1
|
Chen H, Rueping M. Facile, general allylation of unactivated alkyl halides via electrochemically enabled radical-polar crossover. Chem Sci 2025; 16:6317-6324. [PMID: 40083972 PMCID: PMC11898270 DOI: 10.1039/d4sc07923j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Electrochemically driven carbon-carbon formation is receiving considerable interest in organic synthesis. In this study, we present an electrochemically driven method for the formation of C(sp3)-C(sp3) bonds using readily available allylic carbonates, as well as primary, secondary, and tertiary alkyl bromides as electrophiles. This approach offers a highly selective route for synthesizing a broad range of allylic products with excellent functional group tolerance, all without the need for transition metal catalysts. Remarkably, this method also enables the smooth late-stage functionalization of various natural product- and drug-derived substrates, yielding the corresponding complex allylalkanes.
Collapse
Affiliation(s)
- Haifeng Chen
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
2
|
Zhao JQ, Chen ZP. The Progress of Reductive Coupling Reaction by Iron Catalysis. CHEM REC 2024; 24:e202400108. [PMID: 39289832 DOI: 10.1002/tcr.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Indexed: 09/19/2024]
Abstract
The transition metal catalyzed coupling reaction has revolutionized the strategies for forging the carbon-carbon bonds. In contrast to traditional cross-coupling methods using pre-prepared nucleophilic organometallic reagents, reductive coupling reactions for the C-C bonds formation provide some advantages. Because both coupling partners are reduced in the final products using a stoichiometric amount of a reductant, this approach not only avoids the need to use sensitive organometallic species, but also provides an orthogonal and complementary access to classical coupling reaction. Notably, the reductive coupling reactions feature readily available fragments, promote good step economy, exhibit high functional group tolerance and unique chemoselectivity, which have propelled their increasingly popular in the organic synthesis. In recent years, due to the low price, minimal toxicity, and environmentally benign character, iron-catalyzed carbon-carbon coupling reactions have garnered significant attention from the organic synthetic chemists and pharmacologists, especially the iron-catalyzed reductive coupling. This review aims to provide an insightful overview of recent advances in iron-catalyzed reductive coupling reactions, and to illustrate their possible reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Zhang-Pei Chen
- College of Sciences Northeastern University, Shenyang, 110819, China
| |
Collapse
|
3
|
Li S, Liu G, Zhang Z, Chen R, Tian H, Wang H, Chen X. Metal free C-O bond cleavage: a new strategy for the synthesis of substituted oxazoles. RSC Adv 2024; 14:28210-28214. [PMID: 39234524 PMCID: PMC11372780 DOI: 10.1039/d4ra05122j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
A strategy for the efficient metal-free C-O bond cleavage of ester using amines for the synthesis of substituted oxazoles was developed for the first time. The synthesis proceeded smoothly under metal-free conditions, combining C-O bond cleavage as well as C-N and C-O bond formation in one pot to yield desired products in moderate to excellent yields, and accommodated a wide range of functional groups and substrates.
Collapse
Affiliation(s)
- Shengwang Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Guiqin Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Zheyan Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Ruiling Chen
- School of Pharmacy, Changzhi Medical College Changzhi 046000 China
| | - Haiying Tian
- School of Pharmacy, Changzhi Medical College Changzhi 046000 China
| | - Huifeng Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| | - Xiuling Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology Xianning 437100 China (+)86-715-8338007
| |
Collapse
|
4
|
Zheng XF, Zhou DG, Yang LJ. DFT investigation of the DDQ-catalytic mechanism for constructing C-O bonds. Org Biomol Chem 2024; 22:3693-3707. [PMID: 38625132 DOI: 10.1039/d4ob00346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In this study, we investigated the photo-catalytic mechanisms for the construction of C-O bonds from arenes (benzene, 2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid, or 2,4-dichloro-1-fluorobenzene), catalyzed by 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). All the structures for the Gibbs free surfaces were calculated at the M06-2X-D3/ma-def2-SVP level in the SMD solvent model. Also, TDDFT calculations of DDQ were performed at the PBE1PBE-D3/ma-def2-SVP level in the SMD solvent model. The computational results indicated that DDQ, serving as a photo-catalyst, would be excited under visible light of 450 nm, aligning well with experimental observations as reflected in the UV-vis spectrum. Gibbs free energy surface analyses of the three reactions suggested that the path involving 3DDQ* activating the reactant (-COOH, H2O, or CH3OH) is favorable. Additionally, the role of O2 was investigated, revealing that it could facilitate the recycling of DDQ by lowering the energy barrier for the conversion of the DDQH˙ radical (not DDQH2) into DDQ. The use of ρhole and ρele can reveal the photo-catalytic reaction and charge transfer processes, while localized orbital locator isosurfaces and electron spin density isosurface graphs were employed to analyze structures and elucidate the single electron distribution. These computational results offer valuable insights into the studied interactions and related processes, shedding light on the mechanisms governing C-O bond formation from arenes catalyzed by DDQ.
