1
|
Zhang Y, Liang Z, Wang S, Qiao R, Li C. Cross-subclass metallo-β-lactamase inhibitors: From structural and catalytic commonalities guiding design. Eur J Med Chem 2025; 289:117479. [PMID: 40056799 DOI: 10.1016/j.ejmech.2025.117479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The emergence of antibiotic resistance mediated by metallo-β-lactamases (MβLs) has become a problem due to its diverse and widespread resistance characteristics. Research on broad-spectrum inhibitors has become an important issue. This review summarized the reported metallo-β-lactamases inhibitors (MβLIs) with cross-class activity, as well as four practical design strategies for developing cross-subclass MβLIs. It provides a detailed analysis of current inhibitors, covering their chemical structures, mechanisms, and cross-class activities. Four design strategies are discussed: i) substrate simulation strategy, ii) combining metal-chelating motifs strategy, iii) covalent inhibition strategy, and iv) metal ion replacement strategy. These strategies offer insights into developing effective cross-subclass MβLIs to combat the increasing prevalence of resistant pathogens.
Collapse
Affiliation(s)
- Yanhong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Zhenyang Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Shuai Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
2
|
Li M, Li L, Zhang X, Yuan Q, Bao B, Tang Y. A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4675-4688. [PMID: 39787568 DOI: 10.1021/acsami.4c20278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria. The minimum inhibitory concentration of antibiotic model chloramphenicol (CHL) is reduced about 64 times, significantly resensitizing drug-resistant bacteria to antibiotics. Also, the probe can produce highly efficient reactive oxygen species (ROS) under light irradiation. Consequently, the unimolecular OPFV-NB-based system demonstrates insusceptibility to antibiotic resistance while maintaining significant antimicrobial effects (100%) against drug-resistant bacteria. More importantly, in vivo assays corroborate that the combined system greatly accelerates wound healing by eradicating the bacterial population, dampening inflammation, and promoting angiogenesis. Overall, the OPFV-NB not only counteracts antibiotic resistance but also holds tremendous PDT efficiency, which provides a promising therapeutic strategy for combating drug-resistant bacteria and treating bacteria-infected wounds.
Collapse
Affiliation(s)
- Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ling Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xinyi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
3
|
Nahar L, Hagiya H, Gotoh K, Asaduzzaman M, Otsuka F. New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review. J Clin Med 2024; 13:4199. [PMID: 39064239 PMCID: PMC11277577 DOI: 10.3390/jcm13144199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Among various carbapenemases, New Delhi metallo-beta-lactamases (NDMs) are recognized as the most powerful type capable of hydrolyzing all beta-lactam antibiotics, often conferring multi-drug resistance to the microorganism. The objective of this review is to synthesize current scientific data on NDM inhibitors to facilitate the development of future therapeutics for challenging-to-treat pathogens. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews, we conducted a MEDLINE search for articles with relevant keywords from the beginning of 2009 to December 2022. We employed various generic terms to encompass all the literature ever published on potential NDM inhibitors. Results: Out of the 1760 articles identified through the database search, 91 met the eligibility criteria and were included in our analysis. The fractional inhibitory concentration index was assessed using the checkerboard assay for 47 compounds in 37 articles, which included 8 compounds already approved by the Food and Drug Administration (FDA) of the United States. Time-killing curve assays (14 studies, 25%), kinetic assays (15 studies, 40.5%), molecular investigations (25 studies, 67.6%), in vivo studies (14 studies, 37.8%), and toxicity assays (13 studies, 35.1%) were also conducted to strengthen the laboratory-level evidence of the potential inhibitors. None of them appeared to have been applied to human infections. Conclusions: Ongoing research efforts have identified several potential NDM inhibitors; however, there are currently no clinically applicable drugs. To address this, we must foster interdisciplinary and multifaceted collaborations by broadening our own horizons.
Collapse
Affiliation(s)
- Lutfun Nahar
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (M.A.)
| | - Md Asaduzzaman
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (M.A.)
