1
|
Chen C, Ding LY, Zhang XX, Chen GS, Zhu YP, Ni C, Zhu B. Nickel-Catalyzed Gas-Free Reductive Carbonylation of Aryl Thianthrenium Salts to Access Aryl Amides and Aryl Thioesters. Org Lett 2025; 27:4915-4920. [PMID: 40311079 DOI: 10.1021/acs.orglett.5c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
A nickel-catalyzed site-selective reductive carbonylation of arenes via aryl thianthrenium salts is described. Using Mo(CO)6 as a convenient solid CO source and reductant and employing nitroarenes and sulfonyl chlorides as readily available nitrogen and sulfur sources, a range of aryl amides and aryl thioesters were successfully synthesized in moderate to good yields. The utility of this transformation is demonstrated through the synthesis of antimicrobial agents and the late-stage functionalization of biorelevant molecules.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Lu-Yao Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xiao-Xu Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Guan-Shen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yan-Ping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
2
|
Wang X, Chen W, Chen W. Pd/NHCs-Catalyzed Denitrative/Dechlorinated N-Arylation of Nitroarenes/Chloroarenes to Hydrazine Derivatives. Chem Asian J 2025; 20:e202401902. [PMID: 39950363 DOI: 10.1002/asia.202401902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Palladium-catalyzed denitrative/dechlorinated C-N coupling reactions of nitroaromatics/chloroarenes with hydrazines/hydrazones were performed using sterically bulky N-heterocyclic ligands (NHC=2-aryl-5-(2,4,6-triisopropylphenyl)-2,3-imidazolylidene[1,5-a]pyridines). A range of N-arylbenzophenone hydrazones/hydrazine derivatives were obtained in good to excellent yields. This protocol provides an efficient method for the preparation of hydrazones/hydrazines via C-N coupling of inexpensive nitroarenes and chloroarenes.
Collapse
Affiliation(s)
- Xuejie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Wanzhi Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Iizumi K, Yamaguchi J. Transformative reactions in nitroarene chemistry: C-N bond cleavage, skeletal editing, and N-O bond utilization. Org Biomol Chem 2025; 23:1746-1772. [PMID: 39831336 DOI: 10.1039/d4ob01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SNAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as ipso-substitution SNAr reactions, have been extensively explored. Interactions between ortho-nitro groups and neighboring substituents also provide unique opportunities for selective transformations. However, beyond these well-established processes, direct transformations of nitro groups have been relatively limited. In recent years, significant advancements have been made in alternative methodologies for nitro group transformations. This review focuses on the latest progress in novel transformations of nitroarenes, with emphasis on three major categories: (i) functional group transformations involving C-N bond cleavage in nitroarenes, (ii) skeletal editing via nitrene intermediates generated by N-O bond cleavage, and (iii) the utilization of nitroarenes as an oxygen source through N-O bond cleavage. These developments under-score the expanding utility of nitroarenes in modern organic synthesis.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| |
Collapse
|
4
|
Tang S, Xu W, Zhang H. Transition-metal-free photochemical reductive denitration of nitroarenes. Chem Commun (Camb) 2024; 60:13754-13757. [PMID: 39495076 DOI: 10.1039/d4cc04982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
We have developed a simple and mild photochemical process for the reductive denitration of nitroarenes under transition-metal-free conditions. This method is compatible with a broad range of functional groups, providing a practical and efficient approach for converting nitroarenes into denitrated arenes. The utility of this protocol is demonstrated through the prompt synthesis of dibenzoxepane.
Collapse
Affiliation(s)
- Shuai Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China.
| | - Weidong Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China.
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China.
| |
Collapse
|
5
|
Qin Y, Zhang J, Zhang C, Wang Q. Substituent-dependent [4+2] or [2+2] cycloadditions of phenylallenyl phosphine oxides with arynes. Chem Commun (Camb) 2024; 60:11343-11346. [PMID: 39301727 DOI: 10.1039/d4cc03507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A [4+2] cycloaddition strategy to assemble phenanthren-9-yldiphenylphosphine oxides is reported. This reaction relies on the strategic use of readily available phenylallenyl phosphine oxides as dienes to participate in [4+2] cycloaddition with arynes. Notably, benzo[b][1,4]oxaphosphinin-4-iums can be controllably synthesized by simply tuning the substituents in the phosphine oxide unit through a [2+2] cycloaddition cascade.
