1
|
Yang J, Wu S, Chu YL, Hu M, Li JH. Iron-Catalyzed Three-Component Reactions of Cyclopropanols with Alkenes and N-Heteroarenes via Ring-Opening and C-H Functionalization. J Org Chem 2025; 90:6871-6880. [PMID: 40361297 DOI: 10.1021/acs.joc.5c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
An iron-catalyzed ring-opening multicomponent reaction of cyclopropyl alcohols with alkenes and N-heteroarenes involving aryl C(sp2)-H functionalization was developed. This protocol facilitates the regioselective introduction of both the β-carbonyl moiety and an N-heteroarene group across the C═C bond of the alkene, thus allowing a straightforward, efficient, and facile access to 5-heteroarene ketones. In this process, this strategy relies on β-carbonyl alkyl radical formation from the ring-opening of cyclopropyl alcohols, addition across C═C bonds, and heteroaryl C(sp2)-H functionalization cascades. This general approach displays excellent selectivity control and broad functional-group tolerance.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuang Wu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan-Lin Chu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ming Hu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
2
|
Vishwakarma RK, Sen R, Deshwal S, Vaitla J. Regioselective Synthesis of N-Aryl Pyrazoles from Alkenyl Sulfoxonium Ylides and Aryl Diazonium Salts. J Org Chem 2024; 89:18535-18549. [PMID: 39620635 DOI: 10.1021/acs.joc.4c02484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A convenient and practical method has been developed for synthesizing various N-aryl pyrazoles from vinyl sulfoxonium ylides and diazonium salts. When using 1,3-disubstituted vinyl sulfoxonium ylides, the reaction selectively yields 1,3,5-trisubstituted pyrazoles. On the other hand, employing 2,3-disubstituted vinyl sulfoxonium ylides results in the formation of 1,3,4-trisubstituted pyrazoles. The reaction proceeds through the novel aryl diazene-derived vinyl sulfoxonium ylide. Furthermore, this method efficiently produces pyrazoles from aniline derivatives in a one-pot transformation. The reaction takes place under transition metal-free, mild conditions using easily accessible starting materials, making it a practical approach for generating pyrazoles in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Ramesh Kumar Vishwakarma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Raju Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shalu Deshwal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Janakiram Vaitla
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Xu Z, Zhou M, Feng Y, Han Z, Li Y, Yang G, Wang X, Zhang K, Liu S. Fe(III)-Triggered Radical Arylation of Arene Moieties from Cyclopropanols to Construct Dibenzocyclohepta/octanones: Synthesis of N-Acetylcolchinol- O-methyl ether. Org Lett 2024; 26:6950-6954. [PMID: 38980313 DOI: 10.1021/acs.orglett.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tricyclic 6-7-6 and 6-8-6 carbon ring systems are present in numerous biologically active natural molecules. However, simple and efficient synthetic approaches to these scaffolds remain challenging. Herein, we report a versatile strategy for constructing these ring systems via Fe(NO3)3-triggered radical arylation of arenes starting from cyclopropanols. This synthetic utility has been demonstrated in the synthesis of the natural product N-acetylcolchinol-O-methyl ether.
Collapse
Affiliation(s)
- Zelin Xu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Meichen Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuer Feng
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziyu Han
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Yaoyao Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Xin Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
4
|
Hu J, Liu J, Cui W, Zheng L, Wang R, Liu ZQ, Pu S. Rh(III)-catalyzed [4 + 1] annulation of 1-arylindazolones with alkynyl cyclobutanols: access to indazolo[1,2- a]indazolones. Org Biomol Chem 2024; 22:6500-6505. [PMID: 39101292 DOI: 10.1039/d4ob01067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
A convenient and efficient synthesis of structurally diverse indazolo[1,2-a]indazolones via a Rh(III)-catalyzed [4 + 1] annulation of 1-arylindazolones with alkynyl cyclobutanols has been achieved by combining C-H and C-C bond cleavage. This cascade reaction features readily available starting materials, good functional group tolerance, broad substrate scope, and excellent atom-economy.