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
4
|
Peng M, Zhang C, Duan YY, Liu HB, Peng XY, Wei Q, Chen QY, Sang H, Kong QT. Antifungal activity of the repurposed drug disulfiram against Cryptococcus neoformans. Front Pharmacol 2024; 14:1268649. [PMID: 38273827 PMCID: PMC10808519 DOI: 10.3389/fphar.2023.1268649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Fungal infections have become clinically challenging owing to the emergence of drug resistance in invasive fungi and the rapid increase in the number of novel pathogens. The development of drug resistance further restricts the use of antifungal agents. Therefore, there is an urgent need to identify alternative treatments for Cryptococcus neoformans (C. neoformans). Disulfiram (DSF) has a good human safety profile and promising applications as an antiviral, antifungal, antiparasitic, and anticancer agent. However, the effect of DSF on Cryptococcus is yet to be thoroughly investigated. This study investigated the antifungal effects and the mechanism of action of DSF against C. neoformans to provide a new theoretical foundation for the treatment of Cryptococcal infections. In vitro studies demonstrated that DSF inhibited Cryptococcus growth at minimum inhibitory concentrations (MICs) ranging from 1.0 to 8.0 μg/mL. Combined antifungal effects have been observed for DSF with 5-fluorocytosine, amphotericin B, terbinafine, or ketoconazole. DSF exerts significant protective effects and synergistic effects combined with 5-FU for Galleria mellonella infected with C. neoformans. Mechanistic investigations showed that DSF dose-dependently inhibited melanin, urease, acetaldehyde dehydrogenase, capsule and biofilm viability of C. neoformans. Further studies indicated that DSF affected C. neoformans by interfering with multiple biological pathways, including replication, metabolism, membrane transport, and biological enzyme activity. Potentially essential targets of these pathways include acetaldehyde dehydrogenase, catalase, ATP-binding cassette transporter (ABC transporter), and iron-sulfur cluster transporter. These findings provide novel insights into the application of DSF and contribute to the understanding of its mechanisms of action in C. neoformans.
Collapse
Affiliation(s)
- Min Peng
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chen Zhang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuan-Yuan Duan
- Affiliated Hospital for Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hai-Bo Liu
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin-Yuan Peng
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Qi-Ying Chen
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hong Sang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing-Tao Kong
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Chen C, Li J, Dan H, He J, Wang D, Oelschlaeger P, Wang N, Zhang Y, Pei Y, Yang KW. A self-reported inhibitor of metallo-carbapenemases for reversing carbapenem resistance. Int J Biol Macromol 2023; 252:126441. [PMID: 37607651 DOI: 10.1016/j.ijbiomac.2023.126441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Metallo-carbapenemases-mediated carbapenem-resistant Enterobacterales (CREs) has been acknowledged as "urgent threat" by the World Health Organization. The discovery of new strategies that block metallo-carbapenemases activity to reverse carbapenem resistance is an urgent need. In this study, a coumarin copper complex containing a PEG linker and glucose ligand, GluC-Cu, was used to reverse carbapenem resistance. Interestingly, it could effectively inhibit metallo-carbapenemases (NDM-1, IMP-1 and ImiS) with an IC50 value in the range of 0.23-1.21 μM, and simultaneously release the green fluorescence signal (GluC), therefore exhibiting self-reported inhibition performance. The inhibition mechanism of oxidizing Zn(II) thiolate site of NDM-1 from Cu2+ to Cu+ was verified by fluorescence assay, HR-MS, and XPS. Moreover, GluC-Cu in combination with meropenem showed excellent synergistic antibacterial effect to effectively combat E. coli expressing metallo-carbapenemases in vitro and in a mice infection model. This bifunctional metallo-carbapenemases inhibitor provides a novel chemical tool to overcome carbapenem resistance.
Collapse
Affiliation(s)
- Cheng Chen
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China; Key laboratory synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jiahui Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Heng Dan
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Jingyi He
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Dongmei Wang
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China.
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, 91766, CA, United States
| | - Nana Wang
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | | | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Ke-Wu Yang
- Key laboratory synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
6
|
Jia Y, Schroeder B, Pfeifer Y, Fröhlich C, Deng L, Arkona C, Kuropka B, Sticht J, Ataka K, Bergemann S, Wolber G, Nitsche C, Mielke M, Leiros HKS, Werner G, Rademann J. Kinetics, Thermodynamics, and Structural Effects of Quinoline-2-Carboxylates, Zinc-Binding Inhibitors of New Delhi Metallo-β-lactamase-1 Re-sensitizing Multidrug-Resistant Bacteria for Carbapenems. J Med Chem 2023; 66:11761-11791. [PMID: 37585683 DOI: 10.1021/acs.jmedchem.3c00171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Carbapenem resistance mediated by metallo-β-lactamases (MBL) such as New Delhi metallo-β-lactamase-1 (NDM-1) has become a major factor threatening the efficacy of essential β-lactam antibiotics. Starting from hit fragment dipicolinic acid (DPA), 8-hydroxy- and 8-sulfonamido-quinoline-2-carboxylic acids were developed as inhibitors of NDM-1 with highly improved inhibitory activity and binding affinity. The most active compounds formed reversibly inactive ternary protein-inhibitor complexes with two zinc ions as proven by native protein mass spectrometry and bio-layer interferometry. Modification of the NDM-1 structure with remarkable entropic gain was shown by isothermal titration calorimetry and NMR spectroscopy of isotopically labeled protein. The best compounds were potent inhibitors of NDM-1 and other representative MBL with no or little inhibition of human zinc-binding enzymes. These inhibitors significantly reduced the minimum inhibitory concentrations (MIC) of meropenem for multidrug-resistant bacteria recombinantly expressing blaNDM-1 as well as for several multidrug-resistant clinical strains at concentrations non-toxic to human cells.
