1
|
Wang C, Huang M, Miao H, Liu C, Qin Z, Ma W, Han M, Yu J, Li Y, Wei B, Chen Z. Alkylaluminum Complexes Featuring Bridged Bis-Formylfluorenimide Ligands for Hydroboration of Aldehyde, Ketone, and Imines. Inorg Chem 2024; 63:19332-19343. [PMID: 39360903 DOI: 10.1021/acs.inorgchem.4c03158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Three bis-formylfluorenimide ligands with different bridging groups were designed and synthesized, leading to the successful preparation of six novel alkylaluminum complexes through their reaction with alkylaluminum reagents (AlMe3 or AlEt3). Complexes 1 and 2 were obtained by the reaction of 1,2-propylene-bridged diamine (L1) with AlMe3 or AlEt3. By reacting 1,2-cyclohexylene-bridged diamine (L2) with AlMe3 or AlEt3 to obtain complexes 3 and 4. The above ligands formed a bidentate four-coordinate structure with alkylaluminum, which involved the elimination of one alkyl group as the ligand reacted with alkylaluminum. The complexes 5 and 6 were synthesized through the reaction of 1,2-phenylene-bridged diamine (L3) with AlEt3 in toluene or tetrahydrofuran. Notably, L3 exhibited unique reactivity compared with the other ligands, which formed a tridentate four-coordinated structure when reacting with alkylaluminum. The formation of the tridentate complex resulted from the introduction of a benzimidazole derivative or tetrahydrofuran (THF) molecule along with the elimination of two alkyl groups during its coordination with alkylaluminum. All complexes were characterized via 1H NMR, 13C NMR, and elemental analysis, with structural determination confirmed through X-ray. Furthermore, the catalytic activity in the hydroboration reaction of aldehyde, ketone, and imines was investigated with these complexes as catalysts. Among them, complex 1 demonstrated excellent catalytic performance (up to 99% yield) and broad substrate compatibility (more than 30 substrates) at low catalyst loading (1 mol %) under mild reaction conditions.
Collapse
Affiliation(s)
- Chaoqun Wang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Mengna Huang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Hui Miao
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Chenxu Liu
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Zhibiao Qin
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Wenning Ma
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Mengmeng Han
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Junjie Yu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yongmin Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Biao Wei
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
2
|
Wei B, Wang C, Miao H, Qin Z, Huang M, Xu Y, Xue W, Yang S, Liu C, Bai C, Chen Z. Novel bidentate N-coordinated alkylaluminum complexes: synthesis, characterization, and efficient catalysis for hydrophosphonylation. Dalton Trans 2024; 53:4185-4193. [PMID: 38323430 DOI: 10.1039/d3dt04087a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Five new alkylaluminum complexes with different pyridinyl-substituted imines or cyclohexyl-substituted imines were synthesized and characterized successfully. The aluminum complex [FlCHNCH(CH3)Py]AlMe2(Py = 2-pyridyl) (1) was obtained by reacting 9-[2-pyridyl-CH(CH3)-NCH]Fl (Fl = fluorenyl) (L1) and equimolar AlMe3. The reactions of 9-(2-pyridyl-NCH)Fl (L2) and 9-[2-N(CH3)2-cyclohexyl-NCH]Fl (L3) with equimolar AlMe3 or AlEt3 afforded other alkylaluminum complexes [FlCHNPy]AlMe2(Py = 2-pyridyl) (2), [FlCHNPy]AlEt2 (Py = 2-pyridyl) (3), [FlCHNCyN(CH3)2]AlMe2 (Cy = 2-cyclohexyl) (4) and [FlCHNCyN(CH3)2]AlEt2 (Cy = 2-cyclohexyl) (5). All these complexes (1-5) were characterized using NMR spectroscopy, elemental analysis, and X-ray crystal structure analysis. The catalytic properties of these new alkylaluminum complexes for the hydrophosphonylation of aldimines were examined. Complex 5 showed the best catalytic performance under mild reaction conditions with a low catalyst loading (1 mol%), and 20 different substituents of aldimines were isolated with more than 90% yields.