Collapse
Affiliation(s)
- Jiang Hu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China.
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Wenwen Cui
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Renjie Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, P. R. China
| |
Collapse
|
5
|
Ke S, Jia Y, Tong Y, Luo W, Wu S, Jiang X, Li Y. Radical N 2-Retention Cyclizations of Aryl Diazoniums: Access to 7/8/9-Membered Heterocycles. Org Lett 2024; 26:3622-3627. [PMID: 38659130 DOI: 10.1021/acs.orglett.4c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We report herein a modular approach to synthesizing diverse functionalized 7/8/9-membered poly-N-containing heterocycles via oxidative radical N2-retention cyclizations of allylic aryl diazonium salts using CF3SO2Na as a CF3 radical source. A range of trifluoromethylated benzotriazepines, benzotriazocines, and benzotriazonines were obtained in moderate to good yields. This transition-metal-free protocol demonstrates atom economy, safe conditions, broad functional group tolerance, and availability of readily accessible reagents.
Collapse
Affiliation(s)
- Sen Ke
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yagang Jia
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Ye Tong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Wencheng Luo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Shufeng Wu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xiangwen Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
6
|
Hernández-Ibáñez S, Ortuño JF, Sirvent A, Nájera C, Sansano JM, Yus M, Foubelo F. Synthesis of Vicinal anti-Amino Alcohols from N- tert-Butanesulfinyl Aldimines and Cyclopropanols. J Org Chem 2024; 89:6193-6204. [PMID: 38613513 PMCID: PMC11077494 DOI: 10.1021/acs.joc.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The stereoselective synthesis of vicinal amino alcohols derivatives from 1-substituted cyclopropanols and chiral N-tert-butanesulfinyl imines is described. Cyclopropanols are easily prepared from carboxylic esters upon reaction with ethylmagnesium bromide in the presence of titanium tetraisopropoxide and undergo carbon-carbon bond cleavage by means of diethylzinc to produce, upon base deprotonation, enolized zinc homoenolates, which react with chiral sulfinyl imines in a highly regio- and stereoselective manner.
Collapse
Affiliation(s)
- Sandra Hernández-Ibáñez
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Juan F. Ortuño
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Ana Sirvent
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - José Miguel Sansano
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Francisco Foubelo
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
7
|
Jha N, Guo W, Kong WY, Tantillo DJ, Kapur M. Regiocontrol via Electronics: Insights into a Ru-Catalyzed, Cu-Mediated Site-Selective Alkylation of Isoquinolones via a C-C Bond Activation of Cyclopropanols. Chemistry 2023; 29:e202301551. [PMID: 37403766 DOI: 10.1002/chem.202301551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
A site-selective C(3)/C(4)-alkylation of N-pyridylisoquinolones is achieved by employing C-C bond activation of cyclopropanols under Ru(II)-catalyzed/Cu(II)-mediated conditions. The regioisomeric ratios of the products follow directly from the electronic nature of the cyclopropanols and isoquinolones used, with electron-withdrawing groups yielding predominantly the C(3)-alkylated products, whereas the electron-donating groups primarily generate the C(4)-alkylated isomers. Density functional theory calculations and detailed mechanistic investigations suggest the simultaneous existence of the singlet and triplet pathways for the C(3)- and C(4)-product formation. Further transformations of the products evolve the utility of the methodology thereby yielding scaffolds of synthetic relevance.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, MP, India
| | - Wentao Guo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, MP, India
| |
Collapse
|
8
|
Liu S, Su X, Jiang D, Xiong H, Miao D, Fu L, Qiu H, He L, Zhang M. Arylation of Cyclopropanol with Pyrrole: Asymmetric Synthesis of Indolizidine 167B, Indolizidine 209D, and Monomorine I. Org Lett 2023; 25:2058-2062. [PMID: 36930849 DOI: 10.1021/acs.orglett.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
A Fe(NO3)3-mediated ring-opening arylation of cyclopropanol with the electron-rich pyrrole has been developed, which might proceed through oxidative radical ring opening of cyclopropanol followed by cyclization to the pyrrole motif and then aromatization. This method enables direct arylation of cyclopropanol without prefunctionalization and thus allows rapid access to a diverse array of chiral 5,6,7,8-tetrahydroindolizines from easily available chiral amino acid esters. The synthetic utility has been demonstrated by the asymmetric synthesis of alklaoids (-)-indolizidine 167B, (+)-indolizidine 209D, (+)-monomorine I, and a natural product analogue.