Collapse
Affiliation(s)
- Yuwen Jia
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Barbara Schroeder
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Yvonne Pfeifer
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, Wernigerode 38855, Germany
| | - Christopher Fröhlich
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Lihua Deng
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Christoph Arkona
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Benno Kuropka
- Core Facility BioSupraMol, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Jana Sticht
- Core Facility BioSupraMol, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Silke Bergemann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Martin Mielke
- Department of Infectious Diseases, Robert Koch Institute, Nordufer 20, Berlin 13353, Germany
| | - Hanna-Kirsti S Leiros
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Guido Werner
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, Wernigerode 38855, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| |
Collapse
|
7
|
Chen C, Cai J, Shi J, Wang Z, Liu Y. Resensitizing multidrug-resistant Gram-negative bacteria to carbapenems and colistin using disulfiram. Commun Biol 2023; 6:810. [PMID: 37537267 PMCID: PMC10400630 DOI: 10.1038/s42003-023-05173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
The increasing incidence of bacterial infections caused by multidrug-resistant (MDR) Gram-negative bacteria has deepened the need for new effective treatments. Antibiotic adjuvant strategy is a more effective and economical approach to expand the lifespan of currently used antibiotics. Herein, we uncover that alcohol-abuse drug disulfiram (DSF) and derivatives thereof are potent antibiotic adjuvants, which dramatically potentiate the antibacterial activity of carbapenems and colistin against New Delhi metallo-β-lactamase (NDM)- and mobilized colistin resistance (MCR)-expressing Gram-negative pathogens, respectively. Mechanistic studies indicate that DSF improves meropenem efficacy by specifically inhibiting NDM activity. Moreover, the robust potentiation of DSF to colistin is due to its ability to exacerbate the membrane-damaging effects of colistin and disrupt bacterial metabolism. Notably, the passage and conjugation assays reveal that DSF minimizes the evolution and spread of meropenem and colistin resistance in clinical pathogens. Finally, their synergistic efficacy in animal models was evaluated and DSF-colistin/meropenem combination could effectively treat MDR bacterial infections in vivo. Taken together, our works demonstrate that DSF and its derivatives are versatile and potent colistin and carbapenems adjuvants, opening a new horizon for the treatment of difficult-to-treat infections.
Collapse
Affiliation(s)
- Chen Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jinju Cai
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Disulfiram: Mechanisms, Applications, and Challenges. Antibiotics (Basel) 2023; 12:antibiotics12030524. [PMID: 36978391 PMCID: PMC10044060 DOI: 10.3390/antibiotics12030524] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Since disulfiram’s discovery in the 1940s and its FDA approval for alcohol use disorder, other indications have been investigated. This review describes potential clinical applications, associated risks, and challenges. Methods: For this narrative review, a PubMed search was conducted for articles addressing in vivo studies of disulfiram with an emphasis on drug repurposing for the treatment of human diseases. The key search terms were “disulfiram” and “Antabuse”. Animal studies and in vitro studies highlighting important mechanisms and safety issues were also included. Results: In total, 196 sources addressing our research focus spanning 1948–2022 were selected for inclusion. In addition to alcohol use disorder, emerging data support a potential role for disulfiram in the treatment of other addictions (e.g., cocaine), infections (e.g., bacteria such as Staphylococcus aureus and Borrelia burgdorferi, viruses, parasites), inflammatory conditions, neurological diseases, and cancers. The side effects range from minor to life-threatening, with lower doses conveying less risk. Caution in human use is needed due to the considerable inter-subject variability in disulfiram pharmacokinetics. Conclusions: While disulfiram has promise as a “repurposed” agent in human disease, its risk profile is of concern. Animal studies and well-controlled clinical trials are needed to assess its safety and efficacy for non-alcohol-related indications.
Collapse
|
9
|
Ma Y, Liang Y, Guo M, Min D, Zheng L, Tang Y, Sun X. Strategic design of lysine-targeted irreversible covalent NDM-1 inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Li R, Chen X, Zhou C, Dai QQ, Yang L. Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur J Med Chem 2022; 242:114677. [PMID: 35988449 DOI: 10.1016/j.ejmech.2022.114677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The effectiveness of β-lactam antibiotics is increasingly influenced by serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which can hydrolyze β-lactam antibiotics. The development of effective β-lactamase inhibitors is an important direction to extend use of β-lactam antibiotics. Although six SBL inhibitors have been approved for clinical use, but no MBL inhibitors or MBL/SBL dual-action inhibitors are available so far. Broad-spectrum targeting clinically relevant MBLs and SBLs is currently desirable, while it is not easy to achieve such a purpose owing to structural and mechanistic differences between MBLs and SBLs. In this review, we summarized recent advances of inhibitor chemotypes targeting MBLs and SBLs and their inhibition mechanisms, particularly including lead discovery and structural optimization strategies, with the aim to provide useful information for future efforts to develop new MBL and SBL inhibitors.
