1
|
Li S, Han Z, Wang Z, Feng Y, Lan Y, Zhao Y, Gao Y, Kang K, Du P, Lu X. Boron Ligands Boosting the Electrochemiluminescence Performance of Europium Metal-Organic Frameworks by Facilitating the Electronic Bridging. Anal Chem 2025; 97:6145-6154. [PMID: 40065674 DOI: 10.1021/acs.analchem.4c06857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
For optimal energy transfer in self-luminous lanthanide metal-organic frameworks (Ln-MOFs), the energy of the lowest triplet excited state must align with ideal energy levels. Failure to meet this condition can lead to reverse energy transfer, reducing luminous efficiency. In this study, we developed a mixed-ligand MOF, Eu-TCPP-BOP, which exists as an ECL self-enhancing luminophore. We used SPECM to study the role of boron ligands as a bridge for electron transport in improving the ECL performance of Eu-TCPP. The ligands H4TCPP and 5-BOP act as electron donor and shuttle, facilitating electron transport during the synthesis of Eu-TCPP-BOP and promoting energy transfer to the excited state of the acceptor Ln3+, thus enhancing overall energy transfer in Ln-MOF. The results indicate that the introduction of boron ligands enhances the ECL intensity of Eu-TCPP by a factor of 1.4 under voltage excitation. As an ECL sensing platform, it demonstrates high sensitivity and selectivity for the detection of catechol, with a concentration range of 1∼70 μM and a detection limit of 0.35 μM.
Collapse
Affiliation(s)
- Shuying Li
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhengang Han
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhilan Wang
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yanjun Feng
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yubao Lan
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaqi Zhao
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yuling Gao
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Kainan Kang
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Peiyao Du
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
2
|
Tian C, Tang F, Wang M, Zhou J, Yue X, Luan F, Zhuang X. Sensitive detection of H2S in the environment with electrochemiluminescence and fluorescence double-mode sensor constructed by Eu2O3@CDs NPs. SENSORS AND ACTUATORS B: CHEMICAL 2025; 422:136582. [DOI: 10.1016/j.snb.2024.136582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Matussin SN, Khan F, Harunsani MH, Kim YM, Khan MM. Microwave-assisted synthesis of Ni-doped europium hydroxide for photocatalytic degradation of 4-nitrophenol. Heliyon 2024; 10:e32719. [PMID: 38975178 PMCID: PMC11226821 DOI: 10.1016/j.heliyon.2024.e32719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Microwave-assisted synthesis method was used to prepare europium hydroxide (Eu(OH)3) and different percentages of 1, 5, and 10 % nickel-doped Eu(OH)3 (Ni-Eu(OH)3) nanorods (NRs). X-ray diffraction study showed a hexagonal phase with an average crystallite size in the range of 21 - 35 nm for Eu(OH)3 and Ni-Eu(OH)3 NRs. FT-IR and Raman studies also confirmed the synthesis of Eu(OH)3 and Ni-Eu(OH)3. The synthesized materials showed rod-like morphology with an average length and diameter between 27 - 50 nm and 8 - 13 nm, respectively. The band gap energies of Ni-Eu(OH)3 NRs were reduced (4.06 - 3.50 eV), which indicates that the doping of Ni2+ ions has influenced the band gap energy of Eu(OH)3. The PL study exhibited PL quenching with Ni doping. The photocatalytic degradation of 4-nitrophenol (4-NP) by the synthesized materials under UV light irradiation was investigated, in which 10 % Ni-Eu(OH)3 NRs showed the best response. A kinetic study was also conducted which shows pseudo-first-order kinetics. Based on this, Ni-Eu(OH)3 NRs have shown a potential to be a UV-light active material for photocatalysis.
