1
|
Nelson A, Papawassiliou W, Paul S, Hediger S, Hung I, Gan Z, Venkatesh A, Franks WTT, Smith ME, Gajan D, De Paëpe G, Bonhomme C, Laurencin D, Gervais C. Temperature-induced mobility in octacalcium phosphate impacts crystal symmetry: water dynamics studied by NMR crystallography. Faraday Discuss 2025; 255:451-482. [PMID: 39390961 PMCID: PMC11710991 DOI: 10.1039/d4fd00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Octacalcium phosphate (OCP, Ca8(PO4)4(HPO4)2·5H2O) is a notable calcium phosphate due to its biocompatibility, making it a widely studied material for bone substitution. It is known to be a precursor of bone mineral, but its role in biomineralisation remains unclear. While the structure of OCP has been the subject of thorough investigations (including using Rietveld refinements of X-ray diffraction data, and NMR crystallography studies), important questions regarding the symmetry and H-bonding network in the material remain. In this study, it is shown that OCP undergoes a lowering of symmetry below 200 K, evidenced by 1H, 17O, 31P and 43Ca solid-state NMR experiments. Using ab initio molecular-dynamics (MD) simulations and gauge including projected augmented wave (GIPAW) DFT calculations of NMR parameters, the presence of rapid motions of the water molecules in the crystal cell at room temperature is proved. This information leads to an improved description of the OCP structure at both low and ambient temperatures, and helps explain long-standing issues of symmetry. Remaining challenges related to the understanding of the structure of OCP are then discussed.
Collapse
Affiliation(s)
- Adam Nelson
- LCMCP, UMR 7574, Sorbonne Université, CNRS, Paris, France.
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Subhradip Paul
- IRIG, MEM, Univ. Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Sabine Hediger
- IRIG, MEM, Univ. Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Ivan Hung
- National High Magnetic Laboratory (NHMFL), Tallahassee, Florida, USA
| | - Zhehong Gan
- National High Magnetic Laboratory (NHMFL), Tallahassee, Florida, USA
| | - Amrit Venkatesh
- National High Magnetic Laboratory (NHMFL), Tallahassee, Florida, USA
| | | | - Mark E Smith
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Southampton, SO17 1BJ, UK
| | - David Gajan
- CRMN Lyon, UMR 5082, CNRS, ENS Lyon, Université Lyon 1, Villeurbanne, France
| | - Gaël De Paëpe
- IRIG, MEM, Univ. Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | | | | | | |
Collapse
|
2
|
Jiménez-Pérez A, Martínez-Alonso M, García-Tojal J. Hybrid Hydroxyapatite-Metal Complex Materials Derived from Amino Acids and Nucleobases. Molecules 2024; 29:4479. [PMID: 39339474 PMCID: PMC11434463 DOI: 10.3390/molecules29184479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Calcium phosphates (CaPs) and their substituted derivatives encompass a large number of compounds with a vast presence in nature that have aroused a great interest for decades. In particular, hydroxyapatite (HAp, Ca10(OH)2(PO4)6) is the most abundant CaP mineral and is significant in the biological world, at least in part due to being a major compound in bones and teeth. HAp exhibits excellent properties, such as safety, stability, hardness, biocompatibility, and osteoconductivity, among others. Even some of its drawbacks, such as its fragility, can be redirected thanks to another essential feature: its great versatility. This is based on the compound's tendency to undergo substitutions of its constituent ions and to incorporate or anchor new molecules on its surface and pores. Thus, its affinity for biomolecules makes it an optimal compound for multiple applications, mainly, but not only, in biological and biomedical fields. The present review provides a chemical and structural context to explain the affinity of HAp for biomolecules such as proteins and nucleic acids to generate hybrid materials. A size-dependent criterium of increasing complexity is applied, ranging from amino acids/nucleobases to the corresponding macromolecules. The incorporation of metal ions or metal complexes into these functionalized compounds is also discussed.