Collapse
Affiliation(s)
- Rong Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Xi Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Cong Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China.
| |
Collapse
|
11
|
Discovery of environment-sensitive fluorescent probes for detecting and inhibiting metallo-β-lactamase. Bioorg Chem 2022; 128:106048. [DOI: 10.1016/j.bioorg.2022.106048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
|
12
|
Custodio MM, Sparks J, Long TE. Disulfiram: A Repurposed Drug in Preclinical and Clinical Development for the Treatment of Infectious Diseases. ANTI-INFECTIVE AGENTS 2022; 20:e040122199856. [PMID: 35782673 PMCID: PMC9245773 DOI: 10.2174/2211352520666220104104747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 06/01/2023]
Abstract
This article reviews preclinical and clinical studies on the repurposed use of disulfiram (Antabuse) as an antimicrobial agent. Preclinical research covered on the alcohol sobriety aid includes uses as an anti-MRSA agent, a carbapenamase inhibitor, antifungal drug for candidiasis, and treatment for parasitic diseases due to protozoa (e.g., giardiasis, leishmaniasis, malaria) and helminthes (e.g., schistosomiasis, trichuriasis). Past, current, and pending clinical studies on disulfiram as a post-Lyme disease syndrome (PTLDS) therapy, an HIV latency reversal agent, and intervention for COVID-19 infections are also reviewed..
Collapse
Affiliation(s)
- Marco M. Custodio
- Chesapeake Regional Medical Center, 736 Battlefield Blvd. N Chesapeake, VA 23320, USA
| | - Jennifer Sparks
- Department of Pharmacy Practice, Administration and Research, Marshall University School of Pharmacy, One John Marshall Drive, Huntington WV 24755-0001, USA
| | - Timothy E. Long
- Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, One John Marshall, Drive Huntington WV 24755-0001, USA
| |
Collapse
|
13
|
Tarín-Pelló A, Suay-García B, Pérez-Gracia MT. Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev Anti Infect Ther 2022; 20:1095-1108. [PMID: 35576494 DOI: 10.1080/14787210.2022.2078308] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Antibiotic resistance is one of the biggest public health threats worldwide. Currently, antibiotic-resistant bacteria kill 700,000 people every year. These data represent the near future in which we find ourselves, a "post-antibiotic era" where the identification and development of new treatments are key. This review is focused on the current and emerging antimicrobial therapies which can solve this global threat. AREAS COVERED Through a literature search using databases such as Medline and Web of Science, and search engines such as Google Scholar, different antimicrobial therapies were analyzed, including pathogen-oriented therapy, phagotherapy, microbiota and antivirulent therapy. Additionally, the development pathways of new antibiotics were described, emphasizing on the potential advantages that the combination of a drug repurposing strategy with the application of mathematical prediction models could bring to solve the problem of AMRs. EXPERT OPINION This review offers several starting points to solve a single problem: reducing the number of AMR. The data suggest that the strategies described could provide many benefits to improve antimicrobial treatments. However, the development of new antimicrobials remains necessary. Drug repurposing, with the application of mathematical prediction models, is considered to be of interest due to its rapid and effective potential to increase the current therapeutic arsenal.
Collapse
Affiliation(s)
- Antonio Tarín-Pelló
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud
| | - Beatriz Suay-García
- ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Santiago Ramón y Cajal, 46115 Alfara del Patriarca, Valencia, Spain
| | - María-Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud
| |
Collapse
|
14
|
The development of New Delhi metallo-β-lactamase-1 inhibitors since 2018. Microbiol Res 2022; 261:127079. [DOI: 10.1016/j.micres.2022.127079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
|
15
|
Dubey V, Devnath K, Gupta VK, Kalyan G, Singh M, Kothari A, Omar BJ, Pathania R. Disulfiram enhances meropenem activity against NDM- and IMP-producing carbapenem-resistant Acinetobacter baumannii infections. J Antimicrob Chemother 2022; 77:1313-1323. [PMID: 35199158 DOI: 10.1093/jac/dkac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/02/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To evaluate the in vitro and in vivo efficacy of the FDA-approved drug disulfiram in combination with meropenem against MBL-expressing carbapenem-resistant Acinetobacter baumannii. METHODS Chequerboard and antibiotic resistance reversal analysis were performed using 25 clinical isolates producing different MBLs. Three representative strains harbouring NDM, IMP or non-MBL genes were subjected to a time-kill assay to further evaluate this synergistic interaction. Dose-dependent inhibition by disulfiram was assessed to determine IC50 for NDM-1, IMP-7, VIM-2 and KPC-2. Further, to test the efficacy of meropenem monotherapy and meropenem in combination with disulfiram against NDM- and IMP-harbouring A. baumannii, an experimental model of systemic infection and pneumonia was developed using BALB/c female mice. RESULTS Chequerboard and antibiotic reversal assay displayed a synergistic interaction against MBL-expressing A. baumannii strains with 4- to 32-fold reduction in MICs of meropenem. In time-kill analysis, meropenem and disulfiram exhibited synergy against NDM- and IMP-producing carbapenem-resistant A. baumannii (CRAb) isolates. In vitro dose-dependent inhibition analysis showed that disulfiram inhibits NDM-1 and IMP-7 with IC50 values of 1.5 ± 0.6 and 16.25 ± 1.6 μM, respectively, with slight or no inhibition of VIM-2 (<20%) and KPC-2. The combination performed better in the clearance of bacterial load from the liver and spleen of mice infected with IMP-expressing CRAb. In the pneumonia model, the combination significantly decreased the bacterial burden of NDM producers compared with monotherapy. CONCLUSIONS These results strongly suggest that the combination of disulfiram and meropenem represents an effective treatment option for NDM- and IMP-associated CRAb infections.