Collapse
Affiliation(s)
- Shaidatul Najihah Matussin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Mohammad Hilni Harunsani
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| |
Collapse
|
4
|
Yue X, Hua Q, Zhang W, Tang F, Wang X, Luan F, Zhuang X, Tian C. Facile electrochemiluminescence sensing platform based on Gd 2O 3:Eu 3+ nanocrystals for organophosphorus pesticides detection in vegetable samples. Food Chem 2024; 438:137985. [PMID: 37979273 DOI: 10.1016/j.foodchem.2023.137985] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
In this work, europium ion-doped gadolinium trioxide nanocrystals (Gd2O3:Eu3+ NCs) were successfully synthesized and applied to construct an electrochemiluminescence (ECL) sensor. Compared with pure Gd2O3, the doping of Eu3+ ions caused enhanced ECL intensity and more stable signals. Based on the excellent ECL performance of Gd2O3:Eu3+ NCs, we constructed a new ECL sensing platform for the detection of organophosphorus pesticides (OPs). The ECL sensor showed a good linear relationship in the concentration range of 1 nM to 1 pM, with a limit of detection of 0.12 pM (S/N = 3) for dichlorvos (DDVP). In addition, the constructed ECL sensor was applied for the detection of DDVP in vegetable samples, and good recoveries were obtained. The results indicated that the ECL sensor exhibited fantastic performance properties and had good application prospects in OPs detection.
Collapse
Affiliation(s)
- Xidian Yue
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Qing Hua
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenjuan Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feiyan Tang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaobing Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
5
|
Matussin S, Khan F, Harunsani MH, Kim YM, Khan MM. Impact of Co-Doping on the Visible Light-Driven Photocatalytic and Photoelectrochemical Activities of Eu(OH) 3. ACS OMEGA 2024; 9:16420-16428. [PMID: 38617665 PMCID: PMC11007808 DOI: 10.1021/acsomega.3c10416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 04/16/2024]
Abstract
The microwave-assisted synthesis approach was used to synthesize Eu(OH)3 and Co-Eu(OH)3 nanorods. Various techniques were used to investigate the structural, optical, and morphological features of the Eu(OH)3 and Co-Eu(OH)3 NRs. Both Eu(OH)3 and Co-Eu(OH)3 NRs were found to be hexagonal with crystallite sizes ranging from 21 to 35 nm. FT-IR and Raman spectra confirmed the formation of Eu(OH)3 and Co-Eu(OH)3. Rod-shaped Eu(OH)3 and Co-Eu(OH)3 with average lengths and diameters ranging from 27 to 50 nm and 8 to 12 nm, respectively, were confirmed by TEM. The addition of Co was found to increase the particle size. Furthermore, with increased Co doping, the band gap energies of Co-Eu(OH)3 NRs were lowered (3.80-2.49 eV) in comparison to Eu(OH)3, and the PL intensities with Co doping were quenched, suggesting the lessening of electron/hole recombination. The effect of these altered properties of Eu(OH)3 and Co-Eu(OH)3 was observed through the photocatalytic degradation of brilliant green dye (BG) and photoelectrochemical activity. In the photocatalytic degradation of BG, 5% Co-Eu(OH)3 had the highest response. However, photoelectrochemical experiments suggested that 10% Co-Eu(OH)3 NRs showed improved activity when exposed to visible light. As a result, Co-Eu(OH)3 NRs have the potential to be a promising visible-light active material for photocatalysis.