Collapse
Affiliation(s)
- Shuangwei Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaojiao Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hongbing Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Dingyin Miao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lin Fu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
9
|
Zou X, Zheng L, Zhuo X, Zhong Y, Wu Y, Yang B, He Q, Guo W. Copper-Promoted Aerobic Oxidative [3+2] Cycloaddition Reactions of N,N-Disubstituted Hydrazines with Alkynoates: Access to Substituted Pyrazoles. J Org Chem 2023; 88:2190-2206. [PMID: 36724037 DOI: 10.1021/acs.joc.2c02610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A copper-promoted aerobic oxidative [3+2] cycloaddition reaction for the synthesis of various substituted pyrazoles from N,N-disubstituted hydrazines with alkynoates in the presence of bases is developed. This work involves a direct C(sp3)-H functionalization and the formation of new C-C/C-N bonds. In this strategy, inexpensive and easily available Cu2O serves as the promoter and air acts as the green oxidant. The reaction exhibits the advantages of high atom and step economy, high regioselectivity, and easy operation.
Collapse
Affiliation(s)
- Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yumei Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yingying Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Beining Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Qifang He
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
10
|
Bhaskaran RP, Sreelekha MK, Babu BP. Metal‐free Synthesis of Trisubstituted Pyrazoles by the Reaction Between Hydrazones and Activated Olefins. ChemistrySelect 2022. [DOI: 10.1002/slct.202202773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Rasmi P. Bhaskaran
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore INDIA – 575025
| | - Mariswamy K. Sreelekha
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore INDIA – 575025
| | - Beneesh P. Babu
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore INDIA – 575025
| |
Collapse
|
11
|
Zhang X, Yang TM, Hu LM, Hu XH. Stereoselective Iron-Catalyzed Alkylation of Enamides with Cyclopropanols via Oxidative C(sp 2)–H Functionalization. Org Lett 2022; 24:8677-8682. [DOI: 10.1021/acs.orglett.2c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xing Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Ming Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lu-Min Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
12
|
Yang Z, Liu J, Li Y, Ding J, Zheng L, Liu ZQ. Three-Component Synthesis of Isoquinolone Derivatives via Rh(III)-Catalyzed C–H Activation and Tandem Annulation. J Org Chem 2022; 87:14809-14818. [DOI: 10.1021/acs.joc.2c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenke Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuting Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jiawen Ding
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Sun Y, Yang Z, Lu SN, Chen Z, Wu XF. Formal [4+1] Annulation of Azoalkenes with CF 3-Imidoyl Sulfoxonium Ylides and Dual Double Bond Isomerization Cascade: Synthesis of Trifluoromethyl-Containing Pyrazole Derivatives. Org Lett 2022; 24:6822-6827. [PMID: 36082936 DOI: 10.1021/acs.orglett.2c02746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A straightforward strategy for the metal-free construction of trifluoromethyl-containing pyrazole derivatives has been achieved from readily available α-halo hydrazones and CF3-imidoyl sulfoxonium ylides. The cascade transformation proceeds through the formal [4+1] cycloaddition followed by an unexpected dual double bond isomerization. The protocol features mild conditions, easy operation, excellent substrate compatibility, and good regioselectivity. The synthetic utility is demonstrated by scale-up reaction and further elaboration of the obtained pyrazole products.