Collapse
Affiliation(s)
- Biao Wei
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Chaoqun Wang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Hui Miao
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Zhibiao Qin
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Mengna Huang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Yan Xu
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Wenhui Xue
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Shucheng Yang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Chenxu Liu
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Cuibing Bai
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
3
|
Bisht SK, Sharma D, Kannan R, Rajeshkumar T, Maron L, Venugopal A. Quest for Active Species in Al/B-Catalyzed CO 2 Hydrosilylation. Inorg Chem 2023; 62:18543-18552. [PMID: 37906233 DOI: 10.1021/acs.inorgchem.3c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We demonstrate the catalytic role of aluminum and boron centers in aluminum borohydride [(2-Me2CH2C6H4)(C6H5)Al(μ-H)2B(C6H5)2] (6) during carbon dioxide (CO2) hydrosilylation. Preliminary investigations into CO2 reduction using [(2-Me2NCH2C6H4)(H)Al(μ-H)]2 (1) and [Ph3C][B(3,5-C6H3Cl2)4] (2) in the presence of Et3SiH and PhSiH3 resulted in CH2(OSiR3)2 and CH3OSiR3, which serve as formaldehyde and methanol surrogates, respectively. In pursuit of identifying the active catalytic species, three compounds, B(3,5-C6H3Cl2)3 (3), [(2-Me2NCH2C6H4)(3,5-C6H3Cl2)Al(μ-H)2B(3,5-C6H3Cl2)2] (4), and [(2-Me2NCH2C6H4)2Al(THF)][B(3,5-C6H3Cl2)4] (5), were isolated. Among compounds 2-5, the highest catalytic conversion was achieved by 4. Further, 4 and 6 were prepared in a straightforward method by treating 1 with 3 and BPh3, respectively. 6 was found to be in equilibrium with 1 and BPh3, thus making the catalytic process of 6 more efficient than that of 4. Computational investigations inferred that CO2 reduction occurs across the Al-H bond, while Si-H activation occurs through a concerted mechanism involving an in situ generated aluminum formate species and BPh3.
Collapse
Affiliation(s)
- Sheetal Kathayat Bisht
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Deepti Sharma
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Ramkumar Kannan
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, Toulouse, Cedex 4 31077, France
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, Toulouse, Cedex 4 31077, France
| | - Ajay Venugopal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
4
|
Bhandari M, Kaur M, Rawat S, Singh S. Highly Electrophilic Mononuclear Cationic Aluminium Alkoxide Complexes: Syntheses, Reactivity and Catalytic Applications. Chemistry 2023; 29:e202301229. [PMID: 37294029 DOI: 10.1002/chem.202301229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Herein, we report the synthesis of β-diketiminate-supported aluminium complexes bearing terminal alkoxide and mono-thiol functional groups: LAlOMe(Et) (2), LAlOtBu(Et) (3), and LAlSH(Et) (4), (L=[HC{C(Me)N-(2,6-iPr2 C6 H3 )}2 ]). Complexes 2 and 3 are further used as synthons to generate the fascinating cationic aluminium alkoxide complexes, [LAlOMe(μ-OMe)-Al(Et)L][EtB(C6 F5 )3 ] (5), [LAlOMe(OEt2 )][EtB(C6 F5 )3 ] (6), and [LAlOtBu(OEt2 )][EtB(C6 F5 )3 ] (8). These electrophilic cationic species are well characterized by spectroscopic and crystallographic techniques. The assessment of Lewis acidity by the Gutmann-Beckett method revealed superior Lewis acidity of the cations substituted with electron-demanding alkoxy groups in comparison to the known methyl analogue [LAlMe][B(C6 F5 )4 ]. This has been further endorsed by computational calculations to determine the NBO charges and hydride ion affinity for complexes 6 and 8. These complexes are also capable of activating triethylsilane in stoichiometric reactions. The applicability of these complexes has been realized in the hydrosilylation of ethers, carbonyls, and olefines. Additionally, the solid-state structure of a new THF stabilized aluminium halide cation [LAlCl(THF)][B(C6 F5 )4 ] (11) has also been reported.