Collapse
Affiliation(s)
| | | | - Javier García-Tojal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.J.-P.); (M.M.-A.)
| |
Collapse
|
3
|
Shah FA. High-resolution Raman spectroscopy reveals compositional differences between pigmented incisor enamel and unpigmented molar enamel in Rattus norvegicus. Sci Rep 2023; 13:12301. [PMID: 37516744 PMCID: PMC10387050 DOI: 10.1038/s41598-023-38792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Dental enamel is a peculiar biological tissue devoid of any self-renewal capacity as opposed to bone. Thus, a thorough understanding of enamel composition is essential to develop novel strategies for dental enamel repair. While the mineral found in bone and dental enamel is generally viewed as the biologically-produced equivalent of hydroxy(l)apatite, the formation of these bioapatites is controlled by different organic matrix frameworks-mainly type-I collagen in bone and amelogenin in enamel. In lower vertebrates, such as rodents, two distinct types of enamel are produced. Iron-containing pigmented enamel protects the continuously growing incisor teeth while magnesium-rich unpigmented enamel covers the molar teeth. Using high-resolution Raman spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy, this work explores the differences in acid phosphate (HPO42-), carbonate (CO32-), hydroxyl (OH-), iron, and magnesium content of pigmented incisor enamel and unpigmented molar enamel of Sprague Dawley rats. Bundles of hydroxy(l)apatite nanowires comprise the enamel prisms, where prisms in pigmented enamel are wider and longer than those in unpigmented molars. In contrast to magnesium-rich unpigmented enamel, higher mineral crystallinity, and higher HPO42- and OH- levels are hallmark features of iron-rich pigmented enamel. Furthermore, the apparent absence of iron oxides or oxy(hydroxides) indicates that iron is introduced into the apatite lattice at the expense of calcium, albeit in amounts that do not alter the Raman signatures of the PO43- internal modes. Compositional idiosyncrasies of iron-rich pigmented and nominally iron-free unpigmented enamel offer new insights into enamel biomineralisation supporting the notion that, in rodents, ameloblast function differs significantly between the incisors and the molars.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Koskamp JA, Ruiz Hernandez SE, de Leeuw NH, Wolthers M. Recalibrating the calcium trap in amino acid carboxyl groups via classical molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:1220-1235. [PMID: 36524712 PMCID: PMC9811642 DOI: 10.1039/d2cp02879d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In order to use classical molecular dynamics to complement experiments accurately, it is important to use robust descriptions of the system. The interactions between biomolecules, like aspartic and glutamic acid, and dissolved ions are often studied using standard biomolecular force-fields, where the interactions between biomolecules and cations are often not parameterized explicitly. In this study, we have employed metadynamics simulations to investigate different interactions of Ca with aspartic and glutamic acid and constructed the free energy profiles of Ca2+-carboxylate association. Starting from a generally accepted, AMBER-based force field, the association was substantially over and under-estimated, depending on the choice of water model (TIP3P and SPC/fw, respectively). To rectify this discrepancy, we have replaced the default calcium parameters. Additionally, we modified the σij value in the hetero-atomic Lennard-Jones interaction by 0.5% to further improve the interaction between Ca and carboxylate, based on comparison with the experimentally determined association constant for Ca with the carboxylate group of L-aspartic acid. The corrected description retrieved the structural properties of the ion pair in agreement with the original biomolecule - Ca2+ interaction in AMBER, whilst also producing an association constant comparable to experimental observations. This refined force field was then used to investigate the interactions between amino acids, calcium and carbonate ions during biogenic and biomimetic calcium carbonate mineralisation.