Collapse
Affiliation(s)
- Vineet Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kuldip Devnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Vivek K Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Gazal Kalyan
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences Rishikesh, Rishikesh 249201, India
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences Rishikesh, Rishikesh 249201, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
16
|
Chen C, Oelschlaeger P, Wang D, Xu H, Wang Q, Wang C, Zhao A, Yang KW. Structure and Mechanism-Guided Design of Dual Serine/Metallo-Carbapenemase Inhibitors. J Med Chem 2022; 65:5954-5974. [PMID: 35420040 DOI: 10.1021/acs.jmedchem.2c00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Serine/metallo-carbapenemase-coproducing pathogens, often referred to as "superbugs", are a significant clinical problem. They hydrolyze nearly all available β-lactam antibiotics, especially carbapenems considered as last-resort antibiotics, seriously endangering efficacious antibacterial treatment. Despite the continuous global spread of carbapenem resistance, no dual-action inhibitors are available in therapy. This Perspective is the first systematic investigation of all chemotypes, modes of inhibition, and crystal structures of dual serine/metallo-carbapenemase inhibitors. An overview of the key strategy for designing dual serine/metallo-carbapenemase inhibitors and their mechanism of action is provided, as guiding rules for the development of clinically available dual inhibitors, coadministrated with carbapenems, to overcome the carbapenem resistance issue.
Collapse
Affiliation(s)
- Cheng Chen
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona 91766, California, United States
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310030, P. R. China
| | - Qian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Chinese Medicine, Jinshui District 450046, Zhengzhou, P. R. China
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
17
|
A systematic review of disulfiram as an antibacterial agent: What is the evidence? Int J Antimicrob Agents 2022; 59:106578. [DOI: 10.1016/j.ijantimicag.2022.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Accepted: 03/20/2022] [Indexed: 11/18/2022]
|
18
|
Stereochemically altered cephalosporins as potent inhibitors of New Delhi metallo-β-lactamases. Eur J Med Chem 2022; 232:114174. [DOI: 10.1016/j.ejmech.2022.114174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/12/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
|
19
|
Huang J, Wei S, Peng Z, Xiao Z, Yang Y, Liu J, Zhang B, Li W. Disulfiram attenuates lipopolysaccharide-induced acute kidney injury by suppressing oxidative stress and NLRP3 inflammasome activation in mice. J Pharm Pharmacol 2021; 74:259-267. [PMID: 34923585 DOI: 10.1093/jpp/rgab171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Disulfiram (DSF), an old drug for treating chronic alcohol addiction, has been reported to exhibit widely pharmacological actions. This study aimed to explore the protective effect of DSF on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). METHODS C57BL/6J mice were treated with 15 mg/kg LPS (i.p.) with or without DSF pre-treatment (i.p.). The histopathological analysis was conducted by H&E staining and TUNEL kit assay. An automatic biochemical analyser was used to determine the serum creatinine and blood urea nitrogen (BUN). Expressions of 8-OHdG, NLRP3 and IL-1β in the kidney tissues were observed by IHC staining. The protein expressions of β-actin, Bax, Bcl-2, NLRP3, caspase-1 (p20), pro-IL-1β and IL-1β were analysed by western blot. KEY FINDINGS DSF attenuated the histopathologic deterioration of the kidney and inhibited the elevation of creatinine and BUN levels in mice. DSF inhibited LPS-induced cell apoptosis. Moreover, DSF treatment reversed the LPS-induced excessive oxidative stress. The NLRP3 inflammasome activation induced by the LPS, as indicated by up-regulation of NLRP3 expression, cleaved caspase-1 (p20) and IL-1β, was also suppressed by DSF. CONCLUSIONS The study here shows that DSF protects against the AKI induced by LPS at least partially via inhibiting oxidative stress and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Zhenyu Peng
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zijun Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Chen C, Yang KW, Zhai L, Ding HH, Chigan JZ. Dithiocarbamates combined with copper for revitalizing meropenem efficacy against NDM-1-producing Carbapenem-resistant Enterobacteriaceae. Bioorg Chem 2021; 118:105474. [PMID: 34794102 DOI: 10.1016/j.bioorg.2021.105474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/06/2023]
Abstract
