1
|
Smith ER, Holt SG. The formation and function of calciprotein particles. Pflugers Arch 2025:10.1007/s00424-025-03083-7. [PMID: 40266378 DOI: 10.1007/s00424-025-03083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025]
Abstract
Vertebrate extracellular fluids lie below the threshold for spontaneous calcium phosphate (Ca-Pi) precipitation; yet, they remain supersaturated enough to foster crystal growth if unchecked. Calciprotein particles (CPP) and their smaller precursor calciprotein monomers (CPM) have emerged as fast-acting "mineral buffers" that mitigate abrupt local oversaturation. Although these complexes typically contain only trace amounts of Ca-Pi relative to total plasma levels, they exhibit remarkably high turnover kinetics, with clearance from the circulation within minutes, far outpacing hormonal loops that operate on timescales of hours to days. By forming ephemeral colloidal assemblies, CPM/CPP help maintain fluid-phase stability and avert uncontrolled crystallization "accidents" in microenvironments such as the intestine or bone-remodeling sites. However, under chronic mineral stress, such as in chronic kidney disease, multiple inhibitory factors (e.g., fetuin-A, pyrophosphate) can become deficient, enabling persistent generation of more advanced, crystalline CPP species. These "modified" CPP can adsorb additional ligands (e.g., apolipoproteins, microbial remnants, growth factors) and have been linked to inflammatory and pro-calcific changes in vascular and immune cells. Despite their minor quantitative contribution, these rapidly mobilized colloids may exert outsized influence on vascular and skeletal homeostasis, underscoring the need to clarify their origins, biological roles, and potential therapeutic targeting in disorders of mineral metabolism.
Collapse
Affiliation(s)
- Edward R Smith
- Mineralomics Laboratory, SEHA Kidney Care, Abu Dhabi, United Arab Emirates.
| | - Stephen G Holt
- Mineralomics Laboratory, SEHA Kidney Care, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Liu X, Liu X, Xue W, Li QL, Wu L, Cao CY. A novel osteopontin biomimetic polypeptide induces collagen fiber mineralization in vitro. Int J Biol Macromol 2025; 310:143245. [PMID: 40250671 DOI: 10.1016/j.ijbiomac.2025.143245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Collagen fibers reinforced by hydroxyapatite (HA) constitute the fundamental structures of natural bone and dentin, where non-collagenous proteins (NCPs) play a regulatory role in collagen fiber mineralization. However, the precise mechanism underlying this mineralization process remains controversial. Moreover, achieving mineralized materials with high-purity, high-mimetic, and high-efficiency, as well as elucidating the essential state of mineralized precursor, are key issues in making a breakthrough in collagen fiber mineralization. Herein, an osteopontin phosphorylated polypeptide (OPP) was designed to explore the biomimetic mineralization of collagen fibers through mineralized ion stabilization and collagen surface modification. OPP could stabilize calcium and phosphate, forming OPP-prenucleation clusters (OPP-PNCs) with small sizes and long-term stabilization. Additionally, OPP could bind to and modify collagen fibers, thereby reducing the interfacial energy. Compared to Bare-Collagen, OPP-Collagen remarkably enhanced the mineralization efficiency. Molecular dynamics simulations indicated that OPP-Collagen could sequester calcium and phosphate from OPP-PNCs to induce mineralization, while Bare-Collagen lacks this ability. This biomimetic mineralization strategy utilizing OPP-PNCs achieved both intrafibrillar and extrafibrillar mineralization of OPP-collagen fibers. The present study introduces a novel OPP-Collagen mineralization strategy that highlights the regulatory role of NCPs on the surface of natural collagen, offering valuable perspectives into the mechanisms underlying natural mineralization processes.