Collapse
Affiliation(s)
- Janou A. Koskamp
- Department of Earth Sciences, Utrecht University3584 CB UtrechtThe Netherlands+31302535042
| | | | - Nora H. de Leeuw
- Department of Earth Sciences, Utrecht University3584 CB UtrechtThe Netherlands+31302535042,School of Chemistry, University of LeedsLeeds LS2 9JTUK
| | - Mariette Wolthers
- Department of Earth Sciences, Utrecht University3584 CB UtrechtThe Netherlands+31302535042
| |
Collapse
|
5
|
Seredin P, Goloshchapov D, Buylov N, Kashkarov V, Emelyanova A, Eremeev K, Ippolitov Y. Compositional Analysis of the Dental Biomimetic Hybrid Nanomaterials Based on Bioinspired Nonstoichiometric Hydroxyapatite with Small Deviations in the Carbonate Incorporation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4453. [PMID: 36558306 PMCID: PMC9783965 DOI: 10.3390/nano12244453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
In our paper, we discuss the results of a comprehensive structural-spectroscopic and microscopic analysis of non-stoichiometric nanocrystalline hydroxyapatite (CHAp) with low carbonate anion content and biomimetic hybrid nanomaterials produced on its basis. It was shown that hydroxyapatite nanocrystals synthesized by chemical precipitation and biogenic calcium source mimic the properties of biogenic apatite and also have a morphological organization of "core-shell" type. The "core" of the CHAp nanocrystal is characterized by an overabundance of calcium Ca/P~1.9. Thus "a shell" with thickness of ~3-5 nm is formed from intermediate apatite-like phases where the most probable are octocalcium phosphate, dicalcium phosphate dihydrate and tricalcium phosphate. The multimode model of the Raman profile of samples CHAp and biomimetic composites for spectral region 900-1100 cm-1 proposed in our work has allowed to allocate precise contribution of B-type carbonate substitution, taking into account the presence on a surface of "core" HAp nanocrystal of various third-party intermediate apatite-like phases. The calibration function constructed on the basis of the described model makes it possible to reliably determine small concentrations of carbonate in the structure of hydroxyapatite with the application of Raman express method of diagnostics. The results of our work can inspire researchers to study the processes of induced biomineralization in mineralized tissues of the human body, using non-destructive methods of control with simultaneous analysis of chemical bonding, as well as determining the role of impurity atoms in the functions exhibited by biotissue.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
- Scientific and Educational Center, Nanomaterials and Nanotechnologies, Ural Federal University, Lenin Ave 51, 620002 Yekaterinburg, Russia
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Nikita Buylov
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Anna Emelyanova
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Konstantin Eremeev
- Solid State Physics and Nanostructures Department, Voronezh State University, Universitetskaya Pl. 1, 394018 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya Ul. 11, 394006 Voronezh, Russia
| |
Collapse
|
6
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
7
|
Biomimetic Mineralization of Tooth Enamel Using Nanocrystalline Hydroxyapatite under Various Dental Surface Pretreatment Conditions. Biomimetics (Basel) 2022; 7:biomimetics7030111. [PMID: 35997431 PMCID: PMC9397024 DOI: 10.3390/biomimetics7030111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
In this report, we demonstrated the formation of a biomimetic mineralizing layer obtained on the surface of dental enamel (biotemplate) using bioinspired nanocrystalline carbonate-substituted calcium hydroxyapatite (ncHAp), whose physical and chemical properties are closest to the natural apatite dental matrix, together with a complex of polyfunctional organic and polar amino acids. Using a set of structural, spectroscopy, and advanced microscopy techniques, we confirmed the formation of a nanosized ncHAp-based mineralized layer, as well as studying its chemical, substructural, and morphological features by means of various methods for the pretreatment of dental enamel. The pretreatment of a biotemplate in an alkaline solution of Ca(OH)2 and an amino acid booster, together with the executed subsequent mineralization with ncHAp, led to the formation of a mineralized layer with homogeneous micromorphology and the preferential orientation of the ncHAp nanocrystals. It was shown that the homogeneous crystallization of hydroxyapatite on the biotemplate surface and binding of individual nanocrystals and agglomerates into a single complex by an amino acid booster resulted in an increase (~15%) in the nanohardness value in the enamel rods area, compared to that of healthy natural enamel. Obtaining a similar hierarchy and cleavage characteristics as natural enamel in the mineralized layer, taking into account the micromorphological features of dental tissue, is an urgent problem for future research.
