1
|
Narra RR, Unnithan VG, Liu Y, Guo Z. Rapid Access to Divergent Fused Polycycles Via One-Pot A 3 Coupling and Intramolecular Diels-Alder Reaction. Chemistry 2024; 30:e202401449. [PMID: 38749918 DOI: 10.1002/chem.202401449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Indexed: 06/29/2024]
Abstract
Divergent nitrogen-containing fused polycyclic ring systems are constructed from simple starting materials via a one-pot aldehyde-alkyne-amine (A3) coupling and intramolecular Diels-Alder reaction. This domino reaction directly furnishes linear 5/5/5 and 5/5/6, or nonlinear 5/5/6/5, polycyclic rings containing an oxa-bridged fused 5/5 bicycle and a 1,6-enyne substructure. One-step derivation of the oxa-bridged 5/5 bicycle leads to a polyfunctionalized 5/5 bicycle with tetrahydrofuran fused back-to-back to pyrroline or a 6/5 bicycle with the hexahydro-1H-isoindole structure, while cycloisomerizing the enyne substructure adds an extra fused 5-membered ring to afford functionalized linear 5/5/5/5 or 5/5/5/5/5 fused ring systems from selected substrates. In addition, the one-pot product can be designed so that the alkyne moiety is hydroalkoxylated to form an additional heterocyle in a linear 5/5/5/6 or nonlinear 5/5/6/5/5 ring system. This diversity-oriented synthetic approach thus allows rapid access to an under-explored structural space for discovery of new biological or non-biological activities or functions.
Collapse
Affiliation(s)
- Rajashekar Reddy Narra
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | - Yifan Liu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
2
|
Thadem N, Rajesh M, Balaboina H, Das S. Synthesis of bridgehead-azacycles via dual C-N/C-C annulation of α-amino acids, aminals and maleimides. Org Biomol Chem 2022; 20:6368-6383. [PMID: 35861324 DOI: 10.1039/d2ob01117d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of various bridged azacyclic adducts has recently become a reemerging topic due to their bioactive and natural product mimic profiles. Accordingly, herein, we report a method for easy access to succinamide-bridged azacyclic derivatives through the metal-free polarization-controlled dual C-N/C-C annulation of readily available α-amino acids, 2-amino benzaldehydes or pyrrole/indole-2-aldehyde and maleimide substrates. This cascade features a rare dipolarophile-induced diastereo-selective amidative annulation, followed by 3 + 2 cycloaddition as key steps.
Collapse
Affiliation(s)
- Nagender Thadem
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
| | - Harikrishna Balaboina
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
| | - Saibal Das
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Recyclable Copper-Catalyzed Decarboxylative C–C Coupling of the sp3-Hybridized Carbon Atoms of α-Amino Acids. Catal Letters 2022. [DOI: 10.1007/s10562-022-03936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Liu CH, Guo J, Li X, Sun J, Wei B, Si CM. SmI2‑Mediated Intermolecular Addition-Elimination of Piperidine and Pyrrolidine N-α-Radicals with Arylacetylene Sulfones. Chem Commun (Camb) 2022; 58:10841-10844. [DOI: 10.1039/d2cc03984b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach to access α-arylacetylene substituted pyrrolidine and piperidine derivatives has been developed through a samarium diiodide mediated addition-elimination process of pyrrolidine and piperidine N-α-radicals with arylacetylene sulfones.
Collapse
|
5
|
Cao L, Huang L, Xu X, Van der Eycken EV, Feng H. Synthesis of nitrogen-tethered 1,6-enynes through CuI/TFA catalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01358k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new cascade process of the TFA-promoted Pictet–Spengler reaction and Cu-catalyzed intermolecular hydride transfer/alkynylation of an amine, formaldehyde solution, and an alkyne has been developed.
Collapse
Affiliation(s)
- Leilei Cao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xianjun Xu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
- Shanghai Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow, 117198, Russia
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
6
|
Wang Y, Yang M, Lao C, Jiang Z. C-H bond cleavage-enabled aerobic ring-opening reaction of in situ formed 2-aminobenzofuran-3(2 H)-ones. Org Biomol Chem 2021; 19:9448-9459. [PMID: 34693412 DOI: 10.1039/d1ob01755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C-H bond cleavage-enabled aerobic ring-opening reaction of 2-aminobenzofuran-3(2H)-ones formed in situ by hemiacetals with a variety of amines is reported. This simple one-pot reaction provides an alternative approach to obtain o-hydroxyaryl glyoxylamides in excellent yields of up to 97%. Alkylamines react with hemiacetals via a catalyst-free dehydration condensation to generate 2-aminobenzofuran-3(2H)-ones. The in situ formed semicyclic N,O-acetals undergo the same amine-initiated C-H bond hydroxylation in air under mild conditions to afford ring-opening products. Similarly, arylamines were investigated as substrates for a two-step tandem process involving a DPP-catalyzed condensation followed by a Et2NH-mediated C-H hydroxylation. Unlike the previously reported functionalization of N,O-acetals via a C-O or C-N cleavage, the aerobic oxidative C-H hydroxylation in this reaction, which is promoted by using stoichiometric amounts of alkylamines as both a Lewis base and a reductant at room temperature under atmospheric air, proceeds via α-carbonyl-stabilized carbanion intermediates from the C-H cleavage of N,O-acetals.