Collapse
Affiliation(s)
- Xinyuan Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Xin Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Wanqiu Xue
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Quan-Li Li
- The institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen, 518172, China
| | - Leping Wu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| | - Chris Ying Cao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| |
Collapse
|
3
|
Ru J, Xu X, Cheng Y, Luo N, Tan S, Chen X, Chen F, Lu BQ. Influence of Polyphosphate on the Mineralization Balance of Tooth Enamel. ACS OMEGA 2025; 10:10162-10172. [PMID: 40124016 PMCID: PMC11923674 DOI: 10.1021/acsomega.4c09093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/12/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025]
Abstract
Dental minerals are in an equilibrium state of demineralization and remineralization, which can be disrupted by pathogenic bacteria to cause dental caries. While the inorganic polymer polyphosphate (polyP) is ubiquitous in living organisms and is also widely involved in mineralization regulations, its specific influence on the mineralization balance of teeth remains unclear. As a concept-and-proof study, the effects of polyP on the demineralization and remineralization of teeth are investigated on dental enamel (the highly mineralized outer covering tissue of teeth) from the perspective of mineralization balance. We found that a high concentration (containing 1.0-20 mM P element, comparable to and higher than the free phosphate ions in body fluids) of polyP has the capability to demineralize enamel in the aqueous solution, yet this effect is absent in the simulated biological environments including simulated body fluid and MEM (α-minimum essential medium) solutions. More importantly, polyP with a very low concentration (containing ≥5.0 μM P) is able to inhibit enamel mineralization significantly. This suggests that polyP could impact the mineralization balance of enamel by preferentially inhibiting the remineralization process, thereby disrupting the equilibrium necessary for maintaining enamel health.
Collapse
Affiliation(s)
- Jing Ru
- Suzhou
First People’s Hospital, School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, Anhui 232000, P. R. China
| | - Xiaochen Xu
- Department
of Preventive Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Yuxuan Cheng
- Yuncheng
Center for Disease Control and Prevention, Yuncheng, Shanxi 044300, P. R. China
| | - Nan Luo
- Department
of Preventive Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Shuo Tan
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Xi Chen
- Department
of Preventive Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Feng Chen
- Suzhou
First People’s Hospital, School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, Anhui 232000, P. R. China
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
- Shanghai
Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai
Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 201102, P.R. China
| | - Bing-Qiang Lu
- Center
for Orthopaedic Science and Translational Medicine, Department of
Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s
Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
4
|
Stafin K, Śliwa P, Pia Tkowski M, Matýsek D. Chitosan as a Templating Agent of Calcium Phosphate Crystalline Phases in Biomimetic Mineralization: Theoretical and Experimental Studies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63155-63169. [PMID: 39526983 DOI: 10.1021/acsami.4c11887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Highlighting the essential role of chitosan (CS), known for its biocompatibility, biodegradability, and ability to promote cell adhesion and proliferation, this study explores its utility in modulating the biomimetic mineralization of calcium phosphate (CaP). This approach holds promise for developing biomaterials suitable for bone regeneration. However, the interactions between the CS surface and in situ precipitated CaP still require further exploration. In the theoretical section, molecular dynamics (MD) simulations demonstrate that, at an appropriate pH level during the prenucleation stage, calcium ions (Ca2+) and hydrogen phosphate ions (HPO42-) form Posner-like clusters. Additionally, the interaction between these clusters and the CS molecule enhances system stability. Together, these phenomena facilitate the transition to subsequent heterogeneous nucleation on the surface of the organic matrix, which is a more controlled process than homogeneous nucleation in solution. Dynamic simulation results suggest that CS acts as a stabilizing matrix at pH 8.0 during biomimetic mineralization. In the experimental section, the effects of pH and the molecular weight of CS were investigated, with a focus on their impact on the crystal structure of the resulting material. X-ray diffraction and scanning electron microscopy analyses reveal that, under conditions of approximately pH 8.0 and a CS molecular weight of 20 000 g/mol, and controlled ion concentration, ultrasound radiation, and temperature, the dominant CaP phases in the material are carbonate-doped hydroxyapatite (CHA) and octacalcium phosphate (OCP). These findings suggest that CS, when adjusted for molecular weight and pH, facilitates the formation of CaP crystal phases that closely resemble the natural inorganic composition of bone, highlighting its protective and regulatory roles in the growth and maturation of crystals during mineralization. The theoretical predictions and experimental outcomes confirm the crucial role of CS as a templating agent, enabling the development of a biomimetic mineralization pathway. CS's ability to guide this process may prove valuable in the design of materials for bone tissue engineering, particularly in developing effective materials for bone tissue healing and regeneration.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Marek Pia Tkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Dalibor Matýsek
- Faculty of Mining and Geology, Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| |
Collapse
|
5
|
Turhan E, Goldberga I, Pötzl C, Keil W, Guigner JM, Haßler MFT, Peterlik H, Azaïs T, Kurzbach D. Branched Polymeric Prenucleation Assemblies Initiate Calcium Phosphate Precipitation. J Am Chem Soc 2024; 146:25614-25624. [PMID: 39228133 PMCID: PMC11421018 DOI: 10.1021/jacs.4c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The formation of crystalline calcium phosphate (CaP) has recently gained ample attention as it does not follow the classic nucleation-and-growth mechanism of solid formation. Instead, the precipitation mechanisms can involve numerous intermediates, including soluble prenucleation species. However, structural features, stability, and transformation of such solution-state precursors remain largely undisclosed. Herein, we report a detailed and comprehensive characterization of the sequential events involved in calcium phosphate crystallization starting from the very early prenucleation stage. We integrated an extensive set of time-resolved methods, including NMR, turbidimetry, SAXS, cryo-TEM, and calcium-potentiometry to show that CaP nucleation is initiated by the transformation of "branched" polymeric prenucleation assemblies into amorphous calcium phosphate spheres. Such a mineralization process starts with the spontaneous formation of so-called nanometric prenucleation clusters (PNCs) that later assemble into those branched polymeric assemblies without calcium ion uptake from the solution. Importantly, the branched macromolecular species are invisible to many techniques (NMR, turbidity, calcium-potentiometry) but can readily be evidenced by time-resolved SAXS. We find that these polymeric assemblies constitute the origin of amorphous calcium phosphate (ACP) precipitation through an unexpected process: spontaneous dissolution is followed by local densification of 100-200 nm wide domains leading to ACP spheres of similar size. Finally, we demonstrate that the timing of the successive events involved in the CaP mineralization pathway can be kinetically controlled by the Ca2+/Pi molar ratio, such that the lifetime of the soluble transient species can be increased up to hours when decreasing it.