Collapse
Affiliation(s)
- Yue Sun
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zuguang Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shu-Ning Lu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
14
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Jiang J, Liu J, Yang Z, Zheng J, Tian X, Zheng L, Liu ZQ. Rhodium(III)-catalyzed oxidative annulation of isoquinolones with allyl alcohols: synthesis of isoindolo[2,1- b]isoquinolin-5(7 H)-ones. Org Biomol Chem 2022; 20:339-344. [PMID: 34908095 DOI: 10.1039/d1ob02305e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient rhodium(III)-catalyzed direct C-H oxidative annulation of isoquinolones with allyl alcohols as C1 synthons has been successfully developed. This protocol enables the straightforward synthesis of structurally diverse isoindolo[2,1-b]isoquinolin-5(7H)-ones with high atom economy, tolerates a broad spectrum of functionalities, and is applicable to one-pot operation from readily available N-methoxybenzamides.
Collapse
Affiliation(s)
- Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jieying Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Xin Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
16
|
Vellakkaran M, Kim T, Hong S. Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022; 61:e202113658. [PMID: 34734455 DOI: 10.1002/anie.202113658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Collapse
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
17
|
Vellakkaran M, Kim T, Hong S. Visible‐Light‐Induced C4‐Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
18
|
Jiang S, Nan N, He J, Guo J, Qin J, Xie Y, Ouyang X, Song R. Recent Progress in Aryl Radical-Mediated Cyclization of Unsaturated Bonds Based on Aryldiazonium Salts. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202210013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Shirsath SR, Chandgude SM, Muthukrishnan M. Iron catalyzed tandem ring opening/1,6-conjugate addition of cyclopropanols with p-quinone methides: new access to γ,γ-diaryl ketones. Chem Commun (Camb) 2021; 57:13582-13585. [PMID: 34846388 DOI: 10.1039/d1cc05997a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An iron(III) catalyzed tandem ring opening/1,6-conjugate addition of cyclopropanols to p-quinone methides leading to γ,γ-diaryl ketones has been described. This catalytic protocol provides a novel and efficient method to access γ,γ-diaryl ketone derivatives in good to excellent yields with high functional group tolerance. Importantly, γ,γ-diaryl ketone can be further functionalized to give a versatile set of useful products.
Collapse
Affiliation(s)
- Sachin R Shirsath
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar M Chandgude
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - M Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Liu J, Yang Z, Jiang J, Zeng Q, Zheng L, Liu ZQ. Rhodium(III)-Catalyzed Oxidative Cyclization of Oxazolines with Cyclopropanols: Synthesis of Isoindolinones. Org Lett 2021; 23:5927-5931. [PMID: 34236196 DOI: 10.1021/acs.orglett.1c02031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The synthesis of C3-substituted isoindolin-1-ones from oxazolines and cyclopropanols has been achieved with oxazoline as a bifunctional nucleophilic directing group. The reaction proceeds by the cleavage of three chemical bonds and allows the formation of three new chemical bonds, a C-N bond, a C-C bond, and a C-O bond, in a single step.