Collapse
Affiliation(s)
- Shaidatul
Najihah Matussin
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Fazlurrahman Khan
- Institute
of Fisheries Sciences, Pukyong National
University, Busan 48513, Republic of Korea
- Marine
Integrated Biomedical Technology Center, The National Key Research
Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research
Center for Marine Integrated Bionics Technology, Pukyong National
University, Busan 48513, Republic of Korea
| | - Mohammad Hilni Harunsani
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Young-Mog Kim
- Marine
Integrated Biomedical Technology Center, The National Key Research
Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research
Center for Marine Integrated Bionics Technology, Pukyong National
University, Busan 48513, Republic of Korea
- Department
of Food Science and Technology, Pukyong
National University, Busan 48513, Republic of Korea
| | - Mohammad Mansoob Khan
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| |
Collapse
|
6
|
Song Z, Han R, Yu K, Li R, Luo X. Antifouling strategies for electrochemical sensing in complex biological media. Mikrochim Acta 2024; 191:138. [PMID: 38361136 DOI: 10.1007/s00604-024-06218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Surface fouling poses a significant challenge that restricts the analytical performance of electrochemical sensors in both in vitro and in vivo applications. Biofouling resistance is paramount to guarantee the reliable operation of electrochemical sensors in complex biofluids (e.g., blood, serum, and urine). Seeking efficient strategies for surface fouling and establishing highly sensitive sensing platforms for applications in complex media have received increasing attention in the past. In this review, we provide a comprehensive overview of recent research efforts focused on antifouling electrochemical sensors. Initially, we present a detailed illustration of the concept about biofouling along with an exploration of four key antifouling mechanisms. Subsequently, we delve into the commonly employed antifouling strategies in the fabrication of electrochemical sensors. These encompass physical surface topography (micro/nanostructure coatings and filtration membranes) and chemical surface modifications (PEG and its derivatives, zwitterionic polymers, peptides, proteins, and various other antifouling materials). The progress in antifouling electrochemical sensors is proposed concerning the antifouling mechanisms as well as sensing capability assessments (e.g., sensitivity, stability, and practical application ability). Finally, we summarize the evolving trends in the field and highlight some key remaining limitations.
Collapse
Affiliation(s)
- Zhen Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kunpeng Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Rong Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
7
|
Tian C, Tang F, Guo W, Wei M, Wang L, Zhuang X, Luan F. Electrochemiluminescence Sensor Based on CeO 2 Nanocrystalline for Hg 2+ Detection in Environmental Samples. Molecules 2023; 29:1. [PMID: 38202584 PMCID: PMC10779929 DOI: 10.3390/molecules29010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
The excessive concentration of heavy-metal mercury ions (Hg2+) in the environment seriously affects the ecological environment and even threatens human health. Therefore, it is necessary to develop rapid and low-cost determination methods to achieve trace detection of Hg2+. In this paper, an Electrochemiluminescence (ECL) sensing platform using a functionalized rare-earth material (cerium oxide, CeO2) as the luminescent unit and an aptamer as a capture unit was designed and constructed. Using the specific asymmetric matching between Hg2+ and thymine (T) base pairs in the deoxyribonucleic acid (DNA) single strand, the "T-Hg-T" structure was formed to change the ECL signal, leading to a direct and sensitive response to Hg2+. The results show a good linear relationship between the concentration and the response signal within the range of 10 pM-100 µM for Hg2+, with a detection limit as low as 0.35 pM. In addition, the ECL probe exhibits a stable ECL performance and excellent specificity for identifying target Hg2+. It was then successfully used for spiked recovery tests of actual samples in the environment. The analytical method solves the problem of poor Hg2+ recognition specificity, provides a new idea for the efficient and low-cost detection of heavy-metal pollutant Hg2+ in the environment, and broadens the prospects for the development and application of rare-earth materials.
Collapse
Affiliation(s)
- Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| | - Feiyan Tang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| | - Wei Guo
- Shandong Dyne Marine Biopharmaceutical Co., Ltd., Weihai 264300, China
| | - Minggang Wei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| | - Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (C.T.); (F.T.); (M.W.); (L.W.); (X.Z.)
| |
Collapse
|
8
|
Recent Progresses in Development of Biosensors for Thrombin Detection. BIOSENSORS 2022; 12:bios12090767. [PMID: 36140153 PMCID: PMC9496736 DOI: 10.3390/bios12090767] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/11/2022]
Abstract
Thrombin is a serine protease with an essential role in homeostasis and blood coagulation. During vascular injuries, thrombin is generated from prothrombin, a plasma protein, to polymerize fibrinogen molecules into fibrin filaments. Moreover, thrombin is a potent stimulant for platelet activation, which causes blood clots to prevent bleeding. The rapid and sensitive detection of thrombin is important in biological analysis and clinical diagnosis. Hence, various biosensors for thrombin measurement have been developed. Biosensors are devices that produce a quantifiable signal from biological interactions in proportion to the concentration of a target analyte. An aptasensor is a biosensor in which a DNA or RNA aptamer has been used as a biological recognition element and can identify target molecules with a high degree of sensitivity and affinity. Designed biosensors could provide effective methods for the highly selective and specific detection of thrombin. This review has attempted to provide an update of the various biosensors proposed in the literature, which have been designed for thrombin detection. According to their various transducers, the constructions and compositions, the performance, benefits, and restrictions of each are summarized and compared.