The worldwide prevalence of NDM-1-producing Gram-negative pathogens has drastically undermined the clinical efficacy of carbapenems, prompting a need to devise an effective strategy to preserve their clinical value. Here we constructed a focused compound library of dithiocarbamates and systematically evaluated their potential synergistic antibacterial activities combined with copper. SA09-Cu exhibited excellent inhibition against a series of clinical NDM-1-producing carbapenem-resistant Enterobacteriaceae (CRE) in restoring meropenem effect, and slowed down the development of carbapenem resistance. Enzymatic kinetic and isothermal titration calorimetry studies demonstrated that SA09-Cu was a noncompetitive NDM-1 inhibitor. The electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) revealed a novel inhibition mechanism, which is that SA09-Cu could convert NDM-1 into an inactive state by oxidizing the Zn(II)-thiolate site of the enzyme. Importantly, SA09-Cu showed a unique redox tuning ability, and avoided to be reduced by intracellular thiols of bacteria. In vivo experiments indicated that SA09 combined with CuGlu could effectively potentiate MER's effect against NDM-1-producing E. coli (EC23) in the murine infection model. This study provides a highly promising scaffold in developing novel inhibitors to combat NDM-1-producing CREs.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, PR China; College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, PR China
| | - Le Zhai
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, Shaanxi Province, PR China
| | - Huan-Huan Ding
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, PR China
| | - Jia-Zhu Chigan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, PR China
| |
Collapse
|
21
|
Copper Dithiocarbamates: Coordination Chemistry and Applications in Materials Science, Biosciences and Beyond. INORGANICS 2021. [DOI: 10.3390/inorganics9090070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance in biology and medicine, especially as anticancer agents and applications in materials science as a single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II) and Cu(III) and show a rich and diverse coordination chemistry. Homoleptic [Cu(S2CNR2)2] are most common, being known for hundreds of substituents. All contain a Cu(II) centre, being either monomeric (distorted square planar) or dimeric (distorted trigonal bipyramidal) in the solid state, the latter being held together by intermolecular C···S interactions. Their d9 electronic configuration renders them paramagnetic and thus readily detected by electron paramagnetic resonance (EPR) spectroscopy. Reaction with a range of oxidants affords d8 Cu(III) complexes, [Cu(S2CNR2)2][X], in which copper remains in a square-planar geometry, but Cu–S bonds shorten by ca. 0.1 Å. These show a wide range of different structural motifs in the solid-state, varying with changes in anion and dithiocarbamate substituents. Cu(I) complexes, [Cu(S2CNR2)2]−, are (briefly) accessible in an electrochemical cell, and the only stable example is recently reported [Cu(S2CNH2)2][NH4]·H2O. Others readily lose a dithiocarbamate and the d10 centres can either be trapped with other coordinating ligands, especially phosphines, or form clusters with tetrahedral [Cu(μ3-S2CNR2)]4 being most common. Over the past decade, a wide range of Cu(I) dithiocarbamate clusters have been prepared and structurally characterised with nuclearities of 3–28, especially exciting being those with interstitial hydride and/or acetylide co-ligands. A range of mixed-valence Cu(I)–Cu(II) and Cu(II)–Cu(III) complexes are known, many of which show novel physical properties, and one Cu(I)–Cu(II)–Cu(III) species has been reported. Copper dithiocarbamates have been widely used as SSPs to nanoscale copper sulfides, allowing control over the phase, particle size and morphology of nanomaterials, and thus giving access to materials with tuneable physical properties. The identification of copper in a range of neurological diseases and the use of disulfiram as a drug for over 50 years makes understanding of the biological formation and action of [Cu(S2CNEt2)2] especially important. Furthermore, the finding that it and related Cu(II) dithiocarbamates are active anticancer agents has pushed them to the fore in studies of metal-based biomedicines.
Collapse
|
22
|
Nagulapalli Venkata KC, Ellebrecht M, Tripathi SK. Efforts towards the inhibitor design for New Delhi metallo-beta-lactamase (NDM-1). Eur J Med Chem 2021; 225:113747. [PMID: 34391033 DOI: 10.1016/j.ejmech.2021.113747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Antimicrobial stewardship is imperative when treating bacterial infections because the misuse and overuse of antibiotics have caused pathogens to develop life-threatening resistance mechanisms. The New Delhi metallo-beta-lactamase (NDM-1) is one of many enzymes that enable bacterial resistance. NDM-1 is a more recently discovered beta-lactamase with the ability to inactivate a wide range of beta-lactam antibiotics. Multiple NDM-1 inhibitors have been designed and tested; however, due to the complexity of the NDM-1 active site, there is currently no inhibitor on the market. Consequently, an infection caused by bacteria possessing the gene for the NDM-1 enzyme is a serious and potentially fatal complication. An abundance of research has been invested over the past decade in search of an NDM-1 inhibitor. This review aims to summarize various NDM-1 inhibitor designs that have been developed in recent years.