Collapse
Affiliation(s)
- Yingwei Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| | - Mingrong Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| | - Chichou Lao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China. .,Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
7
|
Mao ZY, Nie XD, Feng YM, Si CM, Wei BG, Lin GQ. Cu(OTf) 2 catalyzed Ugi-type reaction of N, O-acetals with isocyanides for the synthesis of pyrrolidinyl and piperidinyl 2-carboxamides. Chem Commun (Camb) 2021; 57:9248-9251. [PMID: 34519320 DOI: 10.1039/d1cc03113a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Cu(OTf)2 catalyzed Ugi-type reactions of N,O-acetals with isocyanides have been described for the synthesis of pyrrolidinyl and piperidinyl 2-carboxamides. 4-Hydroxy-5-substituted-prolinamides can be obtained in high diastereoselectivities (2,4-cis/trans > 19 : 1) and a stereoselective model was proposed for 2,4-cis selectivity. Moreover, 4-F-VH 032, a novel analog of the VHL ligand, was conveniently obtained by utilizing the present method.
Collapse
Affiliation(s)
- Zhuo-Ya Mao
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Xiao-Di Nie
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yi-Man Feng
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Chang-Mei Si
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Bang-Guo Wei
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Chen ZD, Xu WK, Guo JM, Chen L, Wei BG, Si CM, Lin GQ. A One-Pot Approach to 2-Substituted-2-(Dimethoxyphosphoryl)-Pyrrolidines from Substituted tert-Butyl 4-Oxobutylcarbamates and Trimethyl Phosphite. J Org Chem 2021; 86:11442-11455. [PMID: 34479405 DOI: 10.1021/acs.joc.1c00935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel approach to 2-substituted-2-(dimethoxyphosphoryl)-pyrrolidines 7a-7o and 9a-9r has been developed, which features a TMSOTf-mediated one-pot intramolecular cyclization and phosphonylation of substituted tert-butyl 4-oxobutylcarbamates. The major advantages of this method include simple operation under mild reaction conditions, the use of cheap Lewis acid, and good to excellent yields with high diastereoselectivities (dr up to 99:1).
Collapse
Affiliation(s)
- Zhao-Dan Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wen-Ke Xu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jia-Ming Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ling Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chang-Mei Si
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
9
|
Huang L, Xie Y, Ge P, Huang J, Feng H. Glyoxylic Acid: A Carboxyl Group‐Assisted Metal‐Free Decarboxylative Reaction Toward Propargylamines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liliang Huang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Yujuan Xie
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Panyuan Ge
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry Shanghai Institute of Pharmaceutical Industry Shanghai 201203 China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| |
Collapse
|
10
|
Feng H, Peng F, Xi H, Zhong L, Huang L. Cu‐Catalyzed Selective Synthesis of Propargylamines via A
3
‐Coupling/
Aza
‐Michael Addition Sequence: Amine Loading Controls the Selectivity. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huangdi Feng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Futao Peng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Hui Xi
- Zhengzhou Tobacco Research Institute of China National Tobacco Company Zhengzhou 450001 P. R. China
| | - Ling Zhong
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| |
Collapse
|
11
|
Viji M, Vishwanath M, Sim J, Park Y, Jung C, Lee S, Lee H, Lee K, Jung JK. α-Hydroxy acid as an aldehyde surrogate: metal-free synthesis of pyrrolo[1,2- a]quinoxalines, quinazolinones, and other N-heterocycles via decarboxylative oxidative annulation reaction. RSC Adv 2020; 10:37202-37208. [PMID: 35521290 PMCID: PMC9057147 DOI: 10.1039/d0ra07093a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
A metal-free and efficient procedure for the synthesis of pyrrolo[1,2-a]quinoxalines, quinazolinones, and indolo[1,2-a]quinoxaline has been developed. The key features of our method include the in situ generation of aldehyde from α-hydroxy acid in the presence of TBHP (tert-butyl hydrogen peroxide), and further condensation with various amines, followed by intramolecular cyclization and subsequent oxidation to afford the corresponding quinoxalines, quinazolinones derivatives in moderate to high yields.
Collapse
Affiliation(s)
- Mayavan Viji
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Manjunatha Vishwanath
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Jaeuk Sim
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Yunjeong Park
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Chanhyun Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Seohu Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Heesoon Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Kiho Lee
- College of Pharmacy, Korea University Sejong 30019 Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| |
Collapse
|