1
|
Shen J, Zhang C, Cheng D, Huang S, Chen X. Hybridization chain reaction-DNAzyme amplified switch microplate assay for ultrasensitive detection of magnesium ions. J Mater Chem B 2025; 13:4179-4187. [PMID: 40052201 DOI: 10.1039/d5tb00345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
It is well-recognized that metal ion contaminants present in food and the environment pose a serious threat to human health and contribute to huge economic losses. Therefore, the development of simple, rapid, sensitive, and on-site methods for the detection of metal ions has become an urgent need. Herein, we combined the isothermal hybridization chain reaction (HCR) and a DNAzyme to develop a dual-signal amplification sensing assay for ultrasensitive Mg2+ detection on microplates. In this assay, the linker DNA strand (LDNA) that triggered the formation of the HCR structure was immobilized on a microplate via the biotin-streptavidin conjugation. Upon addition of the H5 sequence substrate strand to form a DNAzyme structure, an amplification switch microplate with 2n signaling amplification sites was established. The HCR-DNAzyme switch was activated by capturing Mg2+, and the methylene blue (MB)-labeled H5 was released. It generated an electrochemical signal after being captured by the reporter electrode attached to its complementary sequence (CDNA), accomplishing an efficient detection of Mg2+. Moreover, owing to the 2n signal amplification of the HCR-DNAzyme system with the simple separation and purification processing of the microplate, the Mg2+ detection limit of this strategy was as low as 0.6 fM. Furthermore, this method could be employed for other targets by simply changing the recognition structure of the DNAzyme, revealing the potential practical applications of this strategy in a wide range of fields.
Collapse
Affiliation(s)
- Jianjing Shen
- College of Chemistry and Molecular Engineering, Jiangsu Provincial University key Laboratory of Intelligent Medical Sensing Materials and Devices, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Chengzhou Zhang
- College of Chemistry and Molecular Engineering, Jiangsu Provincial University key Laboratory of Intelligent Medical Sensing Materials and Devices, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Donghao Cheng
- China Academy of Civil Aviation Science and Technology, Beijing, 100028, P. R. China
| | - Shan Huang
- College of Chemistry and Molecular Engineering, Jiangsu Provincial University key Laboratory of Intelligent Medical Sensing Materials and Devices, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Jiangsu Provincial University key Laboratory of Intelligent Medical Sensing Materials and Devices, Nanjing Tech University, Nanjing, 211816, P. R. China.
| |
Collapse
|
2
|
Jiang H, Deng Y, Lv X, Liu Y, Li A, Li X. New sensing methods using commercially available products: Based on PGM and PTS. Biosens Bioelectron 2025; 267:116836. [PMID: 39368295 DOI: 10.1016/j.bios.2024.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
In recent years, detection technology has made remarkable progress in the field of food safety, in vitro diagnosis, and environment monitoring under the impetus of trace substances detection requirements. However, in sharp contrast to the rapid development of detection technology, its marketization process is relatively lagging behind. One possible approach is to integrate novel sensing strategies with mature commercial devices, such as personal glucose meters (PGMs) and pregnancy test strips (PTS) to speed up their marketization process. In this review, we systematically summarized design principle, evolution, and application progress for the integration of novel sensing strategies with commercial devices PGMs and PTS. Meanwhile, key factors and difficulties for the integration novel sensing strategies with commercial devices were emphasized. More importantly, the future of prospects and remaining challenges were discussed.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ying Liu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Anyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Ferreira da Silva L, Valle Garay A, Queiroz PF, Garcia de Resende S, Gomide M, Moreira de Oliveira IC, Souza Bernasol A, Arce A, Canet Santos L, Torres F, Silva-Pereira I, de Freitas SM, Marques Coelho C. A novel viral RNA detection method based on the combined use of trans-acting ribozymes and HCR-FRET analyses. PLoS One 2024; 19:e0310171. [PMID: 39325749 PMCID: PMC11426510 DOI: 10.1371/journal.pone.0310171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The diagnoses of retroviruses are essential for controlling the rapid spread of pandemics. However, the real-time Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR), which has been the gold standard for identifying viruses such as SARS-CoV-2 in the early stages of infection, is associated with high costs and logistical challenges. To innovate in viral RNA detection a novel molecular approach for detecting SARS-CoV-2 viral RNA, as a proof of concept, was developed. This method combines specific viral gene analysis, trans-acting ribozymes, and Fluorescence Resonance Energy Transfer (FRET)-based hybridization of fluorescent DNA hairpins. In this molecular mechanism, SARS-CoV-2 RNA is specifically recognized and cleaved by ribozymes, releasing an initiator fragment that triggers a hybridization chain reaction (HCR) with DNA hairpins containing fluorophores, leading to a FRET process. A consensus SARS-CoV-2 RNA target sequence was identified, and specific ribozymes were designed and transcribed in vitro to cleave the viral RNA into fragments. DNA hairpins labeled with Cy3/Cy5 fluorophores were then designed and synthesized for HCR-FRET assays targeting the RNA fragment sequences resulting from ribozyme cleavage. The results demonstrated that two of the three designed ribozymes effectively cleaved the target RNA within 10 minutes. Additionally, DNA hairpins labeled with Cy3/Cy5 pairs efficiently detected target RNA specifically and triggered detectable HCR-FRET reactions. This method is versatile and can be adapted for use with other viruses. Furthermore, the design and construction of a DIY photo-fluorometer prototype enabled us to explore the development of a simple and cost-effective point-of-care detection method based on digital image analysis.