Collapse
Affiliation(s)
| | - Morgan Ellebrecht
- St. Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis, MO, 63110, USA
| | - Siddharth K Tripathi
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
23
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
24
|
Abstract
Bacterial infection remains a worldwide problem that requires urgent addressing. Overuse and poor disposal of antibacterial agents abet the emergence of bacterial resistance mechanisms. There is a clear need for new approaches for the development of antibacterial therapeutics. Herein, the antibacterial potential of molecules based on dithiocarbamate anions, of general formula R(R’)NCS2(−), and metal salts of transition metals and main group elements, is summarized. Preclinical studies show a broad range of antibacterial potential, and these investigations are supported by appraisals of possible biological targets and mechanisms of action to guide chemical syntheses. This bibliographic review of the literature points to the exciting potential of dithiocarbamate-based therapeutics in the crucial battle against bacteria. Additionally, included in this overview, for the sake of completeness, is mention of the far fewer studies on the antifungal potential of dithiocarbamates and even less work conducted on antiparasitic behavior.
Collapse
|
25
|
Li JQ, Gao H, Zhai L, Sun LY, Chen C, Chigan JZ, Ding HH, Yang KW. Dipyridyl-substituted thiosemicarbazone as a potent broad-spectrum inhibitor of metallo-β-lactamases. Bioorg Med Chem 2021; 38:116128. [PMID: 33862468 DOI: 10.1016/j.bmc.2021.116128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
To combat the superbug infection caused by metallo-β-lactamases (MβLs), a dipyridyl-substituted thiosemicarbazone (DpC), was identified to be the broad-spectrum inhibitor of MβLs (NDM-1, VIM-2, IMP-1, ImiS, L1), with an IC50 value in the range of 0.021-1.08 µM. It reversibly and competitively inhibited NDM-1 with a Ki value of 10.2 nM. DpC showed broad-spectrum antibacterial effect on clinical isolate K. pneumonia, CRE, VRE, CRPA and MRSA, with MIC value ranged from 16 to 32 µg/mL, and exhibited synergistic antibacterial effect with meropenem on MβLs-producing bacteria, resulting in a 2-16-, 2-8-, and 8-fold reduction in MIC of meropenem against EC-MβLs, EC01-EC24, K. pneumonia, respectively. Moreover, mice experiments showed that DpC also had synergistic antibacterial action with meropenem. In this work, DpC was identified to be a potent scaffold for the development of broad-spectrum inhibitors of MβLs.
Collapse
Affiliation(s)
- Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Le Zhai
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 72101, Shaanxi Province, PR China
| | - Le-Yun Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Zhu Chigan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Huan-Huan Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
26
|
Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics 2021; 11:4910-4928. [PMID: 33754035 PMCID: PMC7978324 DOI: 10.7150/thno.56205] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been a global health challenge that threatens our ability to control and treat life-threatening bacterial infections. Despite ongoing efforts to identify new drugs or alternatives to antibiotics, no new classes of antibiotic or their alternatives have been clinically approved in the last three decades. A combination of antibiotics and non-antibiotic compounds that could inhibit bacterial resistance determinants or enhance antibiotic activity offers a sustainable and effective strategy to confront multidrug-resistant bacteria. In this review, we provide a brief overview of the co-evolution of antibiotic discovery and the development of bacterial resistance. We summarize drug-drug interactions and uncover the art of repurposing non-antibiotic drugs as potential antibiotic adjuvants, including discussing classification and mechanisms of action, as well as reporting novel screening platforms. A pathogen-by-pathogen approach is then proposed to highlight the critical value of drug repurposing and its therapeutic potential. Finally, general advantages, challenges and development trends of drug combination strategy are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
27
|
Jin WB, Xu C, Qi XL, Zeng P, Gao W, Lai KH, Chiou J, Chan EWC, Leung YC, Chan TH, Wong KY, Chen S, Chan KF. Synthesis of 1,3,4-trisubstituted pyrrolidines as meropenem adjuvants targeting New Delhi metallo-β-lactamase. NEW J CHEM 2021. [DOI: 10.1039/d0nj06090a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A promising NDM-1 inhibitor was discovered by the construction of pyrrolidine library via boric acid-catalyzed 1,3-dipolar cycloaddition and cell-based screens.