Collapse
|
8
|
Seredin P, Goloshchapov D, Kashkarov V, Emelyanova A, Buylov N, Ippolitov Y, Prutskij T. Development of a Visualisation Approach for Analysing Incipient and Clinically Unrecorded Enamel Fissure Caries Using Laser-Induced Contrast Imaging, MicroRaman Spectroscopy and Biomimetic Composites: A Pilot Study. J Imaging 2022; 8:jimaging8050137. [PMID: 35621901 PMCID: PMC9142888 DOI: 10.3390/jimaging8050137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
This pilot study presents a practical approach to detecting and visualising the initial forms of caries that are not clinically registered. The use of a laser-induced contrast visualisation (LICV) technique was shown to provide detection of the originating caries based on the separation of emissions from sound tissue, areas with destroyed tissue and regions of bacterial invasion. Adding microRaman spectroscopy to the measuring system enables reliable detection of the transformation of the organic–mineral component in the dental tissue and the spread of bacterial microflora in the affected region. Further laboratory and clinical studies of the comprehensive use of LICV and microRaman spectroscopy enable data extension on the application of this approach for accurate determination of the boundaries in the changed dental tissue as a result of initial caries. The obtained data has the potential to develop an effective preventive medical diagnostic approach and as a result, further personalised medical treatment can be specified.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
- Scientific and Educational Center, Nanomaterials and Nanotechnologies, Ural Federal University, Mir Av., 620002 Yekaterinburg, Russia
- Correspondence:
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Anna Emelyanova
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Nikita Buylov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq.1, 394018 Voronezh, Russia; (D.G.); (V.K.); (A.E.); (N.B.)
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya St. 11, 394006 Voronezh, Russia;
| | - Tatiana Prutskij
- Sciences Institute, Autonomous University of Puebla (BUAP), Puebla 72570, Mexico;
| |
Collapse
|
9
|
Reynaud C, Thomas C, Costentin G. On the Comprehensive Precipitation of Hydroxyapatites Unraveled by a Combined Kinetic-Thermodynamic Approach. Inorg Chem 2022; 61:3296-3308. [PMID: 35143720 DOI: 10.1021/acs.inorgchem.1c03884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study combines experimental and theoretical approaches to investigate the competitive precipitation of calcium phosphates (CaPs) in aqueous solution in order to understand and control both the structural and textural properties of the synthesized hydroxyapatites (HAps). Some of the precipitation reactions were followed by in situ Raman spectroscopy or achieved under kinetically controlled conditions. The CaP precursors of HAps were identified as a function of the precipitation pH of the medium and the order of introduction of the precursor ions in the synthesis reactor. Their formation was rationalized by calculations based on a homogeneous nucleation model. Depending on the synthesis conditions, precipitation reaction pathways of HAps are proposed by bringing together the kinetic model developed in the present study and our previous thermodynamic model. HAps are complex materials due to the ease with which large amounts of crystallographic defects, such as carbonates and hydrogen phosphates, can be incorporated in their structure. As these defects play a key role in material sciences (bone substitute, heterogeneous acid-base catalysis, etc.), the present work also includes the analysis of the formation of these crystallographic defects in the apatitic framework, allowing a better control of their incorporation through careful selection of operating parameters.