Collapse
Affiliation(s)
- Leonardo Ferreira da Silva
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Aisel Valle Garay
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Pedro Felipe Queiroz
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Sophia Garcia de Resende
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Mayna Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Izadora Cristina Moreira de Oliveira
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Amanda Souza Bernasol
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Anibal Arce
- Institute for biological and medical engineering, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Liem Canet Santos
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Fernando Torres
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Sonia Maria de Freitas
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| |
Collapse
|
4
|
Yao F, Wu L, Xiong Y, Su C, Guo Y, Bulale S, Zhou M, Tian Y, He L. A novel β-cyclodextrin-assisted enhancement strategy for portable and sensitive detection of miR-21 in human serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1639-1648. [PMID: 38414387 DOI: 10.1039/d3ay02269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Benefiting from our discovery that β-cyclodextrin (β-CD) could enhance the catalytic activity of invertase through hydrogen bonding to improve detection sensitivity, a highly sensitive and convenient biosensor for the detection of miR-21 was proposed, which is based on the simplicity of reading signals from a personal glucose meter (PGM), combined with self-assembled signal amplification probes and the performance of β-CD as an enhancer. In the presence of miR-21, magnetic nanoparticle coupled capture DNA (MNPs-cDNA) could capture it and then connect assist DNA/H1-invertase (aDNA/H1) and self-assembled signal amplification probes (H1/H2) in turn. As a result, a "super sandwich" structure was formed. The invertase on MNPs-cDNA could catalyze the hydrolysis of sucrose to glucose and this catalytic process could be enhanced by β-CD. The PGM signal exhibited a linear correlation with miR-21 concentration within the range of 25 pmol L-1 to 3 nmol L-1, and the detection limit was as low as 5 pmol L-1 with high specificity. Moreover, the recoveries were 103.82-124.65% and RSD was 2.59-6.43%. Furthermore, the biosensor was validated for the detection of miR-21 in serum, and the results showed that miR-21 levels in serum samples from patients with Diffuse Large B-Cell Lymphoma (DLBCL) (n = 12) were significantly higher than those from healthy controls (n = 12) (P < 0.001). Therefore, the ingenious combination of PGM-based signal reading, self-assembled signal amplification probes and β-CD as an enhancer successfully constructed a convenient, sensitive and specific biosensing method, which is expected to be applied to clinical diagnosis.