Collapse
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qiaohai Zeng
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
21
|
Tavakkoli Z, Goljani H, Sepehrmansourie H, Nematollahi D, Zolfigol MA. New insight into the electrochemical reduction of different aryldiazonium salts in aqueous solutions. RSC Adv 2021; 11:25811-25815. [PMID: 35479439 PMCID: PMC9037153 DOI: 10.1039/d1ra04482f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Electrochemical reduction of different aryldiazonium salts in aqueous solution was studied in this work and it is shown that the aryldiazonium salts are converted to the corresponding aryl radical and aryl anion. The results of this research indicate that the reduction of aryldiazonium salts takes place in two single-electron steps. Our data show that when the substituted group on the phenyl ring is H, Cl, OH, NO2, OCH3 or SO3−, the corresponding diazonium salt shows poor adsorption characteristics, but when the substituted group is methyl, the corresponding diazonium salt shows strong adsorption characteristics. In the latter case, the voltammogram exhibits three cathodic peaks. In addition, the effect of various substitutions on the aryldiazonium reduction was studied by Hammett's method. The data are show that with increasing electron withdrawing capacity of the substituent, the reduction of corresponding diazonium salt becomes easier. Electrochemical reduction of different aryldiazonium salts in aqueous solution was studied. It is shown that the aryldiazonium salts are converted to the corresponding aryl radical and aryl anion.![]()
Collapse
Affiliation(s)
- Zahra Tavakkoli
- Faculty of Chemistry, Bu-Ali-Sina University Hamedan 65174 Iran
| | - Hamed Goljani
- Faculty of Chemistry, Bu-Ali-Sina University Hamedan 65174 Iran
| | | | | | | |
Collapse
|
22
|
Zhu J, Durham AC, Wang Y, Corcoran JC, Zuo XD, Geib SJ, Wang YM. Regiocontrolled Coupling of Alkynes and Dipolar Reagents: Iron-Mediated [3 + 2] Cycloadditions Revisited. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin C. Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James C. Corcoran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Dong Zuo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Steven J. Geib
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
23
|
Liu H, Lu J, Zhao X, Xu T. Ionic liquids immobilized on nanomaterials: An efficient strategy in catalytic reactions. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1936057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Haitao Liu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Jingjing Lu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Xiudan Zhao
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Tiejun Xu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| |
Collapse
|
24
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Shi X, Sosa Carrizo ED, Cordier M, Roger J, Pirio N, Hierso JC, Fleurat-Lessard P, Soulé JF, Doucet H. C-H Bond Arylation of Pyrazoles at the β-Position: General Conditions and Computational Elucidation for a High Regioselectivity. Chemistry 2021; 27:5546-5554. [PMID: 33624911 DOI: 10.1002/chem.202100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Direct arylation of most five-membered ring heterocycles are generally easily accessible and strongly favored at the α-position using classical palladium-catalysis. Conversely, regioselective functionalization of such heterocycles at the concurrent β-position remains currently very challenging. Herein, we report general conditions for regioselective direct arylation at the β-position of pyrazoles, while C-H α-position is free. By using aryl bromides as the aryl source and a judicious choice of solvent, the arylation reaction of variously N-substituted pyrazoles simply proceeds via β-C-H bond functionalization. The β-regioselectivity is promoted by a ligand-free palladium catalyst and a simple base without oxidant or further additive, and tolerates a variety of substituents on the bromoarene. DFT calculations revealed that a protic solvent such as 2-ethoxyethan-1-ol significantly enhances the acidity of the proton at β-position of the pyrazoles and thus favors this direct β-C-H bond arylation. This selective pyrazoles β-C-H bond arylation was successfully applied for the straightforward building of π-extended poly(hetero)aromatic structures via further Pd-catalyzed combined α-C-H intermolecular and intramolecular C-H bond arylation in an overall highly atom-economical process.