Collapse
Affiliation(s)
- Mamta Bhandari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Mandeep Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Sandeep Rawat
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Sanjay Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
5
|
Diab M, Jaiswal K, Bawari D, Dobrovetsky R. The Chemistry of [1,1′‐bis(
o‐
Carboranyl)]Borane η
2
‐
σ‐
Silane Adduct. Isr J Chem 2023. [DOI: 10.1002/ijch.202300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Mohanad Diab
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Department Tel Aviv 69978 Israel
| | - Kuldeep Jaiswal
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Department Tel Aviv 69978 Israel
| | - Deependra Bawari
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Department Tel Aviv 69978 Israel
| | - Roman Dobrovetsky
- School of Chemistry Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Department Tel Aviv 69978 Israel
| |
Collapse
|
6
|
Kannan R, Chandrasekhar V. Four-membered C^N chelation in main-group organometallic chemistry. Dalton Trans 2023; 52:1159-1176. [PMID: 36602433 DOI: 10.1039/d2dt03494h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Main-group organometallic compounds containing four-membered C^N chelating rings are being studied because of the interest in harnessing the enhanced reactivity of such compounds which arises as a result of the release of steric strain. In this article, we have reviewed the literature on these systems. This review is organised in terms of the types of ligand systems that allow the assembly of such compounds, viz., compounds containing aliphatic amine motifs, pyridine motifs and aniline motifs. In addition to a discussion on the synthesis and structure, we also examine the reactivity and applications of the main-group element compounds involved. In particular, applications involving H2 activation, carbonyl activation, olefin reduction, C-H activation, hydroalumination, cyanamide oligomerisation, borylation of olefins and heteroarenes, isocyanate activation and C-C bond activation are discussed.
Collapse
Affiliation(s)
- Ramkumar Kannan
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500 046, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500 046, Telangana, India. .,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, Uttar Pradesh, India
| |
Collapse
|
7
|
Wang C, Wu J, Yan B, Ni C, Ma X, Yang Z. N
‐coordinated Aluminum Complexes Catalyze the Hydrostannation of Alkynes. ChemistrySelect 2023. [DOI: 10.1002/slct.202204405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chengzhi Wang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Jin Wu
- Xi'an Aerospace Propulsion Test Technique Institute Xi'an 710100 P. R. China
| | - Ben Yan
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Congjian Ni
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Zhi Yang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
8
|
Sarkar N, Kumar Sahoo R, Nembenna S. Aluminium-Catalyzed Selective Hydroboration of Esters and Epoxides to Alcohols: C-O Bond Activation. Chemistry 2023; 29:e202203023. [PMID: 36226774 DOI: 10.1002/chem.202203023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In this work, the molecular aluminium dihydride complex bearing an N, N'-chelated conjugated bis-guanidinate (CBG) ligand is used as a catalyst for reducing a wide range of aryl and alkyl esters with good tolerance of alkene (C=C), alkyne (C≡C), halides (Cl, Br, I and F), nitrile (C≡N), and nitro (NO2 ) functionalities. Further, we investigated the catalytic application of aluminium dihydride in the C-O bond cleavage of alkyl and aryl epoxides into corresponding branched Markovnikov ring-opening products. In addition, the chemoselective intermolecular reduction of esters over other reducible functional groups, such as amides and alkenes, has been established. Intermediates are isolated and characterized by NMR and HRMS studies, which confirm the probable catalytic cycles for the hydroboration of esters and epoxides.
Collapse
Affiliation(s)
- Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
9
|
Nayak DK, Sarkar N, Sampath CM, Sahoo RK, Nembenna S. Organoaluminum Catalyzed Guanylation and Hydroboration Reactions of Carbodiimides. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deepak Kumar Nayak
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752 050 India
| | - Nabin Sarkar
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752 050 India
| | - Chabathula Manoj Sampath
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752 050 India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752 050 India
| | - Sharanappa Nembenna
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752 050 India
| |
Collapse
|
10
|
Sarkar N, Kumar Sahoo R, Ganesh Patro A, Nembenna S. Aluminum-Catalyzed Selective Hydroboration of Carbonyls and Dehydrocoupling of Alcohols, Phenols, Amines, Thiol, Selenol, Silanols with HBpin. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Hsu CP, Liu CA, Wen CC, Liu YH, Lin YF, Chiu CW. Chiral Bis(oxazoline) Ligand‐Supported Alkyl Aluminum Cations. ChemCatChem 2022. [DOI: 10.1002/cctc.202101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Ya-Fan Lin
- Kaohsiung Medical University Fragrance and Cosmetic Science TAIWAN
| | - Ching-Wen Chiu
- National Taiwan University Department of Chemistry No. 1, Sec. 4, Roosevelt Rd. 10617 Taipei TAIWAN
| |
Collapse