Collapse
Affiliation(s)
- Yunlong Qin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Jianing Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Congcong Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Qilin Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Yao J, Xiao Y, Li H, Yang X, Du J, Yin Y, Feng L, Duan W, Yu L. Palladium-Catalyzed Denitrative α-Arylation of Heteroarenes with Nitroarenes via C-H and C-NO 2 Bond Activations. Org Lett 2024; 26:7307-7312. [PMID: 39172691 DOI: 10.1021/acs.orglett.4c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A general approach for the α-arylation of heteroarenes with nitroarenes via denitrative coupling is reported for the first time. Various heteroarenes, including derivatives of furan, benzofuran, pyrrole, indole, thiophene, and benzothiophene, can be arylated at the α-position in moderate to good yields. Mechanistic studies demonstrate that the reaction proceeds via a CMD pathway, with C-H bond activation as the rate-determining step. Furthermore, the scalability and applicability in the synthesis of a drug molecule exemplify the utility of this protocol.
Collapse
Affiliation(s)
- Jiaxin Yao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Yuxuan Xiao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Haiyan Li
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Xun Yang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Jiahui Du
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Ying Yin
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Lin Feng
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Lin Yu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| |
Collapse
|
7
|
Cao J, Ding W, Zou G. Tetrabutylammonium Bromide (TBAB)-Promoted, Pd/Cu-Catalyzed Sonogashira Coupling of N-Tosyl Aryltriazenes. Org Lett 2024; 26:4576-4580. [PMID: 38775280 DOI: 10.1021/acs.orglett.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Sonogashira coupling of N-tosyl aryltriazenes is reported to offer arylalkynes in yields up to 92% with the aid of tetrabutylammonium bromide (TBAB) as a dual activator for both the palladium catalyst and aryltriazenes. Common functional groups could be well tolerated, although large electronic effects from alkynes were observed. TBAB-assisted oxidative addition of palladium(0) to aryltriazene instead of in situ formed arylhalide has been proposed to initiate the catalytic cycle.
Collapse
Affiliation(s)
- Jun Cao
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Wenbin Ding
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| |
Collapse
|
8
|
Iizumi K, Tanaka H, Muto K, Yamaguchi J. Palladium-Catalyzed Denitrative Synthesis of Aryl Nitriles from Nitroarenes and Organocyanides. Org Lett 2024; 26:3977-3981. [PMID: 38683691 DOI: 10.1021/acs.orglett.4c01118] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A denitrative cyanation of nitroarenes using organocyanides and a palladium catalyst was developed. The key for this reaction was the utilization of an aminoacetonitrile as a cyano source to avoid the generation of stoichiometric metal- and halogen-containing chemical waste. A wide range of nitroarenes, including heteroarenes and pharmaceutical molecules, can be converted into aryl nitriles.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
9
|
Lei Z, Yao J, Xiao Y, Liu WH, Yu L, Duan W, Li CJ. Dual role of nitroarenes as electrophiles and arylamine surrogates in Buchwald-Hartwig-type coupling for C-N bond construction. Chem Sci 2024; 15:3552-3561. [PMID: 38455022 PMCID: PMC10915857 DOI: 10.1039/d3sc06618e] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
One of the most widely utilized methods for the construction of C(sp2)-N bonds is the transition-metal-catalyzed cross-coupling of aryl halides/boronic acids with amines, known as Ullmann condensation, Buchwald-Hartwig amination, and Chan-Lam coupling. However, aryl halides/boronic acids often require multi-step preparation while generating a large amount of corrosive and toxic waste, making the reaction less attractive. Herein, we present an unprecedented method for the C(sp2)-N formation via Buchwald-Hartwig-type reactions using synthetically upstream nitroarenes as the sole starting materials, thus eliminating the need for arylhalides and pre-formed arylamines. A diverse range of symmetrical di- and triarylamines were obtained in a single step from nitroarenes, and more importantly, various unsymmetrical di- and triarylamines were also highly selectively synthesized in a one-pot/two-step process. Furthermore, the success of the scale-up experiments, the late-stage functionalization of a drug intermediate, and the rapid preparation of hole-transporting material TCTA showcased the utility and practicality of this protocol in synthetic chemistry. Mechanistic studies indicate that this transformation may proceed via an arylamine intermediate generated in situ from the reduction of nitroarenes, which is followed by a denitrative Buchwald-Hartwig-type reaction with another nitroarene to form a C-N bond.