Collapse
Affiliation(s)
- Ertan Turhan
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, Vienna 1090, Austria
| | - Ieva Goldberga
- CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, 4, Place Jussieu, Paris F-75005, France
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, Vienna 1090, Austria
| | - Waldemar Keil
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Jean-Michel Guigner
- Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), Sorbonne Université, 4, Place Jussieu, Paris F-75005, France
| | - Martin F T Haßler
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
- Vienna Doctoral School in Physics (VDS), University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
| | - Herwig Peterlik
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
| | - Thierry Azaïs
- CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, 4, Place Jussieu, Paris F-75005, France
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| |
Collapse
|
6
|
Turhan E, Minaei M, Narwal P, Meier B, Kouřil K, Kurzbach D. Short-lived calcium carbonate precursors observed in situ via Bullet-dynamic nuclear polarization. Commun Chem 2024; 7:210. [PMID: 39289493 PMCID: PMC11408677 DOI: 10.1038/s42004-024-01300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
The discovery of (meta)stable pre-nucleation species (PNS) challenges the established nucleation-and-growth paradigm. While stable PNS with long lifetimes are readily accessible experimentally, identifying and characterizing early-stage intermediates with short lifetimes remains challenging. We demonstrate that species with lifetimes ≪ 5 s can be characterized by nuclear magnetic resonance spectroscopy when boosted by 'Bullet' dynamic nuclear polarization (Bullet-DNP). We investigate the previously elusive early-stage prenucleation of calcium carbonates in the highly supersaturated concentration regime, characterizing species that form within milliseconds after the encounter of calcium and carbonate ions and show that ionic pre-nucleation species not only govern the solidification of calcium carbonates at weak oversaturation but also initiate rapid precipitation events at high concentrations. Such, we report a transient co-existence of two PNS with distinct molecular sizes and different compositions. This methodological advance may open new possibilities for studying and exploiting carbonate-based material formation in unexplored parts of the phase space.
Collapse
Affiliation(s)
- Ertan Turhan
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria
| | - Masoud Minaei
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany
| | - Pooja Narwal
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany
| | - Benno Meier
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany.
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| | - Karel Kouřil
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Wang Y, Zhang Y, Shen Z, Qiu Y, Wang C, Wu Z, Shen M, Shao C, Tang R, Hannig M, Fu B, Zhou Z. STMP and PVPA as Templating Analogs of Noncollagenous Proteins Induce Intrafibrillar Mineralization of Type I Collagen via PCCP Process. Adv Healthc Mater 2024; 13:e2400102. [PMID: 38657167 DOI: 10.1002/adhm.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Indexed: 04/26/2024]
Abstract
The phosphorylated noncollagenous proteins (NCPs) play a vital role in manipulating biomineralization, while the mechanism of phosphorylation of NCPs in intrafibrillar mineralization of collagen fibril has not been completely deciphered. Poly(vinylphosphonic acid) (PVPA) and sodium trimetaphosphate (STMP) as templating analogs of NCPs induce hierarchical mineralization in cooperation with indispensable sequestration analogs such as polyacrylic acid (PAA) via polymer-induced liquid-like precursor (PILP) process. Herein, STMP-Ca and PVPA-Ca complexes are proposed to achieve rapid intrafibrillar mineralization through polyelectrolyte-Ca complexes pre-precursor (PCCP) process. This strategy is further verified effectively for remineralization of demineralized dentin matrix both in vitro and in vivo. Although STMP micromolecule fails to stabilize amorphous calcium phosphate (ACP) precursor, STMP-Ca complexes facilely permeate into intrafibrillar interstices and trigger phase transition of ACP to hydroxyapatite within collagen. In contrast, PVPA-stabilized ACP precursors lack liquid-like characteristic and crystallize outside collagen due to rigid conformation of PVPA macromolecule, while PVPA-Ca complexes infiltrate into partial intrafibrillar intervals under electrostatic attraction and osmotic pressure as evidenced by intuitionistic 3D stochastic optical reconstruction microscopy (3D-STORM). The study not only extends the variety and size range of polyelectrolyte for PCCP process but also sheds light on the role of phosphorylation for NCPs in biomineralization.