Collapse
|
9
|
Li C, Yang Q, Nie H, Liu D, Liu Y. Adsorption removal of organic phosphonate HEDP by magnetic composite doped with different rare earth elements. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Londhe S, Patra CR. Biomedical applications of europium hydroxide nanorods. Nanomedicine (Lond) 2021; 17:5-8. [PMID: 34873917 DOI: 10.2217/nnm-2021-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| |
Collapse
|
11
|
Liang R, Jiang J, Zheng Y, Sailjoi A, Chen J, Liu J, Li H. Vertically oriented mesoporous silica film modified fluorine-doped tin oxide electrode for enhanced electrochemiluminescence detection of lidocaine in serum. RSC Adv 2021; 11:34669-34675. [PMID: 35494748 PMCID: PMC9042675 DOI: 10.1039/d1ra06375h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022] Open
Abstract
Owing to a nanochannel-based enrichment effect and anti-fouling ability, highly ordered and vertically oriented mesoporous silica thin film (VMSF) modified electrodes have demonstrated their great potential in direct and highly sensitive analysis of complex samples. In this work, a VMSF modified fluorine-doped tin oxide (FTO) electrode (VMSF/FTO) is fabricated for enhanced electrochemiluminescence (ECL) analysis of lidocaine in serum. VMSF with good integrity and mechanical stability can be rapidly and conveniently grown on FTO in a few seconds at room temperature using an electrochemically assisted self-assembly (EASA) method. Due to the strong electrostatic attraction between the cationic ECL probe and negatively charged nanochannel, the VMSF/FTO electrode shows significant enrichment of tris(2,2-bipyridine) ruthenium(ii) (Ru(bpy)3 2+), leading to ∼10 times enhancement of its ECL signal in comparison to the bare FTO electrode. Lidocaine, an anesthetic and antiarrhythmic drug, can act as the co-reactant of Ru(bpy)3 2+ and promote its ECL signal. Sensitive ECL detection of lidocaine is achieved by the sensor in a wide linear range from 10 nM to 50 μM with a low limit-of-detection (LOD) of 8 nM. Combined with the antifouling ability of VMSF, the VMSF/FTO electrode also realizes the accurate and rapid analysis of lidocaine in real serum samples.
Collapse
Affiliation(s)
- Renchuan Liang
- Guangxi Medical University Cancer Hospital, Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| | - Jinghang Jiang
- Guangxi Medical University Cancer Hospital, Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| | - Yanyan Zheng
- Department of Chemistry, Zhejiang Sci-Tech University 928 Second Avenue, Xiasha Higher Education Zone Hangzhou 310018 PR China
| | - Ajabkhan Sailjoi
- Department of Chemistry, Zhejiang Sci-Tech University 928 Second Avenue, Xiasha Higher Education Zone Hangzhou 310018 PR China
| | - Jie Chen
- Guangxi Medical University Cancer Hospital, Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| | - Jiyang Liu
- Department of Chemistry, Zhejiang Sci-Tech University 928 Second Avenue, Xiasha Higher Education Zone Hangzhou 310018 PR China
| | - Hongxue Li
- Guangxi Medical University Cancer Hospital, Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| |
Collapse
|
12
|
Zhang L, Zhao C, Bai Y, Wang Q, Ma P, Ma X, Zhu P. Electrochemiluminescence Enhanced by the Synergetic Effect of Porphyrin and Multi‐walled Carbon Nanotubes for Uric Acid Detection. ELECTROANAL 2021. [DOI: 10.1002/elan.202100287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Liying Zhang
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P.R. China
| | - Chuanrui Zhao
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P.R. China
| | - Yujiao Bai
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P.R. China
| | - Qian Wang
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P.R. China
| | - Pan Ma
- Jinan Academy of Agricultural Sciences Jinan 250316 P.R. China
| | - Xiaojie Ma