Collapse
Affiliation(s)
- Zhiguo Lei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University East Daxue Road Nanning Guangxi 530004 P. R. China
| | - Jiaxin Yao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University East Daxue Road Nanning Guangxi 530004 P. R. China
| | - Yuxuan Xiao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University East Daxue Road Nanning Guangxi 530004 P. R. China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Lin Yu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University East Daxue Road Nanning Guangxi 530004 P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University East Daxue Road Nanning Guangxi 530004 P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
10
|
Hernández-Ruiz R, Gómez-Gil S, Pedrosa MR, Suárez-Pantiga S, Sanz R. Direct synthesis of haloaromatics from nitroarenes via a sequential one-pot Mo-catalyzed reduction/Sandmeyer reaction. Org Biomol Chem 2023; 21:7791-7798. [PMID: 37706648 DOI: 10.1039/d3ob01187a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Herein, we report the direct synthesis of a wide variety of functionalized aromatic bromides, chlorides, iodides, and fluorides from nitroarenes in a sequential one-pot operation. This protocol is based on an air- and moisture-tolerant dioxomolybdenum-catalyzed reduction of nitroaromatics, employing pinacol as a reducing agent, which enables subsequent diazotization and halogenation steps. This methodology represents a step-economical, practical, and alternative procedure for synthesizing haloaromatics directly from nitroaromatics.
Collapse
Affiliation(s)
- Raquel Hernández-Ruiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Sara Gómez-Gil
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - María R Pedrosa
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Samuel Suárez-Pantiga
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Roberto Sanz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
11
|
Zhang F, Wang F, Zhao Y, Chen R, Wu X. Denitrative Mizoroki–Heck reaction of unactivated alkenes. Org Chem Front 2023. [DOI: 10.1039/d3qo00132f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A general palladium-catalyzed denitrative Mizoroki–Heck reaction of unactivated alkenes has been developed with high E/Z selectivity.
Collapse
|
12
|
Electrochemical borylation of nitroarenes. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Hajji I, Hamrouni K, Hajri AK, Barhoumi H, Aloui F. Expeditious and practical synthesis, photophysical and electrochemical properties of functionalized phenanthrene derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Peng Y, Li Z, Hu J, Wu T. Palladium-Catalyzed Denitrative Mizoroki–Heck Reactions of Aryl or Alkyl Olefins with Nitrobenzenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Venkatesh GB, HariPrasad S, Jeevan Chakravarthy AS. One-pot synthesis of a new class of alkynyl anionic synthons: the 4-(2',2-trimethylsilylethynylphenoxymethyl)-2 H-chromen-2-ones. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. B. Venkatesh
- Department of Chemistry, Government Pre-University College, Chickaballapur, India
| | - S. HariPrasad
- Department of Chemistry, Central College Campus, Bengaluru Central University, Bangalore, India
| | | |
Collapse
|
16
|
Zhou T, Gao P, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. Well-Defined, Air- and Moisture-Stable Palladium-Imidazo[1,5- a]pyridin-3-ylidene Complexes: A Versatile Catalyst Platform for Cross-Coupling Reactions by L-Shaped NHC Ligands. Catal Sci Technol 2022; 12:6581-6589. [PMID: 38045636 PMCID: PMC10691866 DOI: 10.1039/d2cy01136k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We describe the development of [(NHC)Pd(cinnamyl)Cl] complexes of ImPy (ImPy = imidazo[1,5-a]pyridin-3-ylidene) as a versatile class of precatalysts for cross-coupling reactions. These precatalysts feature fast activation to monoligated Pd(0) with 1:1 Pd to ligand ratio in a rigid imidazo[1,5-a]pyridin-3-ylidene template. Steric matching of the C5-substituent and N2-wingtip in the catalytic pocket of the catalyst framework led to the discovery of ImPyMesDipp as a highly reactive imidazo[1,5-a]pyridin-3-ylidene ligand for Pd-catalyzed cross-coupling of nitroarenes by challenging C-NO2 activation. Kinetic studies demonstrate fast activation and high reactivity of this class of well-defined ImPy-Pd catalysts. Structural studies provide full characteristics of this new class of imidazo[1,5-a]pyridin-3-ylidene ligands. Computational studies establish electronic properties of sterically-restricted imidazo[1,5-a]pyridin-3-ylidene ligands. Finally, a scalable synthesis of C5-substituted imidazo[1,5-a]pyridin-3-ylidene ligands through Ni-catalyzed Kumada cross-coupling is disclosed. The method obviates chromatographic purification at any of the steps, resulting in a facile and modular access to ImPy ligands. We anticipate that well-defined [Pd-ImPy] complexes will find broad utility in organic synthesis and catalysis for activation of unreactive bonds.