Collapse
Affiliation(s)
- Yiru Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Yizhou Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Zhe Shen
- School of Stomatology, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310000, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Chaoyang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Minjuan Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310000, China
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424, Homburg Saar, Germany
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
8
|
Nowotarski MS, Potnuru LR, Straub JS, Chaklashiya R, Shimasaki T, Pahari B, Coffaro H, Jain S, Han S. Dynamic Nuclear Polarization Enhanced Multiple-Quantum Spin Counting of Molecular Assemblies in Vitrified Solutions. J Phys Chem Lett 2024; 15:7084-7094. [PMID: 38953521 DOI: 10.1021/acs.jpclett.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Crystallization pathways are essential to various industrial, geological, and biological processes. In nonclassical nucleation theory, prenucleation clusters (PNCs) form, aggregate, and crystallize to produce higher order assemblies. Microscopy and X-ray techniques have limited utility for PNC analysis due to the small size (0.5-3 nm) and time stability constraints. We present a new approach for analyzing PNC formation based on 31P nuclear magnetic resonance (NMR) spin counting of vitrified molecular assemblies. The use of glassing agents ensures that vitrification generates amorphous aqueous samples and offers conditions for performing dynamic nuclear polarization (DNP)-amplified NMR spectroscopy. We demonstrate that molecular adenosine triphosphate along with crystalline, amorphous, and clustered calcium phosphate materials formed via a nonclassical growth pathway can be differentiated from one another by the number of dipolar coupled 31P spins. We also present an innovative approach for examining spin counting data, demonstrating that a knowledge-based fitting of integer multiples of cosine wave functions, instead of the traditional Fourier transform, provides a more physically meaningful retrieval of the existing frequencies. This is the first report of multiquantum spin counting of assemblies formed in solution as captured under vitrified DNP conditions, which can be useful for future analysis of PNCs and other aqueous molecular clusters.
Collapse
Affiliation(s)
- Mesopotamia S Nowotarski
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Lokeswara Rao Potnuru
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua S Straub
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Raj Chaklashiya
- Department of Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Toshihiko Shimasaki
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Bholanath Pahari
- School of Physical and Applied Sciences, Goa University, Taleigao, Goa 403206, India
| | - Hunter Coffaro
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Sheetal Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Water-Mediated attraction between Like-charged species involved in calcium phosphate nucleation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
10
|
Yang X, Ji M, Zhang C, Yang X, Xu Z. Physical insight into the entropy-driven ion association. J Comput Chem 2022; 43:1621-1632. [PMID: 35801676 DOI: 10.1002/jcc.26963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
The ion association is widely believed to be dominated by the favorable entropy change arising from the release of water molecules from ion hydration shells. However, no direct thermodynamic evidence exists to validate the reliability and suitability of this view. Herein, we employ complicated free energy calculations to rigorously split the free energy including its entropic and enthalpic components into the water-induced contributions and ion-ion interaction terms for several ion pairs from monatomic to polyatomic ions, spanning the size range from small kosmotropes to large chaotropes (Na+ , Cs+ , Ca2+ , F- , I- , CO3 2- , and HPO4 2- ). Our results successfully reveal that though ion associations are indeed determined by a delicate balance between the favorable entropy variation and the repulsive enthalpy change, the entropy gain dominated by the solvent occurs only for the monatomic ion pairing. The water-induced entropic contribution significantly goes against the ion pairing between polyatomic anion and cation, which is, alternatively, dominated by the favorable entropy from the ion-ion interaction term, due to the configurational arrangement of polyatomic anions involved in ion association. The structural and dynamic analysis demonstrates that the entropy penalty from the water phase is primarily ascribed to the enhanced stability of water molecules around the cation imposed by the incoming anion. Our study successfully provides a fundamental understanding of water-mediated ion associations and highlights disparate lengthscale dependencies of the dehydration thermodynamics on the specific types of ions.