Collapse
Affiliation(s)
- Xiu-Fang Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People's Republic of China.
| | - Da-Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People's Republic of China.
| | - Li-Jun Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People's Republic of China.
| |
Collapse
|
5
|
Liao JJ, Tian RG, Tian SK. Nickel-Catalyzed Reductive Cross-Coupling of Allylammonium Salts with Alkyl Iodides. J Org Chem 2023; 88:14781-14788. [PMID: 37769123 DOI: 10.1021/acs.joc.3c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
An unprecedented reductive cross-coupling reaction of allylammonium salts with alkyl electrophiles has been established through C-N bond cleavage. A range of allylammonium bromides smoothly participated in the nickel-catalyzed zinc-mediated allyl-alkyl cross-electrophile coupling reaction with alkyl iodides, delivering structurally diverse alkene products in moderate to good yields with high linear selectivity. Preliminary mechanistic experiments are consistent with the formation of an alkyl radical from the alkyl iodide.
Collapse
Affiliation(s)
- Jia-Jia Liao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ren-Gui Tian
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shi-Kai Tian
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Lin Q, Gong H, Wu F. Ni-Catalyzed Reductive Coupling of Heteroaryl Bromides with Tertiary Alkyl Halides. Org Lett 2022; 24:8996-9000. [DOI: 10.1021/acs.orglett.2c03598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Quan Lin
- School of Materials Science and Engineering, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Fan Wu
- Institute of Drug Discovery Technology and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
7
|
Chen Y, Gong H, Cheng L, Lin Q. Recent Progress on Transition-Metal-Mediated Reductive C(sp3)–O Bond Radical Addition and Coupling Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1848-3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractIn this short review, we summarize the recent developments on thermo-driven C(sp3)–O bond radical scission methods and their applications in the construction of C(sp3)–C bonds via conjugate addition with activated double bonds and reductive coupling mediated by economic 3d metals, in particular nickel. We have arranged the review based on three approaches for C(sp3)–O bond radical scission (vide infra). After generating the radical intermediates, their subsequent transformation into C(sp3)–C bonds enabled by C(sp3)–O cross-electrophile coupling with carbon electrophiles is discussed in detail.1 Introduction2 Direct Single-Electron Transfer to a C(sp3)–O Bond3 Radical Scission of Activated C(sp3)–O Bonds via Single-Electron Transfer to Protecting Groups4 In Situ Activation of Alcohols5 Summary and Outlook
Collapse
Affiliation(s)
- Yunrong Chen
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University
| | - Li Cheng
- School of Materials Science and Engineering, Shanghai University
| | - Quan Lin
- School of Materials Science and Engineering, Shanghai University
| |
Collapse
|
8
|
Anwar K, Merkens K, Aguilar Troyano FJ, Gómez-Suárez A. Radical Deoxyfunctionalisation Strategies. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Khadijah Anwar
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Organic Chemistry GERMANY
| | - Kay Merkens
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Organic Chemstry GERMANY
| | | | - Adrián Gómez-Suárez
- Bergische Universitat Wuppertal Organische Chemie Gaußstr. 20 42119 Wuppertal GERMANY
| |
Collapse
|
9
|