Collapse
Affiliation(s)
- Feng Yao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Longjie Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
- Medical Department, Shanxi Provincial People's Hospital, Shanxi, 030012, China
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chaojie Su
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yujing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shajidan Bulale
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Miaomiao Zhou
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongmei Tian
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Ultrasensitive detection of pathogenic bacteria by primer exchange reaction coupled with PGM. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Li J, Cai R, Tan W. A Novel ECL Sensing System for Ultrahigh Sensitivity miRNA-21 Detection Based on Catalytic Hairpin Assembly Cascade Nonmetallic SPR Effect. Anal Chem 2022; 94:12280-12285. [DOI: 10.1021/acs.analchem.2c03238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Wang X, Wang Y, Chen S, Fu P, Lin Y, Ye S, Long Y, Gao G, Zheng J. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens Bioelectron 2022; 198:113849. [PMID: 34861528 DOI: 10.1016/j.bios.2021.113849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
Herein, a time-resolved luminescence resonance energy transfer (TR-LRET) molecular beacon (MB) probe employing persistent luminescence nanoparticles (PLNPs) as the energy donors was first constructed, and further designed for microRNA21 (miR21) sensing. This probe (named as PLNPs-MB) was facilely fabricated by covalent bioconjugation between poly-(acrylic acid) (PAA) modified near-infrared (NIR) emissive PLNPs i.e. ZnGa2O4:Cr3+ and functionalized MB oligonucleotide (5'-NH2 and 3'-BHQ3). Accordingly, PLNPs and BHQ3 were in close proximity to each other, leading to the occurrence of LRET and obvious persistent luminescence (PL) quenching. In the presence of miR21, loop of the PLNP-MB was hybridized, accompanying BHQ3 away from PLNPs and the restraint of LRET process. As a result, PL of the PLNPs was recovered, which built the foundation of miR21 quantification. The probe provided a linear response range from 0.1 to 10 nM for miR21 detection. Quantification limit of this probe was competitive and about 1-2 orders of magnitude lower than that of other reported MB probes for nucleic acid. Moreover, the proposed probe was successfully adopted for miR21 detection in biological fluids (human serum, cell extraction). This work also provided a sensitive detection nanoplatform for other targets through modifying diverse MBs onto the surface of PLNPs.
Collapse
Affiliation(s)
- Xiuhua Wang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China.
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Yuanbin Lin
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Shuyuan Ye
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, PR China
| | - Yunfei Long
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China.
| | - Guosheng Gao
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, PR China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China.
| |
Collapse
|
8
|
Applications of hybridization chain reaction optical detection incorporating nanomaterials: A review. Anal Chim Acta 2022; 1190:338930. [PMID: 34857127 DOI: 10.1016/j.aca.2021.338930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
The development of powerful, simple and cost-effective signal amplifiers has significant implications for biological research and analysis. Hybridization chain reaction (HCR) has attracted increasing attention because of its enzyme-free, simple, and efficient amplification. In the HCR process, an initiator probe triggered a pair of metastable hairpins through a cross-opening process to propagate a chain reaction of hybridization events, yielding a long-nicked double-stranded nucleic acid structure. To achieve more noticeable signal amplification, nanomaterials, including graphene oxide, quantum dots, gold, silver, magnetic, and other nanoparticles, were integrated with HCR. Various types of colorimetric, fluorescence, plasmonic analyses or chemiluminescence optical sensing strategies incorporating nanomaterials have been developed to analyze various targets, such as nucleic acids, small biomolecules, proteins, and metal ions. This review summarized the recent advances of HCR technology pairing diverse nanomaterials in optical detection and discussed their challenges.
Collapse
|
9
|
Fu P, Xu M, Xing S, Zhao Y, Zhao C. Dual cascade isothermal amplification reaction based glucometer sensors for point-of-care diagnostics of cancer-related microRNAs. Analyst 2021; 146:3242-3250. [PMID: 33999051 DOI: 10.1039/d1an00037c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The practical use of a point-of-care (POC) device is of particular interest in performing liquid biopsies related to cancer. Herein, taking advantage of the practical convenience of a commercially available personal glucose meter (PGM), we report a convenient, low-cost and sensitive detection strategy for circulating microRNA-155 (miRNA155) in human serum. First, miRNA155 in serum triggers the catalyzed hairpin assembly (CHA) reaction, and then the CHA product is specifically captured by the peptide nucleic acid (PNA) probes attached to the surface of a 96-well plate, which in turn triggers the hybridization chain reaction (HCR), resulting in the local enrichment of invertase. Next, introduction of a substrate (sucrose) for the invertase results in the generation of glucose, which can be detected by a PGM. In this sensor, neutrally charged PNA (12 nt) is more likely to hybridize with the CHA products than with the negatively charged DNA in kinetics, which improves the detection sensitivity and specificity. Due to the synergistic isothermal amplification reaction between CHA and HCR, the sensor is able to achieve a broad dynamic range (from 1 fM to 10 nM) with a detection limit down to 0.36 fM (3 orders of magnitude lower than that without HCR) and is capable of distinguishing single-base mismatched sequences. Thus the convenient, sensitive, robust and low-cost PGM sensor makes on-site nucleic acids detection possible, suggesting its great application prospect as a promising POC device in cancer diagnostics.