Collapse
Affiliation(s)
- Xiao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Mingyu Ji
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Cong Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Xiaoning Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
| | - Zhijun Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China.,Zhangjiagang Institute of Nanjing Tech University, Zhangjiagang, China
| |
Collapse
|
11
|
Gebauer D, Gale JD, Cölfen H. Crystal Nucleation and Growth of Inorganic Ionic Materials from Aqueous Solution: Selected Recent Developments, and Implications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107735. [PMID: 35678091 DOI: 10.1002/smll.202107735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Indexed: 05/27/2023]
Abstract
In this review article, selected, latest theoretical, and experimental developments in the field of nucleation and crystal growth of inorganic materials from aqueous solution are highlighted, with a focus on literature after 2015 and on non-classical pathways. A key point is to emphasize the so far underappreciated role of water and solvent entropy in crystallization at all stages from solution speciation through to the final crystal. While drawing on examples from current inorganic materials where non-classical behavior has been proposed, the potential of these approaches to be adapted to a wide-range of systems is also discussed, while considering the broader implications of the current re-assessment of pathways for crystallization. Various techniques that are suitable for the exploration of crystallization pathways in aqueous solution, from nucleation to crystal growth are summarized, and a flow chart for the assignment of specific theories based on experimental observations is proposed.
Collapse
Affiliation(s)
- Denis Gebauer
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
| | - Julian D Gale
- Curtin Institute for Computation/The Institute for Geoscience Research (TiGER), School of Molecular and Life Sciences, Curtin University, PO Box U1987, Perth, Western Australia, 6845, Australia
| | - Helmut Cölfen
- University of Konstanz, Physical Chemistry, Universitätsstr. 10, 78465, Konstanz, Germany
| |
Collapse
|
12
|
Xue Z, Wang X, Xu D. Molecular dynamic simulation of prenucleation of apatite at a type I collagen template: ion association and mineralization control. Phys Chem Chem Phys 2022; 24:11370-11381. [PMID: 35502709 DOI: 10.1039/d2cp00168c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biomineralization is a vital physiological process in living organisms, hence elucidating its mechanism is crucial in the optimization of controllable biomaterial preparation with hydroxyapatite and collagen, which could provide information for the design of innovative biomaterials. However, the mechanisms by which minerals and collagen interact in various ionic environments are unclear. Here, we applied molecular dynamics and free energy simulations to clarify type I collagen-mediated HAP prenucleation and simulated the physiological environment using different phosphate and carbonate protonation states. Calcium phosphate mineral formation on the type I collagen surface drastically differed among various H2PO4-, HPO42-, PO43-, CO32-, and HCO3- compositions. Our simulations indicated that the presence of HPO42- in the solution phase is critical to regulate the apatite nucleation, whereas the presence of H2PO4- may be inhibitory. The inclusion of CO32- in the solution might promote calcium phosphate cluster formation. In contrast, apatite cluster size may be regulated by changing the anion concentration ratios, including PO43-/HPO42- and PO43-/CO32-. Our free energy simulations attributed these phenomena to relative differences in binding thermostability and ion association kinetics. Our simulations provide a theoretical approach toward the effective control of collagen mineralization and the preparation of novel biomaterials.
Collapse
Affiliation(s)
- Zhiyu Xue
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China. .,Research Center for Materials Genome Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
13
|
Villa AM, Doglia SM, De Gioia L, Natalello A, Bertini L. Fluorescence of KCl Aqueous Solution: A Possible Spectroscopic Signature of Nucleation. J Phys Chem B 2022; 126:2564-2572. [PMID: 35344657 PMCID: PMC8996234 DOI: 10.1021/acs.jpcb.2c01496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Ion pairing
in water solutions alters both the water hydrogen-bond network and
ion solvation, modifying the dynamics and properties of electrolyte
water solutions. Here, we report an anomalous intrinsic fluorescence
of KCl aqueous solution at room temperature and show that its intensity
increases with the salt concentration. From the ab initio density
functional theory (DFT) and time-dependent DFT modeling, we propose
that the fluorescence emission could originate from the stiffening
of the hydrogen bond network in the hydration shell of solvated ion-pairs
that suppresses the fast nonradiative decay and allows the slower
radiative channel to become a possible decay pathway. Because computations
suggest that the fluorophores are the local ion-water structures present
in the prenucleation phase, this band could be the signature of the
incoming salt precipitation.