Collapse
Affiliation(s)
- Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
17
|
Chen W, Chen W, Liu M, Wu H. Construction of Heterobiaryl Skeletons through Pd-Catalyzed Cross-Coupling of Nitroarenes and Heterocyclic Arylborononate Esters with a Sterically Demanding NHC Ligand. Org Lett 2022; 24:6983-6987. [PMID: 36135327 DOI: 10.1021/acs.orglett.2c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The palladium-catalyzed Suzuki-Miyaura cross-couplings of nitroarenes and heteroarylboronate esters has been developed. A number of heterobiaryl compounds containing pyridine, pyrimidine, quinoline, furan, thiophene, and pyrazole were prepared using [Pd(cinnamyl)Cl]2/2-aryl-5-(2,4,6-triisopropylphenyl)-2,3-imidazolylidene[1,5-a]pyridines as the catalysts in good to excellent yields. The synthetic practicality of this approach is demonstrated through the synthesis of druglike molecules.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Wanzhi Chen
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, 588 New Chaoyang Street, Wenzhou 325027, China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, 588 New Chaoyang Street, Wenzhou 325027, China
| |
Collapse
|
18
|
Feng L, Yao J, Yu L, Duan WG. Palladium-catalyzed denitrative N-arylation of nitroarenes with pyrroles, indoles, and carbazole. Org Chem Front 2022. [DOI: 10.1039/d2qo00010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an efficient palladium-catalyzed denitrative N-arylation via cross-coupling of N–H heteroarenes with nitroarenes, one of the most inexpensive and fundamental feedstocks in the chemical industry. A variety of...
Collapse
|
19
|
Zhang YY, Zhou ML, Bao YS, Yang M, Cui YH, Liu DL, Wu Q, Liu L, Han ZB. Palladium nanoparticles encapsuled in MOF: An efficient dual-functional catalyst to produce benzylmalononitrile derivatives by one-pot reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Garcia J, Eichwald J, Zesiger J, Beng TK. Leveraging the 1,3-azadiene-anhydride reaction for the synthesis of functionalized piperidines bearing up to five contiguous stereocenters. RSC Adv 2021; 12:309-318. [PMID: 35424477 PMCID: PMC8978715 DOI: 10.1039/d1ra07390g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
A modular and scalable strategy, which remodels 3-methylglutaric anhydride to 2-oxopiperidines bearing at least three contiguous stereocenters is described. The approach relies on the chemoselective and stereocontrolled annulation of 1,3-azadienes with the anhydride component. The resulting acid-tethered allylic 2-oxopiperidines are then engaged in several selective fragment growth processes, including catalytic denitrative alkenylation, halolactonization, and Vilsmeier-Haack functionalization.
Collapse
Affiliation(s)
- Jorge Garcia
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jane Eichwald
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jayme Zesiger
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
21
|
Mo K, Zhou X, Wu J, Zhao Y. Radical-induced denitration of N-( p-nitrophenyl)propiolamides coupled with dearomatization: access to phosphonylated/trifluoromethylated azaspiro[4.5]-trienones. Chem Commun (Camb) 2021; 58:1306-1309. [PMID: 34913445 DOI: 10.1039/d1cc05724c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A robust dearomative denitration of nitroarene derivatives induced by a radical ipso-cyclization process has been developed, delivering valuable phosphonated or trifluoromethylated azaspiro[4.5]trienones with good functional group tolerance. This represents a convenient and powerful approach to activate nitroarenes in a radical manner.