|
12
|
Sarkar N, Sahoo RK, Mukhopadhyay S, Nembenna S. Organoaluminum Cation Catalyzed Selective Hydrosilylation of Carbonyls, Alkenes, and Alkyne. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nabin Sarkar
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Rajata Kumar Sahoo
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Sayantan Mukhopadhyay
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Sharanappa Nembenna
- National Institute of Science Education and Research (NISER) School of Chemical Sciences Jatni CampusNISER, BhubaneswarINDIA 752050 Bhubaneswar INDIA
| |
Collapse
|
13
|
Affiliation(s)
- Congjian Ni
- Beijing Institute of Technology School of chemistry CHINA
| | - Xiaoli Ma
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Zhi Yang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Herbert W. Roesky
- Georg-August-Universitat Gottingen Department of Chemistry Tammannstrasse 4 37077 Göttingen GERMANY
| |
Collapse
|
14
|
Barthélemy A, Glootz K, Scherer H, Hanske A, Krossing I. Ga +-catalyzed hydrosilylation? About the surprising system Ga +/HSiR 3/olefin, proof of oxidation with subvalent Ga + and silylium catalysis with perfluoroalkoxyaluminate anions. Chem Sci 2022; 13:439-453. [PMID: 35126976 PMCID: PMC8729802 DOI: 10.1039/d1sc05331k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/21/2021] [Indexed: 12/19/2022] Open
Abstract
Already 1 mol% of subvalent [Ga(PhF)2]+[pf]- ([pf]- = [Al(ORF)4]-, RF = C(CF3)3) initiates the hydrosilylation of olefinic double bonds under mild conditions. Reactions with HSiMe3 and HSiEt3 as substrates efficiently yield anti-Markovnikov and anti-addition products, while bulkier substrates such as HSiiPr3 are less reactive. Investigating the underlying mechanism by gas chromatography and STEM analysis, we unexpectedly found that H2 and metallic Ga0 formed. Without the addition of olefins, the formation of R3Si-F-Al(ORF)3 (R = alkyl), a typical degradation product of the [pf]- anion in the presence of a small silylium ion, was observed. Electrochemical analysis revealed a surprisingly high oxidation potential of univalent [Ga(PhF)2]+[pf]- in weakly coordinating, but polar ortho-difluorobenzene of E 1/2(Ga+/Ga0; oDFB) = +0.26-0.37 V vs. Fc+/Fc (depending on the scan rate). Apparently, subvalent Ga+, mainly known as a reductant, initially oxidizes the silane and generates a highly electrophilic, silane-supported, silylium ion representing the actual catalyst. Consequently, the [Ga(PhF)2]+[pf]-/HSiEt3 system also hydrodefluorinates C(sp3)-F bonds in 1-fluoroadamantane, 1-fluorobutane and PhCF3 at room temperature. In addition, both catalytic reactions may be initiated using only 0.2 mol% of [Ph3C]+[pf]- as a silylium ion-generating initiator. These results indicate that silylium ion catalysis is possible with the straightforward accessible weakly coordinating [pf]- anion. Apparently, the kinetics of hydrosilylation and hydrodefluorination are faster than that of anion degradation under ambient conditions. These findings open up new windows for main group catalysis.
Collapse
Affiliation(s)
- Antoine Barthélemy
- Institut für Anorganische und Analytische Chemie, Freiburger Materialforschungszentrum (FMF), Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Kim Glootz
- Institut für Anorganische und Analytische Chemie, Freiburger Materialforschungszentrum (FMF), Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Harald Scherer
- Institut für Anorganische und Analytische Chemie, Freiburger Materialforschungszentrum (FMF), Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Annaleah Hanske
- Institut für Anorganische und Analytische Chemie, Freiburger Materialforschungszentrum (FMF), Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie, Freiburger Materialforschungszentrum (FMF), Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| |
Collapse
|
15
|
Wilson TR, Alexandrova AN, Eberhart ME. Electron Density Geometry and the Quantum Theory of Atoms in Molecules. J Phys Chem A 2021; 125:10622-10631. [PMID: 34905923 DOI: 10.1021/acs.jpca.1c09359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel form of charge density analysis, that of isosurface curvature redistribution, is formulated and applied to the toy problem of carbonyl oxygen activation in formaldehyde. The isosurface representation of the electron charge density allows us to incorporate the rigorous geometric constraints of closed surfaces toward the analysis and chemical interpretation of the charge density response to perturbations. Visual inspection of 2D isosurface motion resulting from applied external electric fields reveals how the isosurface curvature flows within and between atoms and that a molecule can be uniquely and completely partitioned into chemically significant regions of positive and negative curvatures. These concepts reveal that carbonyl oxygen activation proceeds primarily through curvature and charge redistribution within rather than between Bader atoms. Using gradient bundle analysis─the partitioning of formaldehyde into infinitesimal volume elements bounded by QTAIM zero-flux surfaces─the observations from visual isosurface inspection are verified. The results of the formaldehyde carbonyl analysis are then shown to be transferable to the substrate carbonyl in the ketosteroid isomerase enzyme, laying the groundwork for extending this approach to the problems of enzymatic catalysis.