Wu F, Ye C, Tong W. Nickel-Catalyzed Reductive Cross-Coupling of Oxalates Derived from α-Hydroxy Carbonyls with Vinyl Bromides. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA nickel-catalyzed cross-electrophile coupling is disclosed in which a range of vinyl bromides were utilized as electrophiles with oxalates derived from α-hydroxy carbonyls as precursors to carbonyl radical coupling partners. This method is compatible with a broad range of functional groups, providing a complementary solution for the construction of β,γ-unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Drug Discovery Technology and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University
| | - Cheng Ye
- School of Materials Science and Engineering, Department of Chemistry, Shanghai University
| | - Weiqi Tong
- School of Materials Science and Engineering, Department of Chemistry, Shanghai University
| |
Collapse
|
10
|
Guan YQ, Wang TZ, Qiao JF, Chen Z, Bai Z, Liang YF. Iron-catalysed reductive coupling for the synthesis of polyfluorinated compounds. Chem Commun (Camb) 2022; 58:13915-13918. [DOI: 10.1039/d2cc06022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Iron-catalysed reductive cross-coupling of difluorobromo acetic acid derivatives with trifluoromethyl olefins to afford polyfluorinated molecules, containing a difluorenyl and difluoroalkyl group, with a broad substrate scope.
Collapse
Affiliation(s)
- Yu-Qiu Guan
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jia-Fan Qiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhushuang Bai
- School of Pharmacy and Pharmaceutical Science & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
11
|
Tercenio QD, Alexanian EJ. Stereospecific Nickel-Catalyzed Reductive Cross-Coupling of Alkyl Tosylate and Allyl Alcohol Electrophiles. Org Lett 2021; 23:7215-7219. [PMID: 34463502 DOI: 10.1021/acs.orglett.1c02616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The stereospecific cross-coupling of easily accessed electrophiles holds significant promise in the construction of C-C bonds. Herein, we report a nickel-catalyzed reductive coupling of allyl alcohols with chiral, nonracemic alkyl tosylates. This cross-coupling delivers valuable allylation products with high levels of stereospecificity across a range of substrates. The catalytic system consists of a simple nickel salt in conjunction with a commercially available reductant and importantly represents a rare example of a cross-coupling involving the C-O bonds of two electrophiles.
Collapse
Affiliation(s)
- Quentin D Tercenio
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik J Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Vincent É, Brioche J. Synthesis of Alkyl Fluorides by Silver‐Catalyzed Radical Decarboxylative Fluorination of Cesium Oxalates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Émilie Vincent
- INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) Normandie University 76000 Rouen France
| | - Julien Brioche
- INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) Normandie University 76000 Rouen France
| |
Collapse
|
13
|
Liu ZY, Cook SP. Interrupting the Barton–McCombie Reaction: Aqueous Deoxygenative Trifluoromethylation of O-Alkyl Thiocarbonates. Org Lett 2021; 23:808-813. [DOI: 10.1021/acs.orglett.0c04039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhi-Yun Liu
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Silas P. Cook
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
14
|
Liao S, Xu H, Xu L, Liang B, Yang B, Wang J, Zhou X, Lin X, Luo Z, Liu Y. A bifunctional ligand enables efficient gold-catalyzed hydroarylation of terminal unactivated propargylic alcohols with heteroareneboronic acids. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Pei G, Xu W, Li J. Iron- and zinc-mediated reductive coupling of styrenes and alkyl bromides: mechanistic investigation using DFT calculations. Org Chem Front 2021. [DOI: 10.1039/d1qo00386k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DFT calculations were performed to explore the mechanism for iron- and zinc-mediated reductive coupling of styrenes and alkyl bromides.