Collapse
Affiliation(s)
- Kangdong Mo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Zhejiang, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Zhejiang, China.
| |
Collapse
|
22
|
Liu T, Wan JP, Liu Y. Metal-free enaminone C-N bond cyanation for the stereoselective synthesis of ( E)- and ( Z)-β-cyano enones. Chem Commun (Camb) 2021; 57:9112-9115. [PMID: 34498638 DOI: 10.1039/d1cc03292e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly practical method for C-CN bond formation by C-N bond cleavage on enaminones leading to the efficient synthesis of β-cyano enones is developed. The reactions take place efficiently to provide (E)-β-cyano enones with only a molecular iodine catalyst. In addition, the additional employment of oxalic acid enables the selective synthesis of (Z)-β-cyano enones.
Collapse
Affiliation(s)
- Ting Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
23
|
Abstract
Cross-coupling reactions are powerful synthetic tools to construct diverse chemical bonds often found in, for example, advanced materials and pharmaceuticals. Since their discovery, haloarenes have habitually been used as electrophilic coupling partners both in academic and industrial contexts. However, concerning the efficiency and the often-negative environmental impact of haloarene-based cross-coupling processes, more readily available, inexpensive, and environmentally friendly electrophiles have been explored.Nitroarenes, for example, are obtained from the facile nitration of aromatic compounds and, thus, represent one of the most easy-to-access feedstock electrophiles. Furthermore, their electron-deficient arene core can be functionalized easily and site-selectively through a wide variety of reactions. Yet, despite these advantages and even though the direct transformation of the NO2 group would be an attractive option in cross-coupling chemistry, it has so far remained difficult to convert nitroarenes via a cleavage of the Ar-NO2 bond given the inherent reactivity (or the lack thereof) of the nitro group. Such denitrative conversion has been performed by a conventional sequence of reduction, diazotization, and Sandmeyer reactions, which severely lacks efficiency and generality.This Account summarizes our recent research progress on cross-coupling reactions that employ nitroarenes as electrophiles. First, we developed the Suzuki-Miyaura coupling of nitroarenes using a palladium/BrettPhos catalyst. This reaction proceeds via an (at the time) unprecedented oxidative addition of the Ar-NO2 bond, which was supported by experimental results and theoretical calculations. A widely accepted catalytic cycle for Pd-catalyzed cross-couplings has since been extended to include nitroarenes as electrophiles, which significantly increases substrate generality. Second, this denitrative coupling protocol was applied to various bond-forming reactions, namely, Buchwald-Hartwig amination, etherification, and hydrogenation reactions. Such diversification has enhanced the utility of nitroarenes as cross-coupling partners. To develop each reaction, it was necessary to modify the reaction conditions as required to overcome the obstacles deriving from nitro functionality including transmetalation and side reactions, as well as oxidative addition. Third, we designed a new Pd/NHC catalyst that exhibits higher activity than Pd/BrettPhos. The improved performance of Pd/NHC system was supported by its strong electron-donicity and structural robustness, and it allows the reduction of the catalyst loading significantly, thus increasing the efficacy and practicality of this method.The field of nitroarene-based cross-coupling has just started to flourish. In addition to our original work, several research groups have already adopted Pd/BrettPhos or Pd/NHC catalysts to develop new denitrative functionalizations. The utility of nitroarenes in the context of organic synthesis should be now revisited.
Collapse
Affiliation(s)
- Myuto Kashihara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
24
|
Affiliation(s)
- Naoki Matsushita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Myuto Kashihara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Michele Formica
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
25
|
Liu J, Yang Y, Ouyang K, Zhang WX. Transition-metal-catalyzed transformations of C–N single bonds: Advances in the last five years, challenges and prospects. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Xia D, Duan XF. Alkylative Dearomatization by Using an Unactivated Aryl Nitro Group as a Leaving Group: Access to Diversified Alkylated Spiro[5.5]trienones. Org Lett 2021; 23:2548-2552. [PMID: 33752331 DOI: 10.1021/acs.orglett.1c00469] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cleavage of an unactivated aryl nitro group triggered by alkyl radicals enables a dearomative cyclization, affording diversified alkylated spiro[5.5]trienones in good yields. Using readily available compounds (toluene and analogues, alkanes, ethers, ketones, etc.) as alkylating reagents, various alkyls have been implanted into the spirocycles via C(sp3)-H and Ar-NO2 bond activation with high functional group tolerance. This protocol provides a distinct method for the activation of the aryl nitro group.
