of Wellington, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Gavin A Painter
- Ferrier Research Institute, Te Herenga Waka─Victoria University of Wellington, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Hale SJM, Wagner Mackenzie B, Lux CA, Biswas K, Kim R, Douglas RG. Topical Antibiofilm Agents With Potential Utility in the Treatment of Chronic Rhinosinusitis: A Narrative Review. Front Pharmacol 2022; 13:840323. [PMID: 35770097 PMCID: PMC9234399 DOI: 10.3389/fphar.2022.840323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The role of bacterial biofilms in chronic and recalcitrant diseases is widely appreciated, and the treatment of biofilm infection is an increasingly important area of research. Chronic rhinosinusitis (CRS) is a complex disease associated with sinonasal dysbiosis and the presence of bacterial biofilms. While most biofilm-related diseases are associated with highly persistent but relatively less severe inflammation, the presence of biofilms in CRS is associated with greater severity of inflammation and recalcitrance despite appropriate treatment. Oral antibiotics are commonly used to treat CRS but they are often ineffective, due to poor penetration of the sinonasal mucosa and the inherently antibiotic resistant nature of bacteria in biofilms. Topical non-antibiotic antibiofilm agents may prove more effective, but few such agents are available for sinonasal application. We review compounds with antibiofilm activity that may be useful for treating biofilm-associated CRS, including halogen-based compounds, quaternary ammonium compounds and derivatives, biguanides, antimicrobial peptides, chelating agents and natural products. These include preparations that are currently available and those still in development. For each compound, antibiofilm efficacy, mechanism of action, and toxicity as it relates to sinonasal application are summarised. We highlight the antibiofilm agents that we believe hold the greatest promise for the treatment of biofilm-associated CRS in order to inform future research on the management of this difficult condition.
Collapse
Affiliation(s)
- Samuel J M Hale
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Brett Wagner Mackenzie
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christian A Lux
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Raymond Kim
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard G Douglas
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Wei L, Gao R, Wang M, Wang Y, Shi Y, Gu M, Cai J. Dimeric lipo-α/sulfono-γ-AA hybrid peptides as broad-spectrum antibiotic agents. Biomater Sci 2021; 9:3410-3424. [PMID: 33949388 PMCID: PMC8903075 DOI: 10.1039/d0bm01955k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
There is an urgent need to develop novel antibiotic agents that can combat emerging drug resistance. Herein, we report the design and investigation of a class of short dimeric antimicrobial lipo-α/sulfono-γ-AA hybrid peptides. Some of these peptides exhibit potent and broad-spectrum antimicrobial activity toward both clinically related Gram-positive and Gram-negative bacteria. The TEM study suggests that these hybrid peptides can compromise bacterial membranes and lead to bacterial death. Membrane depolarization and fluorescence microscopy studies also indicate that the mechanism of action is analogous to host-defense peptides (HDPs). Furthermore, the lead compound shows the ability to effectively inhibit biofilms formed from MRSA and E. coli. Further development of the short dimeric lipo-α/sulfono-γ-AA hybrid peptides may lead to a new generation of antimicrobial biomaterials to combat drug resistance.
Collapse
Affiliation(s)
- Lulu Wei
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Minghui Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Yafeng Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Yan Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Meng Gu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|