Collapse
Affiliation(s)
- Corentin Reynaud
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, 4 Place Jussieu, Paris 75005, France
| | - Cyril Thomas
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, 4 Place Jussieu, Paris 75005, France
| | - Guylène Costentin
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, 4 Place Jussieu, Paris 75005, France
| |
Collapse
|
10
|
Raman and XANES Spectroscopic Study of the Influence of Coordination Atomic and Molecular Environments in Biomimetic Composite Materials Integrated with Dental Tissue. NANOMATERIALS 2021; 11:nano11113099. [PMID: 34835863 PMCID: PMC8625886 DOI: 10.3390/nano11113099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022]
Abstract
In this work, for the first time, the influence of the coordination environment as well as Ca and P atomic states on biomimetic composites integrated with dental tissue was investigated. Bioinspired dental composites were synthesised based on nanocrystalline calcium carbonate-substituted hydroxyapatite Ca4ICa6IIPO46−xCO3x+yOH2−y (nano-cHAp) obtained from a biogenic source and a set of polar amino acids that modelled the organic matrix. Biomimetic composites, as well as natural dental tissue samples, were investigated using Raman spectromicroscopy and synchrotron X-ray absorption near edge structure (XANES) spectroscopy. Molecular structure and energy structure studies revealed several important features related to the different calcium atomic environments. It was shown that biomimetic composites created in order to reproduce the physicochemical properties of dental tissue provide good imitation of molecular and electron energetic properties, including the carbonate anion CO32− and the atomic Ca/P ratio in nanocrystals. The features of the molecular structure of biomimetic composites are inherited from the nano-cHAp (to a greater extent) and the amino acid cocktail used for their creation, and are caused by the ratio between the mineral and organic components, which is similar to the composition of natural enamel and dentine. In this case, violation of the nano-cHAp stoichiometry, which is the mineral basis of the natural and bioinspired composites, as well as the inclusion of different molecular groups in the nano-cHAp lattice, do not affect the coordination environment of phosphorus atoms. The differences observed in the molecular and electron energetic structures of the natural enamel and dentine and the imitation of their properties by biomimetic materials are caused by rearrangement in the local environment of the calcium atoms in the HAp crystal lattice. The surface of the nano-cHAp crystals in the natural enamel and dentine involved in the formation of bonds with the organic matrix is characterised by the coordination environment of the calcium atom, corresponding to its location in the CaI position—that is, bound through common oxygen atoms with PO4 tetrahedrons. At the same time, on the surface of nano-cHAp crystals in bioinspired dental materials, the calcium atom is characteristically located in the CaII position, bound to the hydroxyl OH group. The features detected in the atomic and molecular coordination environment in nano-cHAp play a fundamental role in recreating a biomimetic dental composite of the natural organomineral interaction in mineralised tissue and will help to find an optimal way to integrate the dental biocomposite with natural tissue.
Collapse
|
11
|
Müller V, Jobbagy M, Djurado E. Coupling sol-gel with electrospray deposition: Towards nanotextured bioactive glass coatings. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2021.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Kovrlija I, Locs J, Loca D. Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration. Acta Biomater 2021; 135:27-47. [PMID: 34450339 DOI: 10.1016/j.actbio.2021.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Disadvantages of conventional drug delivery systems (DDS), such as systemic circulation, interaction with physiochemical factors, reduced bioavailability, and insufficient drug concentration at bone defect site, have underlined the importance of developing efficacious local drug delivery systems. Octacalcium phosphate (OCP) is presumed to be the precursor of biologically formed apatite, owing to its similarity to hydroxyapatite (HAp) and readiness to convert to it. Specific crystal structure of OCP is constructed of compiled apatite layers and water layers, which make possible the incorporation of various ions in its structure, making it feasible to alter the overall effect OCP has in the system. Next to that intrinsic property, characteristics as high solubility, biodegradability and osteoconductivity have made it indispensable to tailor OCP as a carrier material. In this review, we present the main characteristics and progress done on utilizing OCP as an innovative vehicle and provide suggestions for possible research pathways and advantages for local drug delivery in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Octacalcium phosphate (OCP), being a precursor to biologically formed apatite, has many assets when compared to other calcium phosphates. Owing to its highly pertinent structure, it is being used as a vehicle for biologically active substances or ions for bone regeneration. However, orchestrating drug delivery systems with OCP, in order to achieve the best possible outcome, is still a pioneering concept, and the all-encompassing data is still scarce. Although several articles have been published on this matter, to this date there is no systematic overview pointing out the benefits that OCP can bring in the field of drug delivery. Here we offer a comprehensive overview, starting from the OCP synthesis to its structure, morphology, and the biological significance OCP has.
