1
|
Nakazono T, Mitsuda R, Hashimoto K, Wada T, Tamiaki H, Yamada Y. The Catalytic Mechanism of a Highly Active Cobalt Chlorin Complex for Photocatalytic Water Oxidation. Inorg Chem 2024; 63:24041-24048. [PMID: 39630119 DOI: 10.1021/acs.inorgchem.4c04764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Highly active catalysts for electrocatalytic and photocatalytic water oxidation are strongly demanded to realize artificial photosynthesis. A cobalt complex with a chlorin derivative ligand (CoII(Ch)) exhibited high activity for electrocatalytic water oxidation with an overpotential of 0.45 V at pH 9.0. Spectroelectrochemistry (UV-vis) unveiled the formation of two intermediates by successive one-electron oxidations. Also, the Pourbaix diagram depicted by the pH dependence of redox potentials indicated that the water oxidation proceeded after the oxidation of both the central cobalt ion and chlorin ligand with proton-coupled electron transfer (PCET). Then, the photocatalytic activity of CoII(Ch) was examined for water oxidation using [RuII(bpy)3]2+ (bpy: 2,2'-bipyridine) and S2O82- as a photosensitizer and a sacrificial electron acceptor, respectively. The turnover number, turnover frequency, and oxygen yield reached as high as 980, 5.2 s-1, and 98%, respectively, under optimized conditions. The O2-evolution rates increased in proportion to the square of the catalyst concentration in the reaction solution, suggesting that the formation of the O-O bond regarded as the rate-determining step of water oxidation proceeded by the interaction of two metal centers (I2M) mechanism in which two molecules of high-valent metal oxo or oxyl radical species react with each other.
Collapse
Affiliation(s)
- Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Ryo Mitsuda
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Kazuki Hashimoto
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yusuke Yamada
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
2
|
Pahar S, Maayan G. An intramolecular cobalt-peptoid complex as an efficient electrocatalyst for water oxidation at low overpotential. Chem Sci 2024; 15:12928-12938. [PMID: 39148784 PMCID: PMC11323339 DOI: 10.1039/d4sc01182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Water electrolysis is the simplest way to produce hydrogen, as a clean renewable fuel. However, the high overpotential and slow kinetics hamper its applicability. Designing efficient and stable electrocatalysts for water oxidation (WO), which is the first and limiting step of the water splitting process, can overcome this limitation. However, the development of such catalysts based on non-precious metal ions is still challenging. Herein we describe a bio-inspired Co(iii)-based complex i.e., a stable and efficient molecular electrocatalyst for WO, constructed from a peptidomimetic oligomer called peptoid - N-substituted glycine oligomer - bearing two binding ligands, terpyridine and bipyridine, and one ethanolic group as a proton shuttler. Upon binding of a cobalt ion, this peptoid forms an intramolecular Co(iii) complex, that acts as an efficient electrocatalyst for homogeneous WO in aqueous phosphate buffer at pH 7 with a high faradaic efficiency of up to 92% at an overpotential of about 430 mV, which is the lowest reported for Co-based homogeneous WO electrocatalysts to date. We demonstrated the high stability of the complex during electrocatalytic WO and that the ethanolic side chain plays a key role in the stability and activity of the complex and also in facilitating water binding, thus mimicking an enzymatic second coordination sphere.
Collapse
Affiliation(s)
- Suraj Pahar
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| |
Collapse
|
3
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
4
|
Maiorova LA, Kobayashi N, Salnikov DS, Kuzmin SM, Basova TV, Koifman OI, Parfenyuk VI, Bykov VA, Bobrov YA, Yang P. Supermolecular Nanoentities of Vitamin B 12 Derivative as a Link in the Evolution of the Parent Molecules During Self-Assembly at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3246-3254. [PMID: 36802645 DOI: 10.1021/acs.langmuir.2c02964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoarchitectures with promising properties have now been formed from many important biomolecules. However, the preparation of nanoparticles of vitamin B12 and its derivatives remains an ongoing research challenge. This paper describes the formation of supermolecular nanoentities (SMEs) of vitamin B12 derivatives, unique nanoparticles with strong noncovalent intermolecular interactions, emerging properties, and activity. These were created by a nanoarchitectonic approach using directed assembly of layers at the air-water interface as a link in the chain of evolution of the parent molecules under specially created conditions. Such layers can be represented as a nanocosm, where, at a critical density, the assemblies act as nanoreactors in which the transformation of the original material occurs. The discovered SMEs not only replicate the functioning of vitamin B12 assemblies with proteins in living organisms and act as vitamin B12-depended enzymes but also demonstrate important advantages over vitamin B12. They are more efficient in oxygen reduction/evolution reactions and in transformation into other forms. These SMEs, in performing advanced tasks, are an alternative to widely used materials based on noble metals for catalysis, medicine, and environment protection. Our findings open new perspectives both for the fabrication of novel SMEs of biomolecules and for a better understanding of the evolution of biomolecules in nature.