- Qilu Hospital of Shandong University Jinan 250012 P.R. China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P.R. China
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology Shandong Academy of Sciences Jinan 250353 P.R. China
| |
Collapse
|
13
|
Zhang B, Tian P, Zhu H, Xie L, Dai P, He B. Ultrasensitive detection of PCB77 based on Exonuclease III-powered DNA walking machine. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125831. [PMID: 33878649 DOI: 10.1016/j.jhazmat.2021.125831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
In view of the urgent need to determine polychlorinated biphenyls (PCBs) in the environment, we report a simple and sensitive electrochemical aptasensor to detect 3,3',4,4'-tetrachlorobiphenyl (PCB77) based on Exonuclease III-powered Deoxyribonucleic Acid (DNA) walking machine using poly (diallyldimethylammonium chloride) (PDDA), which was functionalized hollow porous graphitic carbon nitride/ Ni-Co hollow nanoboxes/ Au-Pd-Pt nanoflowers composite material. Upon the addition of PCB77, the specific binding between PCB77 and the aptamer (Apt) could trigger the Exo III-assisted cyclic amplification process and release unlocking probes to deblock the Swing arm/Blocker duplex. Finally, the hybridized hairpin 3 (HP3), a short oligonucleotide, was left on the electrode via Exo III digestion of hybridized HP2, and thus a strong methylene blue (MB) signal was obtained. As expected, the proposed aptasensor exhibits exceptional PCB77 detection performances with a very low detection limit of 5.13 pg/L and a wide linear range of 0.01-100 ng/L based on the calibration curve. Moreover, the aptasensor presents a high level of selectivity and stability, with an acceptable degree of reproducibility. The results of this study have indicated that the proposed aptasensor has great potential application prospects, as demonstrated by its successful use in real environmental water samples.
Collapse
Affiliation(s)
- Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China.
| | - Panpan Tian
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China; School of Chemistry and Chemical Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Huina Zhu
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Pengbo Dai
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China.
| |
Collapse
|
14
|
Gao H, Zhang J, Wei X, Zhu Q, Wei T. Enhanced electrochemiluminescence cytosensing based on abundant oxygen vacancies contained 2D nanosheets emitter coupled with DNA device cycle-amplification. Talanta 2021; 228:122230. [DOI: 10.1016/j.talanta.2021.122230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 11/28/2022]
|
15
|
Li Y, Han R, Chen M, Zhang L, Wang G, Luo X. Bovine Serum Albumin-Cross-Linked Polyaniline Nanowires for Ultralow Fouling and Highly Sensitive Electrochemical Protein Quantification in Human Serum Samples. Anal Chem 2021; 93:4326-4333. [DOI: 10.1021/acs.analchem.1c00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Min Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Leyao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
16
|
Zhang J, Kerr E, Usman KAS, Doeven EH, Francis PS, Henderson LC, Razal JM. Cathodic electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(ii) and peroxydisulfate at pure Ti 3C 2T x MXene electrodes. Chem Commun (Camb) 2020; 56:10022-10025. [PMID: 32728680 DOI: 10.1039/d0cc02993a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrate the first use of pure films of two-dimensional (2D) transition metal carbides and nitrides (Ti3C2Tx MXene) as an electrode material for electrogenerated chemiluminescence (ECL). The Ti3C2Tx MXene electrodes exhibited excellent electrochemical stability in the cathodic scan range and produced bright reductive-oxidation ECL using peroxydisulfate as a co-reactant with the tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3]2+) luminophore.