Collapse
|
13
|
Octacalcium Phosphate Bone Substitute (Bontree®): From Basic Research to Clinical Case Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone grafts used in alveolar bone regeneration can be categorized into autografts, allografts, xenografts, and synthetic bones, depending on their origin. The purpose of this study was to evaluate the effect of a commercialized octacalcium phosphate (OCP)-based synthetic bone substitute material (Bontree®) in vitro, in vivo, and in clinical cases. Material characterization of Bontree® granules (0.5 mm and 1.0 mm) using scanning electron microscopy and X-ray diffraction showed that both 0.5 mm and 1.0 mm Bontree® granules were uniformly composed mainly of OCP. The receptor activator of NF-κB ligand (RANKL) and alkaline phosphatase (ALP) activities of MG63 cells were assessed and used to compare Bontree® with a commercial biphasic calcium phosphate ceramic (MBCP+TM). Compared with MBCP+TM, Bontree® suppressed RANKL and increased ALP activity. A rabbit tibia model used to examine the effects of granule size of Bontree® grafts showed that 1.0 mm Bontree® granules had a higher new bone formation ability than 0.5 mm Bontree® granules. Three clinical cases using Bontree® for ridge or sinus augmentation are described. All eight implants in the three patients showed a 100% success rate after 1 year of functional loading. This basic research and clinical application demonstrated the safety and efficacy of Bontree® for bone regeneration.
Collapse
|
14
|
Reynaud C, Thomas C, Casale S, Nowak S, Costentin G. Development of a thermodynamic approach to assist the control of the precipitation of hydroxyapatites and associated calcium phosphates in open systems. CrystEngComm 2021. [DOI: 10.1039/d1ce00482d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Thermodynamics of the precipitation of calcium phosphates shows the importance of the pH and the order of introduction of the precursor ions on the textural (morphology, surface area) and structural (defects) properties of hydroxyapatites.
Collapse
Affiliation(s)
- Corentin Reynaud
- Sorbonne Université
- CNRS
- Laboratoire de Réactivité de Surface (LRS)
- 75005 Paris
- France
| | - Cyril Thomas
- Sorbonne Université
- CNRS
- Laboratoire de Réactivité de Surface (LRS)
- 75005 Paris
- France
| | - Sandra Casale
- Sorbonne Université
- CNRS
- Laboratoire de Réactivité de Surface (LRS)
- 75005 Paris
- France
| | - Sophie Nowak
- Plateforme Rayons X
- UFR de Chimie
- Université Paris Diderot
- Paris
- France
| | - Guylène Costentin
- Sorbonne Université
- CNRS
- Laboratoire de Réactivité de Surface (LRS)
- 75005 Paris
- France
| |
Collapse
|
15
|
The Influence of Ozonated Olive Oil-Loaded and Copper-Doped Nanohydroxyapatites on Planktonic Forms of Microorganisms. NANOMATERIALS 2020; 10:nano10101997. [PMID: 33050423 PMCID: PMC7650683 DOI: 10.3390/nano10101997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
The research has been carried out with a focus on the assessment of the antimicrobial efficacy of pure nanohydroxyapatite, Cu2+-doped nanohydroxyapatite, ozonated olive oil-loaded nanohydroxyapatite, and Cu2+-doped nanohydroxyapatite, respectively. Their potential antimicrobial activity was investigated against Streptococcus mutans, Lactobacillus rhamnosus, and Candida albicans. Among all tested materials, the highest efficacy was observed in terms of ozonated olive oil. The studies were performed using an Ultraviolet–Visible spectrophotometry (UV-Vis), electron microscopy, and statistical methods, by determining the value of Colony-Forming Units (CFU/mL) and Minimal Inhibitory Concentration (MIC).
Collapse
|