Collapse
Affiliation(s)
- Dong Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
27
|
Li Z, Peng Y, Wu T. Palladium-Catalyzed Denitrative α-Arylation of Ketones with Nitroarenes. Org Lett 2021; 23:881-885. [DOI: 10.1021/acs.orglett.0c04104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhirong Li
- The College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yonggang Peng
- The College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Tao Wu
- The College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
28
|
Rayadurgam J, Sana S, Sasikumar M, Gu Q. Palladium catalyzed C–C and C–N bond forming reactions: an update on the synthesis of pharmaceuticals from 2015–2020. Org Chem Front 2021. [DOI: 10.1039/d0qo01146k] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Some of the most prominent and promising catalysts in organic synthesis for the requisite construction of C–C and C–N bonds are palladium (Pd) catalysts, which play a pivotal role in pharmaceutical and medicinal chemistry.
Collapse
Affiliation(s)
- Jayachandra Rayadurgam
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- People's Republic of China
| | - Sravani Sana
- Alder Research Chemicals Private Limited
- CSIR-IICT
- Hyderabad
- India
| | - M. Sasikumar
- Department of Chemistry
- Indian Institute of Science Education and Research
- Tirupati
- India
| | - Qiong Gu
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- People's Republic of China
| |
Collapse
|
29
|
Asahara KK, Kashihara M, Muto K, Nakao Y, Yamaguchi J. Development of Pd-Catalyzed Denitrative Couplings. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Myuto Kashihara
- Department of Material Chemsitry, Graduate School of Engineering, Kyoto Univeristy
| | - Kei Muto
- Institute for Advanced Study, Waseda University
| | - Yoshiaki Nakao
- Department of Material Chemsitry, Graduate School of Engineering, Kyoto Univeristy
| | | |
Collapse
|
30
|
Kapoor R, Chawla R, Yadav LDS. Denitrative thiocyanation of β-nitrostyrenes through visible light photoredox catalysis: An easy access to (E)-vinyl thiocyanates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Garcı́a-Cárceles J, Bahou KA, Bower JF. Recent Methodologies That Exploit Oxidative Addition of C–N Bonds to Transition Metals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03341] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Karim A. Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
32
|
Affiliation(s)
- Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Toshimasa Okita
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
33
|
Zhou F, Zhou F, Su R, Yang Y, You J. Build-up of double carbohelicenes using nitroarenes: dual role of the nitro functionality as an activating and leaving group. Chem Sci 2020; 11:7424-7428. [PMID: 34123023 PMCID: PMC8159353 DOI: 10.1039/d0sc02058c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022] Open
Abstract
The construction of double carbohelicenes is highly fascinating yet challenging work. Disclosed herein is a streamlined and simplified synthetic route to double carbohelicenes starting from nitroarenes through sequential nitro-activated ortho-C-H arylation, denitrative alkenylation and intramolecular cyclodehydrogenation. In this synthetic strategy, the nitro group plays a dual role namely as a leaving group for the denitrative alkenylation and as an activating group for ortho-C-H arylation, which is distinct from those of aryl halides in a conventional coupling reaction. In this work, the palladium-catalyzed Heck-type alkenylation of nitroarenes has been presented, in which the conventionally inert Ar-NO2 bond is cleaved. This work provides a novel synthetic strategy for polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Fulin Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Fujian Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Rongchuan Su
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
34
|
Okita T, Asahara KK, Muto K, Yamaguchi J. Palladium-Catalyzed Mizoroki–Heck Reaction of Nitroarenes and Styrene Derivatives. Org Lett 2020; 22:3205-3208. [DOI: 10.1021/acs.orglett.0c00983] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Toshimasa Okita
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kitty K. Asahara
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kei Muto
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|