Collapse
Affiliation(s)
- Larissa A Maiorova
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
- Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow 119333, Russia
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinto University, Tokida, Ueda 386-8567 Japan
| | - Denis S Salnikov
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Sergey M Kuzmin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Tamara V Basova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Oscar I Koifman
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Vladimir I Parfenyuk
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Victor A Bykov
- NT-MDT Spectrum Instruments Moscow, Zelenograd 24482, Russia
| | - Yurii A Bobrov
- NT-MDT Spectrum Instruments Moscow, Zelenograd 24482, Russia
| | - Peng Yang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China
| |
Collapse
|
5
|
Ruan G, Fridman N, Maayan G. Borate Buffer as a Key Player in Cu-Based Homogeneous Electrocatalytic Water Oxidation. Chemistry 2022; 28:e202202407. [PMID: 36040755 PMCID: PMC9828671 DOI: 10.1002/chem.202202407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Borate buffer was found to have both structural and functional roles within a low-cost tri-copper electrocatalyst for homogeneous water oxidation that exhibits a high turnover frequency of 310 s-1 . The borate buffer was shown to facilitate the catalytic activity by both bridging the three Cu ions and participating in O-O bond formation. Phosphate and acetate buffers did not show such roles, making borate a unique player in this catalytic system.
Collapse
Affiliation(s)
- Guilin Ruan
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Technion CityHaifa3200008Israel
| | - Natalia Fridman
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Technion CityHaifa3200008Israel
| | - Galia Maayan
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Technion CityHaifa3200008Israel
| |
Collapse
|
6
|
Koide T, Ono T, Shimakoshi H, Hisaeda Y. Functions of bioinspired pyrrole cobalt complexes–recently developed catalytic systems of vitamin B12 related complexes and porphycene complexes–. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Cheng J, Shiota Y, Yamasaki M, Izukawa K, Tachi Y, Yoshizawa K, Shimakoshi H. Mechanistic Study for the Reaction of B 12 Complexes with m-Chloroperbenzoic Acid in Catalytic Alkane Oxidations. Inorg Chem 2022; 61:9710-9724. [PMID: 35696150 DOI: 10.1021/acs.inorgchem.2c01174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of alkanes with m-chloroperbenzoic acid (mCPBA) catalyzed by the B12 derivative, heptamethyl cobyrinate, was investigated under several conditions. During the oxidation of cyclohexane, heptamethyl cobyrinate works as a catalyst to form cyclohexanol and cyclohexanone at a 0.67 alcohol to ketone ratio under aerobic conditions in 1 h. The reaction rate shows a first-order dependence on the [catalyst] and [mCPBA] while being independent of [cyclohexane]; Vobs = k2[catalyst][mCPBA]. The kinetic deuterium isotope effect was determined to be 1.86, suggesting that substrate hydrogen atom abstraction is not dominantly involved in the rate-determining step. By the reaction of mCPBA and heptamethyl cobyrinate at low temperature, the corresponding cobalt(III)acylperoxido complex was formed which was identified by UV-vis, IR, ESR, and ESI-MS studies. A theoretical study suggested the homolysis of the O-O bond in the acylperoxido complex to form Co(III)-oxyl (Co-O•) and the m-chlorobenzoyloxyl radical. Radical trapping experiments using N-tert-butyl-α-phenylnitrone and CCl3Br, product analysis of various alkane oxidations, and computer analysis of the free energy for radical abstraction from cyclohexane by Co(III)-oxyl suggested that both Co(III)-oxyl and the m-chlorobenzoyloxyl radical could act as hydrogen-atom transfer reactants for the cyclohexane oxidation.
Collapse
Affiliation(s)
- Jiamin Cheng
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Mikako Yamasaki
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Kureha Izukawa
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yoshimitsu Tachi
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Hisashi Shimakoshi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Li YY, Liao RZ. Mechanism of water oxidation catalyzed by vitamin B12: Redox non-innocent nature of corrin ligand and crucial role of phosphate. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Liu C, Geer AM, Webber C, Musgrave CB, Gu S, Johnson G, Dickie DA, Chabbra S, Schnegg A, Zhou H, Sun CJ, Hwang S, Goddard WA, Zhang S, Gunnoe TB. Immobilization of “Capping Arene” Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ana M. Geer
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Christopher Webber
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Grayson Johnson
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sonia Chabbra
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - William A. Goddard
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
10
|
Li Y, Meijer EJ, Liao R. Elucidating the Role of Aqueous Solvent in an Iron‐Based Water Oxidation System by DFT‐based Molecular Simulation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying‐Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 P. R. China
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam (The Netherlands
| | - Evert Jan Meijer
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam (The Netherlands
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 P. R. China
| |
Collapse
|
11
|
Assembly of a Highly Efficient Molecular Device with (CNCbl)‐MWCNT/CP as Electrode for CO
2
Reduction Coupled to Water Oxidation. ChemElectroChem 2021. [DOI: 10.1002/celc.202100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Ruan G, Engelberg L, Ghosh P, Maayan G. A unique Co(iii)-peptoid as a fast electrocatalyst for homogeneous water oxidation with low overpotential. Chem Commun (Camb) 2021; 57:939-942. [DOI: 10.1039/d0cc06912d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peptoid trimer incorporating terpyridine and ethanol forms an intermolecular cobalt(iii) complex, which performs as a soluble electrocatalyst for water oxidation with a minimal overpotential of 350 mV and a high turnover frequency of 108 s−1.