Collapse
|
28
|
Yang Y, Guo Y, Zhou Y, Gao Y, Wang X, Wang J, Niu X. Discovery of a Novel Natural Allosteric Inhibitor That Targets NDM-1 Against Escherichia coli. Front Pharmacol 2020; 11:581001. [PMID: 33123013 PMCID: PMC7566295 DOI: 10.3389/fphar.2020.581001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022] Open
Abstract
At present, the resistance of New Delhi metallo-β-lactamase-1 (NDM-1) to carbapenems and cephalosporins, one of the mechanisms of bacterial resistance against β-lactam antibiotics, poses a threat to human health. In this work, based on the virtual ligand screen method, we found that carnosic acid (CA), a natural compound, exhibited a significant inhibitory effect against NDM-1 (IC50 = 27.07 μM). Although carnosic acid did not display direct antibacterial activity, the combination of carnosic acid and meropenem still showed bactericidal activity after the loss of bactericidal effect of meropenem. The experimental results showed that carnosic acid can enhance the antibacterial activity of meropenem against Escherichia coli ZC-YN3. To explore the inhibitory mechanism of carnosic acid against NDM-1, we performed the molecular dynamics simulation and binding energy calculation for the NDM-1-CA complex system. Notably, the 3D structure of the complex obtained from molecular modeling indicates that the binding region of carnosic acid with NDM-1 was not situated in the active region of protein. Due to binding to the allosteric pocket of carnosic acid, the active region conformation of NDM-1 was observed to have been altered. The distance from the active center of the NDM-1-CA complex was larger than that of the free protein, leading to loss of activity. Then, the mutation experiments showed that carnosic acid had lower inhibitory activity against mutated protein than wild-type proteins. Fluorescence experiments verified the results reported above. Thus, our data indicate that carnosic acid is a potential NDM-1 inhibitor and is a promising drug for the treatment of NDM-1 producing pathogens.
Collapse
Affiliation(s)
- Yanan Yang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yan Guo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
29
|
Structure-based design of covalent inhibitors targeting metallo-β-lactamases. Eur J Med Chem 2020; 203:112573. [DOI: 10.1016/j.ejmech.2020.112573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 01/21/2023]
|
30
|
Chen C, Yang K. Ruthenium complexes as prospective inhibitors of metallo-β-lactamases to reverse carbapenem resistance. Dalton Trans 2020; 49:14099-14105. [PMID: 32996954 DOI: 10.1039/d0dt02430a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The widespread prevalence of metallo-β-lactamase (MβL)-mediated pathogens has seriously caused a loss of efficacy of carbapenem antibacterials, the last resort for the treatment of severe infectious diseases. The development of effective MβL inhibitors is an ideal alternative to restore the efficacy of carbapenems. Here we report that Ru complexes can irreversibly inhibit clinically relevant B1 subclass MβLs (NDM-1, IMP-1 and VIM-2) and potentiate meropenem efficacy against MβL-expressing bacteria in vitro and in a mice infection model. The Cys208 residue at the Zn(ii)-binding site and Met67 residue at the β-hairpin loop of an enzyme active pocket are critical for Ru complexes to inhibit NDM-1, which was verified by enzyme kinetics, thermodynamics, NDM-1-C208A mutation and MALDI-TOF-MS analysis. This study will undoubtedly aid efforts to develop metal-based MβL inhibitors in combination with carbapenems to deal with the clinical crisis of carbapenem-resistant E. coli harboring MβLs.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | | |
Collapse
|
31
|
New Delhi metallo-β-lactamase-1 inhibitors for combating antibiotic drug resistance: recent developments. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02580-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Cui DY, Yang Y, Bai MM, Han JX, Wang CC, Kong HT, Shen BY, Yan DC, Xiao CL, Liu YS, Zhang E. Systematic research of H 2dedpa derivatives as potent inhibitors of New Delhi Metallo-β-lactamase-1. Bioorg Chem 2020; 101:103965. [PMID: 32485471 DOI: 10.1016/j.bioorg.2020.103965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022]
Abstract
New Delhi Metallo-β-lactamase-1 (NDM-1), a Zn (II)-dependent enzyme, can catalyze the hydrolysis of almost all β-lactam antibiotics including carbapenems, resulting in bacterial antibiotic resistance, which threatens public health globally. Based on our finding that H2dedpa is as an efficient NDM-1 inhibitor, a series of H2dedpa derivatives was systematically prepared. These compounds exhibited significant activity against NDM-1, with IC50 values 0.06-0.94 μM. In vitro, compounds 6k and 6n could restore the activity of meropenem against Klebsiella pneumoniae, Escherichia coli and Proteus mirabilis possessing either NDM or IMP. In particular, the activity of meropenem against E. coli producing NDM-4 could be improved up to 5333 times when these two compounds were used. Time-kill cell-based assays showed that 99.9% of P. mirabilis were killed when treated with meropenem in combination with compound 6k or 6n. Furthermore, compounds 6k and 6n were nonhemolytic (HC50 > 1280 μg/mL) and showed low toxicity toward mammalian (HeLa) cells. Mechanistic studies indicated that compounds 6k and 6n inhibit NDM-1 by chelating the Zn2+ ion of the enzyme.
Collapse
Affiliation(s)
- De-Yun Cui
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi Yang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng-Meng Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiang-Xue Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Cong-Cong Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hong-Tao Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Bo-Yuan Shen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Da-Chao Yan
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chun-Ling Xiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi-Shuang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China.
| |
Collapse
|