Collapse
Affiliation(s)
- Xinzhe Shi
- Univ Rennes, CNRS ISCR-UMR 6226, 35000, Rennes, France
| | - E Daiann Sosa Carrizo
- Université de Bourgogne, Institut de Chimie Moléculaire de, l'Université de Bourgogne, UMR CNRS 6302, Université, Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078, Dijon, France
| | - Marie Cordier
- Univ Rennes, CNRS ISCR-UMR 6226, 35000, Rennes, France
| | - Julien Roger
- Université de Bourgogne, Institut de Chimie Moléculaire de, l'Université de Bourgogne, UMR CNRS 6302, Université, Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078, Dijon, France
| | - Nadine Pirio
- Université de Bourgogne, Institut de Chimie Moléculaire de, l'Université de Bourgogne, UMR CNRS 6302, Université, Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078, Dijon, France
| | - Jean-Cyrille Hierso
- Université de Bourgogne, Institut de Chimie Moléculaire de, l'Université de Bourgogne, UMR CNRS 6302, Université, Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078, Dijon, France
| | - Paul Fleurat-Lessard
- Université de Bourgogne, Institut de Chimie Moléculaire de, l'Université de Bourgogne, UMR CNRS 6302, Université, Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078, Dijon, France
| | | | - Henri Doucet
- Univ Rennes, CNRS ISCR-UMR 6226, 35000, Rennes, France
| |
Collapse
|
26
|
Affiliation(s)
| | | | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
27
|
Sensing properties of Al- and Si-doped HBC nanostructures toward Gamma-butyrolactone drug: A density functional theory study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Xu W, Guo D, Ebadi AG, Toughani M, Vessally E. Transition-metal catalyzed carboxylation of organoboron compounds with CO2. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Huang W, Cheng Q, Ma D. Recent reports on magnetic nanoparticles supported metallic catalysts: Synthesis of heterocycles. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1884882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenquan Huang
- College of Mechanical and Automotive Engineering, Anhui Wenda University of Information Engineering, Hefei, P. R. China
| | - Qing Cheng
- Department of Computer and Information Engineering, Huainan Normal University, Huainan, P. R. China
| | - Dongsheng Ma
- College of Mechanical and Automotive Engineering, Anhui Wenda University of Information Engineering, Hefei, P. R. China
| |
Collapse
|
30
|
Liu J, Jiang J, Yang Z, Zeng Q, Zheng J, Zhang S, Zheng L, Zhang SS, Liu ZQ. Rhodium(III)-catalyzed oxidative alkylation of N-aryl-7-azaindoles with cyclopropanols. Org Biomol Chem 2021; 19:993-997. [PMID: 33443262 DOI: 10.1039/d0ob02323j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient Rh(iii)-catalyzed C-H oxidative alkylation of N-aryl-7-azaindoles with cyclopropanols by merging tandem C-H and C-C cleavage was developed. This transformation features mild reaction conditions, high regioselectivity, and excellent functional group compatibility. The resulting β-aryl ketone derivatives can be readily transformed into 7-azaindole-containing π-extended polycyclic heteroarenes.
Collapse
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Qiaohai Zeng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jieying Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Siying Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
31
|
Wang Z, Hu Y, Jin H, Liu Y, Zhou B. Nickel-Catalyzed Arylation/Alkenylation of tert-Cyclobutanols with Aryl/Alkenyl Triflates via a C -C Bond Cleavage. J Org Chem 2021; 86:466-474. [PMID: 33252235 DOI: 10.1021/acs.joc.0c02209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we first present a nickel-catalyzed arylation and alkenylation of tert-cyclobutanols with aryl/alkenyl triflates via a C-C bond cleavage. An array of γ-substituted ketones was obtained in moderate-to-good yields, thus featuring earth-abundant nickel catalysis, broad substrate scope, and simple reaction conditions. Preliminary mechanistic experiments indicated that β-carbon elimination pathways might be involved in the catalytic cycle.