Collapse
Affiliation(s)
- Guilin Ruan
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Lee Engelberg
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Pritam Ghosh
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| |
Collapse
|
13
|
Meng J, Zhao Y, Li H, Chen R, Sun X, Sun X. Metalloporphyrin immobilized CeO 2: in situ generation of active sites and synergistic promotion of photocatalytic water oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02409k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CoTCPP transfer photoexcited electrons to CeO2 by d–f electron coupling. The in situ generation of catalytically active sites: reduction on CeO2 accompanied with the creation of oxygen vacancies and oxidation on CoTCPP that transforms into CoOOH.
Collapse
Affiliation(s)
- Jiao Meng
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- China
- Key Laboratory of Functional Crystal Materials and Device
| | - Yue Zhao
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- China
- Key Laboratory of Functional Crystal Materials and Device
| | - Haining Li
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Ruiping Chen
- State Key Lab of Structural Chemistry Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences Fuzhou
- P.R. China
| | - Xun Sun
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- China
- Key Laboratory of Functional Crystal Materials and Device
| | - Xuan Sun
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| |
Collapse
|
14
|
Elhousseini Hilal M, Younus HA, Chaemchuen S, Dekyvere S, Zen X, He D, Park J, Han T, Verpoort F. Sacrificial ZnO nanorods drive N and O dual-doped carbon towards trifunctional electrocatalysts for Zn–air batteries and self-powered water splitting devices. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00119a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrated energy systems (IES) have attracted increasing attention in recent years.
Collapse
Affiliation(s)
- Mohamed Elhousseini Hilal
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Materials Science and Engineering
| | - Hussein A. Younus
- Department of Chemistry
- Faculty of Science
- Fayoum University
- Fayoum 63514
- Egypt
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Sander Dekyvere
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Materials Science and Engineering
| | - Xianci Zen
- Ghent University
- Incheon 406-840
- South Korea
- Hubei Engineering Research Center of RF-Microwave Technology and Application
- Wuhan University of Technology
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Jihae Park
- Ghent University
- Incheon 406-840
- South Korea
| | - Taejun Han
- Ghent University
- Incheon 406-840
- South Korea
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Materials Science and Engineering
| |
Collapse
|
15
|
Younus HA, Zhang Y, Vandichel M, Ahmad N, Laasonen K, Verpoort F, Zhang C, Zhang S. Water Oxidation at Neutral pH using a Highly Active Copper-Based Electrocatalyst. CHEMSUSCHEM 2020; 13:5088-5099. [PMID: 32667741 DOI: 10.1002/cssc.202001444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The sluggish kinetics of the oxygen evolution reaction (OER) at the anode severely limit hydrogen production at the cathode in water splitting systems. Although electrocatalytic systems based on cheap and earth-abundant copper catalysts have shown promise for water oxidation under basic conditions, only very few examples with high overpotential can be operated under acidic or neutral conditions, even though hydrogen evolution in the latter case is much easier. This work presents an efficient and robust Cu-based molecular catalyst, which self-assembles as a periodic film from its precursors under aqueous conditions on the surface of a glassy carbon electrode. This film catalyzes the OER under neutral conditions with impressively low overpotential. In controlled potential electrolysis, a stable catalytic current of 1.0 mA cm-2 can be achieved at only 2.0 V (vs. RHE) and no significant decrease in the catalytic current is observed even after prolonged bulk electrolysis. The catalyst displays first-order kinetics and a single site mechanism for water oxidation with a TOF (kcat ) of 0.6 s-1 . DFT calculations on of the periodic Cu(TCA)2 (HTCA=1-mesityl-1H-1,2,3-triazole-4-carboxylic acid) film reveal that TCA defects within the film create CuI active sites that provide a low overpotential route for OER, which involves CuI , CuII -OH, CuIII =O and CuII -OOH intermediates and is enabled at a potential of 1.54 V (vs. RHE), requiring an overpotential of 0.31 V. This corresponds well with an overpotential of approximately 0.29 V obtained experimentally for the grown catalytic film after 100 CV cycles at pH 6. However, to reach a higher current density of 1 mA cm-2 , an overpotential of 0.72 V is required.
Collapse
Affiliation(s)
- Hussein A Younus
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, P. R. China
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, P. R. China
| | - Matthias Vandichel
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
- School of Chemical Engineering, Aalto University, 02150, Espoo, Finland
| | - Nazir Ahmad
- Department of Chemistry, GC University, Lahore, 54000, Pakistan
| | - Kari Laasonen
- School of Chemical Engineering, Aalto University, 02150, Espoo, Finland
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ce Zhang
- Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, P. R. China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|