Collapse
Affiliation(s)
- Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | | | | | | | | |
Collapse
|
10
|
Wang R, Wang S, Xu X, Jiang W, Zhang N. MNAzyme probes mediated DNA logic platform for microRNAs logic detection and cancer cell identification. Anal Chim Acta 2021; 1149:338213. [PMID: 33551052 DOI: 10.1016/j.aca.2021.338213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022]
Abstract
Here, a MNAzyme probes mediated DNA logic platform was developed for microRNAs (miRNAs) logic detection and cancer cells identification. A series of MNAzyme probes containing the cleavage active center were designed. Four types of logic gates were constructed, including YES, AND, XOR and NOR gate. These logic gates used miRNAs that were high expression in cancer cells as logic inputs and used MNAzyme cleavage amplification reaction to output signals. For the construction of intracellular logic gates, MnO2 nanosheets were used as carriers and cofactor providers. When MnO2 nanoprobes entered the cells through endocytosis, the intracellular glutathione degraded the MnO2 nanosheets to release the cofactor Mn2+ and MNAzyme probes. The MNAzyme probes bound to the miRNAs and catalyze the MNAzyme cleavage amplification reaction, producing enhanced fluorescent signal with "true" output. The logic detection of miRNAs was achieved by integrating information from the AND, XOR and NOR logic gates. Moreover, through the construction of intracellular YES and AND logic gates, the cancer cells identification, especially the identification of same type of cancer cells with different phenotypes was achieved. These experimental results showed that this platform held great promise in accurate diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Rui Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, 253023, Dezhou, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, PR China.
| |
Collapse
|
11
|
Zhang S, Luan Y, Xiong M, Zhang J, Lake R, Lu Y. DNAzyme Amplified Aptasensing Platform for Ochratoxin A Detection Using a Personal Glucose Meter. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9472-9481. [PMID: 33550797 PMCID: PMC9168673 DOI: 10.1021/acsami.0c20417] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aptamer-based sensors have emerged as a major platform for detecting small-molecular targets, because aptamers can be selected to bind these small molecules with higher affinity and selectivity than other receptors such as antibodies. However, portable, accurate, sensitive, and affordable detection of these targets remains a challenge. In this work, we developed an aptasensing platform incorporating magnetic beads and a DNAzyme for signal amplification, resulting in high sensitivity. The biosensing platform was constructed by conjugating a biotin-labeled aptamer probe of small-molecular targets such as toxins and a biotin-labeled substrate strand on magnetic beads, and the DNAzyme strand hybridized with the aptamer probe to block the substrate cleavage activity. The specific binding of the small-molecular target by the aptamer probe can replace the DNAzyme strand and then induce the hybridization between the DNAzyme strand and substrate strand, and the iterative signal amplification reaction of hydrolysis and cleavage of the substrate chain occurs in the presence of a metal ion cofactor. Using invertase to label the substrate strand, the detection of small molecules of the toxin is successfully transformed into the measurement of glucose, and the sensitive analysis of small molecules such as toxins can be realized by using the household portable glucose meter as a readout. This platform is shown to detect ochratoxin, a common toxin in food, with a linear detection range of 5 orders of magnitude, a low detection limit of 0.88 pg/mL, and good selectivity. The platform is easy to operate and can be used as a potential choice for quantitative analysis of small molecules, at home or under point-of-care settings. Moreover, by changing and designing the aptamer probe and the arm of DNAzyme strand, it can be used for the analysis of other analytes.