Collapse
Affiliation(s)
- Timothy R Wilson
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | | | - M E Eberhart
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
16
|
Ankur, Kannan R, Chambenahalli R, Banerjee S, Yang Y, Maron L, Venugopal A. [(Me
6
TREN)MgOCHPh
2
][B(C
6
F
5
)
4
]: A Model Complex to Explore the Catalytic Activity of Magnesium Alkoxides in Ketone Hydroboration. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ankur
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Ramkumar Kannan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Raju Chambenahalli
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Sumanta Banerjee
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Yan Yang
- LPCNO, UMR 5215, INSA, UPS Université de Toulouse-CNRS 31000 Toulouse France
| | - Laurent Maron
- LPCNO, UMR 5215, INSA, UPS Université de Toulouse-CNRS 31000 Toulouse France
| | - Ajay Venugopal
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| |
Collapse
|
17
|
Willcox DR, De Rosa DM, Howley J, Levy A, Steven A, Nichol GS, Morrison CA, Cowley MJ, Thomas SP. Aluminium‐Catalyzed C(sp)−H Borylation of Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dominic R. Willcox
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Daniel M. De Rosa
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Jack Howley
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Abigail Levy
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Alan Steven
- AstraZeneca Pharmaceutical Technology and Development Macclesfield Campus Cheshire SK10 2NA UK
| | - Gary S. Nichol
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Carole A. Morrison
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Michael J. Cowley
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Stephen P. Thomas
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
18
|
Willcox DR, De Rosa DM, Howley J, Levy A, Steven A, Nichol GS, Morrison CA, Cowley MJ, Thomas SP. Aluminium-Catalyzed C(sp)-H Borylation of Alkynes. Angew Chem Int Ed Engl 2021; 60:20672-20677. [PMID: 34107161 PMCID: PMC8518654 DOI: 10.1002/anie.202106216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 12/31/2022]
Abstract
Historically used in stoichiometric hydroalumination chemistry, recent advances have transformed aluminium hydrides into versatile catalysts for the hydroboration of unsaturated multiple bonds. This catalytic ability is founded on the defining reactivity of aluminium hydrides with alkynes and alkenes: 1,2‐hydroalumination of the unsaturated π‐system. This manuscript reports the aluminium hydride catalyzed dehydroborylation of terminal alkynes. A tethered intramolecular amine ligand controls reactivity at the aluminium hydride centre, switching off hydroalumination and instead enabling selective reactions at the alkyne C−H σ‐bond. Chemoselective C−H borylation was observed across a series of aryl‐ and alkyl‐substituted alkynes (21 examples). On the basis of kinetic and density functional theory studies, a mechanism in which C−H borylation proceeds by σ‐bond metathesis between pinacolborane (HBpin) and alkynyl aluminium intermediates is proposed.
Collapse
Affiliation(s)
- Dominic R Willcox
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Daniel M De Rosa
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Jack Howley
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Abigail Levy
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Alan Steven
- AstraZeneca Pharmaceutical Technology and Development, Macclesfield Campus, Cheshire, SK10 2NA, UK
| | - Gary S Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Michael J Cowley
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
19
|
Bodach A, Ortmeyer J, Herrmann B, Felderhoff M. Amino−Organolithium Compounds and their Aggregation for the Synthesis of Amino−Organoaluminium Compounds. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alexander Bodach
- Department of Heterogeneous Catalysis Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Jochen Ortmeyer
- Department of Heterogeneous Catalysis Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Bastian Herrmann
- Department of Heterogeneous Catalysis Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Michael Felderhoff
- Department of Heterogeneous Catalysis Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
20
|