Collapse
Affiliation(s)
- Zhen Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunkui Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
32
|
Zheng J, Chen L, Liu X, Xu W, Wang Y, He Q, Liu H, Ye M, Luo G, Chen Z. I
2
‐Catalyzed Intermolecular Cyclization to Synthesis of 3‐Acylated Indolizines. ChemistrySelect 2020. [DOI: 10.1002/slct.202003849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Linli Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaojuan Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Wenju Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Yan Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Qin He
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Hanqing Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Min Ye
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Guotian Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
33
|
Liu Z, Ebadi A, Toughani M, Mert N, Vessally E. Direct sulfonamidation of (hetero)aromatic C-H bonds with sulfonyl azides: a novel and efficient route to N-(hetero)aryl sulfonamides. RSC Adv 2020; 10:37299-37313. [PMID: 35521237 PMCID: PMC9057145 DOI: 10.1039/d0ra04255b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
N-Aryl sulfonamides belong to a highly important class of organosulfur compounds which are found in a number of FDA-approved drugs such as dofetilide, dronedarone, ibutilide, sotalol, sulfadiazine, sulfamethizole, vemurafenib, and many more. There is therefore continuing interest in the development of novel and convenient protocols for the preparation of these pharmaceutically important compounds. Recently, direct sulfonamidation of (hetero)aromatic C–H bonds with easily available sulfonyl azides has emerged as an attractive and powerful strategy to access N-(hetero)aryl sulfonamides where non-toxic nitrogen gas forms as the sole by-product. This review highlights recent advances and developments (2012–2020) in this fast growing research area with emphasis on the mechanistic features of the reactions. N-Aryl sulfonamides belong to a highly important class of organosulfur compounds which are found in a number of FDA-approved drugs such as dofetilide, dronedarone, ibutilide, sotalol, sulfadiazine, sulfamethizole, vemurafenib, and many more.![]()
Collapse
Affiliation(s)
- Zhi Liu
- School of Electrical and Automation Engineering, East China Jiaotong University Nanchang 330013 China
| | - Abdolghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University Jouybar Iran
| | - Mohsen Toughani
- Department of Fishery, Babol Branch, Islamic Azad University Babol Iran
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil 65080, Van Turkey
| | | |
Collapse
|
34
|
Liu X, Du D, Li S, Wang X, Xu C, Wang M. Defluorinative Ring‐Opening Indolylation of Siloxydifluorocyclopropanes: Controlled Synthesis of α‐Fluoro‐β‐Indolyl‐Propanones for Carbazole Construction. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaowei Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Dongxu Du
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Shuting Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Xin Wang
- First Hospital of Bethune Jilin University Changchun 130021 People's Republic of China
| | - Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| |
Collapse
|
35
|
Tian Y, Zhang F, Nie J, Cheung CW, Ma J. Metal‐free Decarboxylative Annulation of 2‐Aryl‐2‐isocyano‐acetates with Aryldiazonium Salts: General Access to 1,3‐Diaryl‐1,2,4‐triazoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu‐Ting Tian
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 People's Republic of China
| | - Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 People's Republic of China
| | - Jing Nie
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 People's Republic of China
| | - Chi Wai Cheung
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 People's Republic of China
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 People's Republic of China
| |
Collapse
|
36
|
Wang S, Liu X, Zhu D, Wang M. Copper-Catalyzed Ring-Opening Defluorinative Alkylation of Siloxydifluorocyclopropanes: Synthesis of γ-Fluoro-δ-Ketoesters and γ,δ-Diketonitriles. J Org Chem 2020; 85:12408-12417. [PMID: 32885655 DOI: 10.1021/acs.joc.0c01643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In view of the importance of both fluorinated synthons and homoenolate equivalents, synthetic application of difluorocyclopropanols is desired but remains challenging due to their thermodynamic instability. Herein, we use siloxydifluorocyclopropanes as difluorocyclopropanol precursors to carry out new Cu-catalyzed ring-opening defluorinative alkylation. With α-bromo carboxylic esters as coupling partners, the reaction affords γ-fluoro-δ-ketoesters via a CuI/CuII catalytic cycle. Interestingly, by the use of α-bromoamides, the ring-opening defluorinative alkylation is followed by an additional intramolecular C-N oxidative coupling to deliver a lactam intermediate, which further undergoes defluorination, hydrolysis, ring opening, and dehydration cascade via a CuI/CuII/CuIII catalytic pathway, leading to γ,δ-diketonitriles as the final products.