Collapse
Affiliation(s)
- Songbai Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Chemical Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yunxia Luan
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, P. R. China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Wu Y, Ali S, White RJ. Use of Electrocatalysis for Differentiating DNA Polymorphisms and Enhancing the Sensitivity of Electrochemical Nucleic Acid-Based Sensors with Covalent Redox Tags-Part II. ACS Sens 2020; 5:3842-3849. [PMID: 33305566 DOI: 10.1021/acssensors.0c02363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-nucleotide polymorphisms (SNPs), insertion/deletion (indel) polymorphisms, and DNA methylation are the most frequent types of genetic variations. As such, DNA polymorphisms play significant roles in genetic mapping and diagnostics. Thus, analytical methods enabling DNA polymorphism detection will provide an invaluable means for early disease diagnosis. However, no single electrochemical nucleic acid-based sensor has achieved the detection of the three major polymorphisms (SNPs, indel polymorphisms, and DNA methylation) with sufficient specificity and sensitivity. In response, we explore the utilization of a catalytic reaction between methylene blue (MB) covalently linked to surface-bound nucleic acid and freely diffusing ferricyanide (Fe(CN)63-) to improve specificity and sensitivity of DNA polymorphism detection. We find that the dynamics of the nucleic acid tether is an additional rate-limiting factor for the electrocatalytic reaction, in addition to the more traditional kinetic and excess factors. Our proof-of-concept experiments demonstrate that the use of electrocatalysis enables differentiation of the three polymorphisms when target sequences are present at 10 nM. We hypothesize that this ability is a result of the distinct dynamics of the DNA probe with each respective polymorphism. In addition to the specificity the sensor displays, the sensor achieves a 20 pM limit of detection. We believe that the electrocatalysis between nucleic acid-tethered MB and Fe(CN)63- is highly promising for electrochemical nucleic acid-based sensors to achieve better specificity and sensitivity.
Collapse
Affiliation(s)
| | - Sufyaan Ali
- Walnut Hills High School, Cincinnati, Ohio 45207, United States
| | | |
Collapse
|
13
|
Hu X, Xu Z, Min Q, Teng C, Tian Y. Endogenous Stimuli-Responsive DNA Nanostructures Toward Cancer Theranostics. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.574328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanostructures specifically responsive to endogenous biomolecules hold great potential in accurate diagnosis and precision therapy of cancers. In the pool of nanostructures with responsiveness to unique triggers, nanomaterials derived from DNA self-assembly have drawn particular attention due to their intrinsic biocompatibility and structural programmability, enabling the selective bioimaging, and site-specific drug delivery in cancer cells and tumor tissues. In this mini review, we summarize the most recent advances in the development of endogenous stimuli-responsive DNA nanostructures featured with precise self-assembly, targeted delivery, and controlled drug release for cancer theranostics. This mini review briefly discusses the diverse dynamic DNA nanostructures aiming at bioimaging and biomedicine, including DNA self-assembling materials, DNA origami structures, DNA hydrogels, etc. We then elaborate the working principles of DNA nanostructures activated by biomarkers (e.g., miRNA, mRNA, and proteins) in tumor cells and microenvironments of tumor tissue (e.g., pH, ATP, and redox gradient). Subsequently, applications of the endogenous stimuli-responsive DNA nanostructures in biological imaging probes for detecting cancer hallmarks as well as intelligent carriers for drug release in vivo are discussed. In the end, we highlight the current challenges of DNA nanotechnology and the further development of this promising research direction.
Collapse
|
14
|
Gong K, Wu Q, Wang H, He S, Shang J, Wang F. Autocatalytic DNAzyme assembly for amplified intracellular imaging. Chem Commun (Camb) 2020; 56:11410-11413. [PMID: 32940259 DOI: 10.1039/d0cc05257d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The autocatalytic HCR-DNAzyme platform was constructed as a versatile amplification platform for intracellular microRNA imaging by integrating hybridization chain reaction (HCR) circuit with DNAzyme biocatalysis. The HCR-assembled multifunctional DNAzyme nanowires produce new HCR triggers and numerous transducer DNAzyme amplifier, and thus shows great promise in earlier cancer diagnosis.
Collapse
Affiliation(s)
- Keke Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Zhang S, Xu S, Li X, Ma R, Cheng G, Xue Q, Wang H. Double-signal mode based on metal–organic framework coupled cascaded nucleic acid circuits for accurate and sensitive detection of serum circulating miRNAs. Chem Commun (Camb) 2020; 56:4288-4291. [DOI: 10.1039/d0cc00856g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A double-signal mode based on metal–organic framework coupled cascaded nucleic acid circuits was developed for the accurate and sensitive detection of serum circulating miRNAs.
Collapse
Affiliation(s)
- Susu Zhang
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Shuling Xu
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Xia Li
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Rongna Ma
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Guiguang Cheng
- Yunnan Institute of Food Safety
- Kunming University of Science and Technology
- Kunming
- China
| | - Qingwang Xue
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| | - Huaisheng Wang
- Department of Chemistry
- Liaocheng University
- Liaocheng
- China
| |
Collapse
|