Friedrich A, Eyselein J, Elsen H, Langer J, Pahl J, Wiesinger M, Harder S. Cationic Aluminium Complexes as Catalysts for Imine Hydrogenation. Chemistry 2021; 27:7756-7763. [PMID: 33780071 PMCID: PMC8252007 DOI: 10.1002/chem.202100641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Strongly Lewis acidic cationic aluminium complexes, stabilized by β–diketiminate (BDI) ligands and free of Lewis bases, have been prepared as their B(C6F5)4− salts and were investigated for catalytic activity in imine hydrogenation. The backbone (R1) and N (R2) substituents on the R1,R2BDI ligand (R1,R2BDI=HC[C(R1)N(R2)]2) influence sterics and Lewis acidity. Ligand bulk increases along the row Me,DIPPBDI<Me,DIPePBDI≈tBu,DIPPBDI<tBu,DIPePBDI; DIPP=2,6‐C(H)Me2‐phenyl, DIPeP=2,6‐C(H)Et2‐phenyl. The Gutmann‐Beckett test showed acceptor numbers of: (tBu,DIPPBDI)AlMe+ 85.6, (tBu,DIPePBDI)AlMe+ 85.9, (Me,DIPPBDI)AlMe+ 89.7, (Me,DIPePBDI)AlMe+ 90.8, (Me,DIPPBDI)AlH+ 95.3. Steric and electronic factors need to be balanced for catalytic activity in imine hydrogenation. Open, highly Lewis acidic, cations strongly coordinate imine rendering it inactive as a Frustrated Lewis Pair (FLP). The bulkiest cations do not coordinate imine but its combination is also not an active catalyst. The cation (tBu,DIPPBDI)AlMe+ shows the best catalytic activity for various imines and is also an active catalyst for the Tishchenko reaction of benzaldehyde to benzylbenzoate. DFT calculations on the mechanism of imine hydrogenation catalysed by cationic Al complexes reveal two interconnected catalytic cycles operating in concert. Hydrogen is activated either by FLP reactivity of an Al⋅⋅⋅imine couple or, after formation of significant quantities of amine, by reaction with an Al⋅⋅⋅amine couple. The latter autocatalytic Al⋅⋅⋅amine cycle is energetically favoured.
Collapse
Affiliation(s)
- Alexander Friedrich
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jonathan Eyselein
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Holger Elsen
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jürgen Pahl
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Michael Wiesinger
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| |
Collapse
|
21
|
Hsu CP, Liu YH, Boobalan R, Lin YF, Chein RJ, Chiu CW. Chiral Tetra-coordinate Aluminum Cation in Catalysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ching-Pei Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | | - Ya-Fan Lin
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Rong-Jie Chein
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Wen Chiu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
22
|
Gasperini D, Neale SE, Mahon MF, Macgregor SA, Webster RL. Phosphirenium Ions as Masked Phosphenium Catalysts: Mechanistic Evaluation and Application in Synthesis. ACS Catal 2021; 11:5452-5462. [PMID: 34631226 PMCID: PMC8495902 DOI: 10.1021/acscatal.1c01133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/02/2021] [Indexed: 11/29/2022]
Abstract
![]()
The
utilization of phosphirenium ions is presented; optimized and
broadened three-membered ring construction is described together with
the use of these ions as efficient pre-catalysts for metal-free carbonyl
reduction with silanes. Full characterization of the phosphirenium
ions is presented, and initial experimental and computational mechanistic
studies indicate that these act as a “masked phosphenium”
source that is accessed via ring opening. Catalysis proceeds via associative
transfer of {Ph2P+} to a carbonyl nucleophile,
H–SiR3 bond addition over the C=O group,
and associative displacement of the product by a further equivalent
of the carbonyl substrate, which completes the catalytic cycle. A
competing off-cycle process leading to vinyl phosphine formation is
detailed for the hydrosilylation of benzophenone for which an inverse
order in [silane] is observed. Experimentally, the formation of side
products, including off-cycle vinyl phosphine, is favored by electron-donating
substituents on the phosphirenium cation, while catalytic hydrosilylation
is promoted by electron-withdrawing substituents. These observations
are rationalized in parallel computational studies.
Collapse
Affiliation(s)
| | - Samuel E. Neale
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Ruth L. Webster
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
23
|
Jung HJ, Cho Y, Kim D, Mehrkhodavandi P. Cationic aluminum, gallium, and indium complexes in catalysis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01741h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The introduction of cationic charge allows cationic group 13 complexes to be excellent Lewis acid catalysts. Cationic aluminum, gallium, and indium complexes in catalysis are comprehensively reviewed based on the reaction type.
Collapse
Affiliation(s)
- Hyuk-Joon Jung
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Youngjung Cho
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Diana Kim
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | |
Collapse
|
24
|
Kannan R, Balasubramaniam S, Kumar S, Chambenahalli R, Jemmis ED, Venugopal A. Electrophilic Organobismuth Dication Catalyzes Carbonyl Hydrosilylation. Chemistry 2020; 26:12717-12721. [DOI: 10.1002/chem.202002006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Ramkumar Kannan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Selvakumar Balasubramaniam
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Sandeep Kumar
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Raju Chambenahalli
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Eluvathingal D. Jemmis
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Ajay Venugopal
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| |
Collapse
|