Collapse
Affiliation(s)
- Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen M, Ning Z, Chen K, Zhang Y, Shen Y. Recent Advances of Electrochemiluminescent System in Bioassay. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Wang G, Han R, Li Q, Han Y, Luo X. Electrochemical Biosensors Capable of Detecting Biomarkers in Human Serum with Unique Long-Term Antifouling Abilities Based on Designed Multifunctional Peptides. Anal Chem 2020; 92:7186-7193. [DOI: 10.1021/acs.analchem.0c00738] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qun Li
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Yinfeng Han
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
19
|
Dai P, Liu C, Xie C, Ke J, He Y, Wei L, Chen L, Jin J. TiO2 nanotubes loaded with CdS nanocrystals as enhanced emitters of electrochemiluminescence: application to an assay for prostate-specific antigen. Anal Bioanal Chem 2020; 412:1375-1384. [DOI: 10.1007/s00216-019-02365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 11/27/2022]
|
20
|
Aydın EB, Aydın M, Sezgintürk MK. The development of an ultra-sensitive electrochemical immunosensor using a PPyr-NHS functionalized disposable ITO sheet for the detection of interleukin 6 in real human serums. NEW J CHEM 2020. [DOI: 10.1039/d0nj03183f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A label-free biosensor based on poly(pyrrole N-hydroxy succinimide) polymer modified ITO electrode was developed for sensitive detection of interleukin 6 antigen. Under optimized conditions, it had a wide detection range (0.03–22.5 pg mL−1).
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Namık Kemal University
- Scientific and Technological Research Center
- Tekirdağ
- Turkey
| | - Muhammet Aydın
- Namık Kemal University
- Scientific and Technological Research Center
- Tekirdağ
- Turkey
| | | |
Collapse
|
21
|
Liu X, Bao C, Shao X, Zhang Y, Zhang N, Sun X, Fan D, Wei Q, Ju H. A procalcitonin photoelectrochemical immunosensor: NCQDs and Sb 2S 3 co-sensitized hydrangea-shaped WO 3 as a matrix through a layer-by-layer assembly. NEW J CHEM 2020. [DOI: 10.1039/c9nj06118e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electron-transfer mechanism of a PEC immunosensor based on WO3/NCQDs/Sb2S3 composites in PBS electrolytes containing AA.
Collapse
Affiliation(s)
- Xin Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Chunzhu Bao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xinrong Shao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yong Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
22
|
Wang M, Liu X, Jia H, Li Y, Ren X, Wu D, Wang H, Wei Q, Ju H. A novel approach to photoelectrochemical immunoassay for procalcitonin on the basis of SnS 2/CdS. NEW J CHEM 2020. [DOI: 10.1039/d0nj02764b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A label-free photoelectrochemical (PEC) immunoassay system based on the one-step synthesis of SnS2/CdS nanocomposites is successfully constructed for sensitively analyzing procalcitonin (PCT).
Collapse
Affiliation(s)
- Mengdi Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Hongying Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xing Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
23
|
Lei S, Liu Z, Xu L, Zou L, Li G, Ye B. A "signal-on" electrochemical biosensor based on DNAzyme-driven bipedal DNA walkers and TdT-mediated cascade signal amplification strategy. Anal Chim Acta 2019; 1100:40-46. [PMID: 31987151 DOI: 10.1016/j.aca.2019.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022]
Abstract
In this work, a dual amplified signal enhancement approach based on coupling deoxyribozyme (DNAzyme)-driven bipedal DNA walkers (BDW) and terminal deoxynucleotidyl transferase (TdT)-mediated DNA elongation signal amplifications has been developed for highly sensitive and label-free electrochemical detection of thrombin in human serums. In presence of thrombin, the BDW complex, which is comprised from the target thrombin and two DNAzyme-containing probes, can exhibit autonomous cleavage behavior on the surface of the substrate DNA (SD) modified electrode, and remove the cleaved DNA fragment from the electrode surface. Subsequently, the TdT can catalyze the elongation of the SD with free 3'-OH termini and formation of many G-quadruplex sequence replicates with the presence of 2'-deoxyaguanosine-5'-triphosphate (dGTP) and adenosine 5'-triphosphate (dATP) at a molar ratio of 6:4. These G-quadruplex sequences bind hemin and generate drastically amplified current response for sensitive detection of thrombin in a "signal-on" and completely label-free fashion. Under optimized conditions, the response peak current was linear with the concentration of thrombin in the range from 0.5 pM to 100000 pM with detection limit of 0.31 pM. This research provides us a sustainable idea for the hyphenated multiple amplification strategies and a stable and effective method for the detection of protein biomarkers.
Collapse
Affiliation(s)
- Sheng Lei
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zi Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lingling Xu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lina Zou
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Baoxian Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|