Collapse
Affiliation(s)
- Anna Maria Villa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
14
|
Jun YS, Zhu Y, Wang Y, Ghim D, Wu X, Kim D, Jung H. Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation. Annu Rev Phys Chem 2022; 73:453-477. [PMID: 35113740 DOI: 10.1146/annurev-physchem-082720-100947] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces and expand by monomeric growth, oriented attachment, and phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can determine their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical and nonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and the growth of nanoparticles. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Ying Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Deoukchen Ghim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Xuanhao Wu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut;
| | - Doyoon Kim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Haesung Jung
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, South Korea;
| |
Collapse
|
15
|
Millán Á, Lanzer P, Sorribas V. The Thermodynamics of Medial Vascular Calcification. Front Cell Dev Biol 2021; 9:633465. [PMID: 33937234 PMCID: PMC8080379 DOI: 10.3389/fcell.2021.633465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Medial vascular calcification (MVC) is a degenerative process that involves the deposition of calcium in the arteries, with a high prevalence in chronic kidney disease (CKD), diabetes, and aging. Calcification is the process of precipitation largely of calcium phosphate, governed by the laws of thermodynamics that should be acknowledged in studies of this disease. Amorphous calcium phosphate (ACP) is the key constituent of early calcifications, mainly composed of Ca2+ and PO4 3- ions, which over time transform into hydroxyapatite (HAP) crystals. The supersaturation of ACP related to Ca2+ and PO4 3- activities establishes the risk of MVC, which can be modulated by the presence of promoter and inhibitor biomolecules. According to the thermodynamic parameters, the process of MVC implies: (i) an increase in Ca2+ and PO4 3- activities (rather than concentrations) exceeding the solubility product at the precipitating sites in the media; (ii) focally impaired equilibrium between promoter and inhibitor biomolecules; and (iii) the progression of HAP crystallization associated with nominal irreversibility of the process, even when the levels of Ca2+ and PO4 3- ions return to normal. Thus, physical-chemical processes in the media are fundamental to understanding MVC and represent the most critical factor for treatments' considerations. Any pathogenetical proposal must therefore comply with the laws of thermodynamics and their expression within the medial layer.
Collapse
Affiliation(s)
- Ángel Millán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Peter Lanzer
- Division of Cardiovascular Disease, Department of Internal Medicine, Health Care Center Bitterfeld, Bitterfeld-Wolfen gGmbH, Bitterfeld-Wolfen, Germany
| | - Víctor Sorribas
- Molecular Toxicology Group, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
16
|
Cruz MAE, Ferreira CR, Tovani CB, de Oliveira FA, Bolean M, Caseli L, Mebarek S, Millán JL, Buchet R, Bottini M, Ciancaglini P, Paula Ramos A. Phosphatidylserine controls calcium phosphate nucleation and growth on lipid monolayers: A physicochemical understanding of matrix vesicle-driven biomineralization. J Struct Biol 2020; 212:107607. [PMID: 32858148 DOI: 10.1016/j.jsb.2020.107607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation. However, little is known about the mechanisms by which MVs can trigger this process. Here, we present a combination of in situ investigations and ex vivo analysis of MVs extracted from growing-femurs of chicken embryos to investigate the role played by phosphatidylserine (PS) in the formation of mineral nuclei. By using self-assembled Langmuir monolayers, we reconstructed the nucleation core - a PS-enriched motif thought to trigger mineral formation in the lumen of MVs. In situ infrared spectroscopy of Langmuir monolayers and ex situ analysis by transmission electron microscopy evidenced that mineralization was achieved in supersaturated solutions only when PS was present. PS nucleated amorphous calcium phosphate that converted into biomimetic apatite. By using monolayers containing lipids extracted from native MVs, mineral formation was also evidenced in a manner that resembles the artificial PS-enriched monolayers. PS-enrichment in lipid monolayers creates nanodomains for local increase of supersaturation, leading to the nucleation of ACP at the interface through a multistep process. We posited that PS-mediated nucleation could be a predominant mechanism to produce the very first mineral nuclei during MV-driven bone/cartilage biomineralization.