Collapse
Affiliation(s)
- Shifang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaowei Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dongsheng Zhu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
37
|
Cardinale L, Neumeier M, Majek M, Jacobi von Wangelin A. Aryl Pyrazoles from Photocatalytic Cycloadditions of Arenediazonium. Org Lett 2020; 22:7219-7224. [DOI: 10.1021/acs.orglett.0c02514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Luana Cardinale
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Michael Neumeier
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Michal Majek
- Department of Organic Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | | |
Collapse
|
38
|
Liu J, Jiang J, Zheng L, Liu Z. Recent Advances in the Synthesis of Nitrogen Heterocycles Using Arenediazonium Salts as Nitrogen Sources. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| |
Collapse
|
39
|
Feng FF, Li JK, Liu XY, Zhang FG, Cheung CW, Ma JA. General Synthesis of Tri-Carbo-Substituted N2-Aryl-1,2,3-triazoles via Cu-Catalyzed Annulation of Azirines with Aryldiazonium Salts. J Org Chem 2020; 85:10872-10883. [PMID: 32691600 DOI: 10.1021/acs.joc.0c01433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The general synthesis of fully substituted N2-aryl-1,2,3-triazoles is hitherto challenging compared with that of the N1-aryl counterparts. Herein, we describe a Cu-catalyzed annulation reaction of azirines and aryldiazonium salts. This regiospecific method allows access to a broad spectrum of tri-carbo N2-aryl-1,2,3-triazoles substituted with diverse aryl and alkyl moieties. Its utility is highlighted by the synthesis of several triazole precursors applicable in drug discovery, as well as novel chiral binaphthyl ligands bearing triazole moieties.
Collapse
Affiliation(s)
- Fang-Fang Feng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Jun-Kuan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Xuan-Yu Liu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| |
Collapse
|
40
|
Zhang F, Chen Z, Cheung CW, Ma J. Aryl Diazonium
Salt‐Triggered
Cyclization and Cycloaddition Reactions: Past, Present, and Future. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000270] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fa‐Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| | - Zhen Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| | - Jun‐An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| |
Collapse
|
41
|
Bhaskaran RP, Janardhanan JC, Babu BP. Metal‐Free Synthesis of Pyrazoles and Chromenopyrazoles from Hydrazones and Acetylenic Esters. ChemistrySelect 2020. [DOI: 10.1002/slct.202000719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rasmi P. Bhaskaran
- Department of ChemistryNational Institute of Technology Karnataka (NITK), Surathkal 575025 Mangalore
| | - Jith C. Janardhanan
- Department of Applied ChemistryCochin University of Science and Technology (CUSAT) Kochi 682022 INDIA
| | - Beneesh P. Babu
- Department of ChemistryNational Institute of Technology Karnataka (NITK), Surathkal 575025 Mangalore
| |
Collapse
|
42
|
Laktsevich-Iskryk MV, Varabyeva NA, Kazlova VV, Zhabinskii VN, Khripach VA, Hurski AL. Visible-Light-Promoted Catalytic Ring-Opening Isomerization of 1,2-Disubstituted Cyclopropanols to Linear Ketones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Nastassia A. Varabyeva
- Institute of Bioorganic Chemistry; National Academy of Sciences of Belarus; Kuprevich str. 5/2 220141 Minsk Belarus
| | - Volha V. Kazlova
- Institute of Bioorganic Chemistry; National Academy of Sciences of Belarus; Kuprevich str. 5/2 220141 Minsk Belarus
| | - Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry; National Academy of Sciences of Belarus; Kuprevich str. 5/2 220141 Minsk Belarus
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry; National Academy of Sciences of Belarus; Kuprevich str. 5/2 220141 Minsk Belarus
| | - Alaksiej L. Hurski
- Institute of Bioorganic Chemistry; National Academy of Sciences of Belarus; Kuprevich str. 5/2 220141 Minsk Belarus
| |
Collapse
|
43
|
Li SJ, Lan Y. Is Cu(iii) a necessary intermediate in Cu-mediated coupling reactions? A mechanistic point of view. Chem Commun (Camb) 2020; 56:6609-6619. [PMID: 32441282 DOI: 10.1039/d0cc01946a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The different pathways have been summarized to disclose the key intermediate in copper-mediated coupling reactions.
Collapse
Affiliation(s)
- Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- P. R. China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry
| |
Collapse
|