Collapse
Affiliation(s)
- Guojing Pei
- College of Chemistry and Materials Science
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou
- P. R. China
| | - Wan Xu
- College of Chemistry and Materials Science
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou
- P. R. China
| | - Juan Li
- College of Chemistry and Materials Science
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou
- P. R. China
| |
Collapse
|
16
|
Liu J, Ye Y, Sessler JL, Gong H. Cross-Electrophile Couplings of Activated and Sterically Hindered Halides and Alcohol Derivatives. Acc Chem Res 2020; 53:1833-1845. [PMID: 32840998 DOI: 10.1021/acs.accounts.0c00291] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transition metal catalyzed cross-electrophile coupling of alkyl electrophiles has evolved into a privileged strategy that permits the facile construction of valuable C(sp3)-C bonds. Numerous elegant Ni-catalyzed coupling methods, for example, arylation, allylation, acylation, and vinylation of primary and secondary alkyl halides have been developed. This prior work has provided important mechanistic insights into the selectivity and reactivity of the coupling partners, which are largely dictated by both the catalysts and the reactants. In spite of the advances made to date, a number of challenging issues remain, including (1) achieving stereoselective syntheses of C-C bonds that rely primarily on functionalized or activated alkyl precursors, (2) diversifying the electrophiles, and (3) gaining insights into the underlying reaction mechanisms.In this Account, we summarize a number of Ni- and Fe-catalyzed reductive C-C bond forming methods developed in our laboratory, which have allowed us to couple activated, sterically hindered tertiary alkyl and C(sp3)-O bond electrophiles and to access methylated and trifluoromethylated products, esters, C-glycosides, and quaternary carbon centers. We will begin with a brief discussion of Ni-catalyzed chemoselective construction of unactivated alkyl-alkyl bonds, with focus on the effects of ligands and reductants, along with leaving group-directed reactivities of alkyl halides, and the role they play in promoting the reductive coupling of activated electrophiles, including methyl, trifluoromethyl, and glycosyl electrophiles, and chloroformates. Matching the reactivities of these electrophiles with suitable coupling partners is considered essential for success; this is something that can be tuned by means of appropriate Ni catalysts. Second, we will detail how tuning the steric and electronic effects of nickel catalysts with labile pyridine-type ligands and additives (primarily MgCl2) permits effective creation of arylated all-carbon quaternary centers through the coupling of aryl halides with sterically encumbered tertiary alkyl halides. In contrast, the use of bulkier bipyridine and terpyridine ligands permits the incorporation of relative small-sized acyl and allyl groups into acylated and allylated all-carbon quaternary centers. Finally, we will show how the knowledge gained with halide electrophiles enabled us to develop methods that permit the coupling of tertiary alkyl oxalates with allyl, aryl, and vinyl electrophiles, wherein Barton C-O bond radical fragmentation is mediated by Zn and MgCl2 and promoted by Ni catalysts. The same protocol is applicable to the arylation of secondary alkyl oxalates derived from α-hydroxyl carbonyl substrates, which involves the formation of relatively stable α-carbonyl carbon centered radicals. Thus, this Account not only summarizes synthetic methods that allow formation of valuable C-C bonds using challenging electrophiles but also provides insight into the relationship between the structure and reactivity of the substrates and catalysts, as well as the effects of additives.
Collapse
Affiliation(s)
- Jiandong Liu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry and Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| | - Yang Ye
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry and Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| | - Jonathan L. Sessler
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry and Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry and Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Ye Y, Chen H, Yao K, Gong H. Iron-Catalyzed Reductive Vinylation of Tertiary Alkyl Oxalates with Activated Vinyl Halides. Org Lett 2020; 22:2070-2075. [PMID: 32096641 DOI: 10.1021/acs.orglett.0c00561] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present herein a rare and efficient method for the creation of vinylated all carbon quaternary centers via Fe-catalyzed cross-electrophile coupling of vinyl halides with tertiary alkyl methyl oxalates. The reaction displays excellent functional group tolerance and broad substrate scope, which allows cascade radical cyclization and vinylation to afford complex bicyclic and spiral structural motifs. The reaction proceeds via tertiary alkyl radicals, and the putative vinyl-Br/Fe complexation appears to be crucial for activating the alkene and enabling a possibly concerted radical addition/C-Fe forming process.
Collapse
Affiliation(s)
- Yang Ye
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Haifeng Chen
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Ken Yao
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| |
Collapse
|