Collapse
Affiliation(s)
- Marcos A E Cruz
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | - Claudio R Ferreira
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | - Camila B Tovani
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | | | - Maytê Bolean
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences - Federal University of Sao Paulo, Brazil
| | - Saida Mebarek
- Universite de Lyon, ICBMS UMR 5246 CNRS, Villeurbanne, France
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rene Buchet
- Universite de Lyon, ICBMS UMR 5246 CNRS, Villeurbanne, France
| | - Massimo Bottini
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pietro Ciancaglini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil.
| | - Ana Paula Ramos
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, FFCLRP - Universidade de São Paulo - Departamento de Química, Brazil.
| |
Collapse
|
17
|
Golda-Cepa M, Riedlová K, Kulig W, Cwiklik L, Kotarba A. Functionalization of the Parylene C Surface Enhances the Nucleation of Calcium Phosphate: Combined Experimental and Molecular Dynamics Simulations Approach. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12426-12435. [PMID: 32098467 PMCID: PMC7497617 DOI: 10.1021/acsami.9b20877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Interactions at the solid-body fluid interfaces play a vital role in bone tissue formation at the implant surface. In this study, fully atomistic molecular dynamics (MD) simulations were performed to investigate interactions between the physiological components of body fluids (Ca2+, HPO42-, H2PO4-, Na+, Cl-, and H2O) and functionalized parylene C surface. In comparison to the native parylene C (-Cl surface groups), the introduction of -OH, -CHO, and -COOH surface groups significantly enhances the interactions between body fluid ions and the polymeric surface. The experimentally observed formation of calcium phosphate nanocrystals is discussed in terms of MD simulations of the calcium phosphate clustering. Surface functional groups promote the clustering of calcium and phosphate ions in the following order: -OH > -CHO > -Cl (parent parylene C) ≈ -COO-. This promoting role of surface functional groups is explained as stimulating the number of Ca2+ and HPO42- surface contacts as well as ion chemisorption. The molecular mechanism of calcium phosphate cluster formation at the functionalized parylene C surface is proposed.
Collapse
Affiliation(s)
- Monika Golda-Cepa
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamila Riedlová
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
- Faculty
of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
| | - Waldemar Kulig
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Lukasz Cwiklik
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Andrzej Kotarba
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
18
|
Mayen L, Jensen ND, Laurencin D, Marsan O, Bonhomme C, Gervais C, Smith ME, Coelho C, Laurent G, Trebosc J, Gan Z, Chen K, Rey C, Combes C, Soulié J. A soft-chemistry approach to the synthesis of amorphous calcium ortho/pyrophosphate biomaterials of tunable composition. Acta Biomater 2020; 103:333-345. [PMID: 31881314 DOI: 10.1016/j.actbio.2019.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022]
Abstract
The development of amorphous phosphate-based materials is of major interest in the field of biomaterials science, and especially for bone substitution applications. In this context, we herein report the synthesis of gel-derived hydrated amorphous calcium/sodium ortho/pyrophosphate materials at ambient temperature and in water. For the first time, such materials have been obtained in a large range of tunable orthophosphate/pyrophosphate molar ratios. Multi-scale characterization was carried out thanks to various techniques, including advanced multinuclear solid state NMR. It allowed the quantification of each ionic/molecular species leading to a general formula for these materials: [(Ca2+y Na+z H+3+x-2y-z)(PO43-)1-x(P2O74-)x](H2O)u. Beyond this formula, the analyses suggest that these amorphous solids are formed by the aggregation of colloids and that surface water and sodium could play a role in the cohesion of the whole material. Although the full comprehension of mechanisms of formation and structure is still to be investigated in detail, the straightforward synthesis of these new amorphous materials opens up many perspectives in the field of materials for bone substitution and regeneration. STATEMENT OF SIGNIFICANCE: The metastability of amorphous phosphate-based materials with various chain length often improves their (bio)chemical reactivity. However, the control of the ratio of the different phosphate entities has not been yet described especially for small ions (pyrophosphate/orthophosphate) and using soft chemistry, whereas it opens the way for the tuning of enzyme- and/or pH-driven degradation and biological properties. Our study focuses on elaboration of amorphous gel-derived hydrated calcium/sodium ortho/pyrophosphate solids at 70 °C with a large range of orthophosphate/pyrophosphate ratios. Multi-scale characterization was carried out using various techniques such as advanced multinuclear SSNMR (31P, 23Na, 1H, 43Ca). Analyses suggest that these solids are formed by colloids aggregation and that the location of mobile water and sodium could play a role in the material cohesion.
Collapse
Affiliation(s)
- Laëtitia Mayen
- CIRIMAT, Université de Toulouse, CNRS, INPT-ENSIACET, Toulouse, France
| | - Nicholai D Jensen
- ICGM, CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France; Sorbonne Université, CNRS, LCMCP, Paris, France
| | | | - Olivier Marsan
- CIRIMAT, Université de Toulouse, CNRS, INPT-ENSIACET, Toulouse, France
| | | | | | - Mark E Smith
- Department of Chemistry, Lancaster University, Lancaster, UK
| | | | | | - Julien Trebosc
- Université de Lille, UMR 8181, UCCS: Unit of Catalysis and Chemistry of Solids, Lille, France
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - Kuizhi Chen
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, INPT-ENSIACET, Toulouse, France
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, INPT-ENSIACET, Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Université de Toulouse, CNRS, INPT-ENSIACET, Toulouse, France.
| |
Collapse
|
19
|
Abstract
This work provides a clearer picture for non-classical nucleation by revealing the presence of various intermediates using advanced characterization techniques.
Collapse
Affiliation(s)
- Biao Jin
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
- Department of Chemistry
| | - Zhaoming Liu
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Ruikang Tang
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
20
|
Kim D, Lee B, Marshall BP, Jang E, Thomopoulos S, Jun YS. Pulsed Electrical Stimulation Enhances Body Fluid Transport for Collagen Biomineralization. ACS APPLIED BIO MATERIALS 2019; 3:902-910. [DOI: 10.1021/acsabm.9b00979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Doyoon Kim
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Brittany P. Marshall
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York 10032-3072, United States
| | - Eunyoung Jang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York 10032-3072, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
21
|
Garcia N, Malini RI, Freeman CL, Demichelis R, Raiteri P, Sommerdijk NAJM, Harding JH, Gale JD. Simulation of Calcium Phosphate Prenucleation Clusters in Aqueous Solution: Association beyond Ion Pairing. CRYSTAL GROWTH & DESIGN 2019; 19:6422-6430. [PMID: 32063806 PMCID: PMC7011744 DOI: 10.1021/acs.cgd.9b00889] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/01/2019] [Indexed: 05/12/2023]
Abstract
Classical molecular dynamics simulations and free energy methods have been used to obtain a better understanding of the molecular processes occurring prior to the first nucleation event for calcium phosphate biominerals. The association constants for the formation of negatively charged complexes containing calcium and phosphate ions in aqueous solution have been computed, and these results suggest that the previously proposed calcium phosphate building unit, [Ca(HPO4)3]4-, should only be present in small amounts under normal experimental conditions. However, the presence of an activation barrier for the removal of an HPO4 2- ion from this complex indicates that this species could be kinetically trapped. Aggregation pathways involving CaHPO4, [Ca(HPO4)2]2-, and [Ca(HPO4)3]4- complexes have been explored with the finding that dimerization is favorable up to a Ca/HPO4 ratio of 1:2.
Collapse
Affiliation(s)
- Natalya
A. Garcia
- Curtin
Institute for Computation, The Institute for Geoscience Research (TIGeR),
and School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Riccardo Innocenti Malini
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield, S1 3JD, United Kingdom
- Laboratory
for Protection and Physiology, Empa, Swiss
Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Colin L. Freeman
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Raffaella Demichelis
- Curtin
Institute for Computation, The Institute for Geoscience Research (TIGeR),
and School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Paolo Raiteri
- Curtin
Institute for Computation, The Institute for Geoscience Research (TIGeR),
and School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Nico A. J. M. Sommerdijk
- Department
of Chemical Engineering and Chemistry, Technische
Universiteit Eindhoven, P.O. Box 513, Eindhoven, Netherlands
| | - John H. Harding
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Julian D. Gale
- Curtin
Institute for Computation, The Institute for Geoscience Research (TIGeR),
and School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
22
|
Innocenti Malini R, L. Freeman C, Harding JH. Interaction of stable aggregates drives the precipitation of calcium phosphate in supersaturated solutions. CrystEngComm 2019. [DOI: 10.1039/c9ce00658c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using molecular dynamics simulations, we show for the first time that calcium phosphate nanoparticles of eight formula units are thermodynamically stable and could be key in the nucleation of amorphous calcium phosphate.
Collapse
Affiliation(s)
- R. Innocenti Malini
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Laboratory for Biomimetic Membranes and Textiles
- St. Gallen 9014
- Switzerland
| | - C. L. Freeman
- Department of Materials Science and Engineering
- University of Sheffield
- Sheffield
- UK
| | - J. H. Harding
- Department of Materials Science and Engineering
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|