1
|
Study the crystal structure of 4,4′-(propane-1,3-diyl)dipiperidinium sulfate monohydrate and its hydrogen bond catalytic activity in the mechanochemical synthesis of BIMs. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2
|
Yang C, Yu C, Zhang M, Yang X, Dong H, Dong Q, Zhang H, Li L, Guo X, Zang H. Investigation of protective effect of ethanol on the natural structure of protein with infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120935. [PMID: 35121476 DOI: 10.1016/j.saa.2022.120935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The stability of biological drugs with protein as an active substance depends heavily on the retention of natural protein structure during freeze-drying. Stabilizers have become important substances in the process of protein freeze-drying. In order to further understand the mechanism of the interaction between protein and stabilizers, human serum albumin (HSA) and simple hydroxyl compound ethanol were used as models. Infrared (IR) spectroscopy combined with chemometrics was implemented to investigate the changes of secondary structure and hydration of HSA when different concentrations of ethanol were considered as interference. Through the analysis of the protein secondary structure and hydrated layer, we found that the addition of ethanol-d6 increased the α-helix of HSA and reduced the disordered structure. The hydrogen bond structure around HSA was enhanced and intermolecular aggregation was reduced through the action of the water molecules. The hypothesis was verified by circular dichroism (CD) and transmission electron microscopy (TEM) observation by adding different concentrations of ethanol-d6. It was found that a small amount of ethanol could protect the native conformation of HSA. In conclusion, this study revealed the mechanism of ethanol as a protein protector, provided a new idea for protein purification process and a theoretical basis for biomolecular interaction.
Collapse
Affiliation(s)
- Cui Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chen Yu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengqi Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangchun Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hailing Dong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qin Dong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Zhang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China
| | - Xueping Guo
- Bloomage Biotechnology Corporation Limited, Tianchen Street 678, Jinan, Shandong 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Zaharani L, Gorjian H, Johan MR, Khaligh NG. Synthesis and characterization of two new molten acid salts: Safe and greener alternatives to sulfuric acid for the hydrolytic conversion of 1,1,1,3-tetrachloro-3-phenylpropane to cinnamic acid. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Clavaguéra C, Thaunay F, Ohanessian G. Manifolds of low energy structures for a magic number of hydrated sulfate: SO 42-(H 2O) 24. Phys Chem Chem Phys 2021; 23:24428-24438. [PMID: 34693943 DOI: 10.1039/d1cp03123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low energy structures of SO42-(H2O)24 have been obtained using a combination of classical molecular dynamics simulations and refinement of structures and energies by quantum chemical calculations. Extensive exploration of the potential energy surface led to a number of low-energy structures, confirmed by accurate calibration calculations. An overall analysis of this large set was made after devising appropriate structural descriptors such as the numbers of cycles and their combinations. Low energy structures bear common motifs, the most prominent being fused cycles involving alternatively four and six water molecules. The latter adopt specific conformations which ensure the appropriate surface curvature to form a closed cage without dangling O-H bonds and at the same time provide 12-coordination of the sulfate ion. A prominent feature to take into account is isomerism via inversion of hydrogen bond orientations along cycles. This generates large families of ca. 100 isomers for this cluster size, spanning energy windows of 10-30 kJ mol-1. This relatively ignored isomerism must be taken into account to identify reliably the lowest energy minima. The overall picture is that the magic number cluster SO42-(H2O)24 does not correspond to formation of a single, remarkable structure, but rather to a manifold of structural families with similar stabilities. Extensive calculations on isomerization mechanisms within a family indicate that large barriers are associated to direct inversion of hydrogen bond networks. Possible implications of these results for magic number clusters of other anions are discussed.
Collapse
Affiliation(s)
- Carine Clavaguéra
- Institut de Chimie Physique, Université Paris-Saclay - CNRS, UMR 8000, 91405 Orsay, France.
| | - Florian Thaunay
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
| | - Gilles Ohanessian
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
| |
Collapse
|
5
|
Ball BT, Vanovac S, Odbadrakh TT, Shields GC. Monomers of Glycine and Serine Have a Limited Ability to Hydrate in the Atmosphere. J Phys Chem A 2021; 125:8454-8467. [PMID: 34529444 DOI: 10.1021/acs.jpca.1c05466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of atmospheric aerosols on climate change is one of the biggest uncertainties in most global climate models. Organic aerosols have been identified as potential cloud condensation nuclei (CCN), and amino acids are organic molecules that could serve as CCN. Amino acids make up a significant portion of the total organic material in the atmosphere, and herein we present a systematic study of hydration for two of the most common atmospheric amino acids, glycine and serine. We compute DLPNO/CCSD(T)//M08-HX/MG3S thermodynamic properties and atmospheric concentrations of Gly(H2O)n and Ser(H2O)n, where n = 1-5. We predict that serine-water clusters have higher concentrations at n = 1 and 5, while glycine-water clusters have higher concentrations at n = 2-4. However, both glycine and serine are inferred to exist primarily in their nonhydrated monomer forms in the absence of other species such as sulfuric acid.
Collapse
Affiliation(s)
- Benjamin T Ball
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Sara Vanovac
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Tuguldur T Odbadrakh
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
6
|
Zaharani L, Shahnavaz Z, Rafie Johan M, Ghaffari Khaligh N. Synthesis, characterization, and a study of the influence of [HSO4]− and [SO4]2− on thermal phase transition and thermal stability of two new organic acid salts containing dication cyclic amine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Chakraborty A, Schmahl S, Asmis KR. Isomer-Specific Vibrational Spectroscopy of Microhydrated Lithium Dichloride Anions: Spectral Fingerprint of Solvent-Shared Ion Pairs. Chemphyschem 2021; 22:1036-1041. [PMID: 33783947 PMCID: PMC8252531 DOI: 10.1002/cphc.202100170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Indexed: 12/21/2022]
Abstract
The vibrational spectroscopy of lithium dichloride anions microhydrated with one to three water molecules, [LiCl2 (H2 O)1-3 ]- , is studied in the OH stretching region (3800-2800 cm-1 ) using isomer-specific IR/IR double-resonance population labelling experiments. The spectroscopic fingerprints of individual isomers can only be unambiguously assigned after anharmonic effects are considered, but then yield molecular level insight into the onset of salt dissolution in these gas phase model systems. Based on the extent of the observed frequency shifts ΔνOH of the hydrogen-bonded OH stretching oscillators solvent-shared ion pair motifs (<3200 cm-1 ) can be distinguished from intact-core structures (>3200 cm-1 ). The characteristic fingerprint of a water molecule trapped directly in-between two ions of opposite charge provides an alternative route to evaluate the extent of ion pairing in aqueous electrolyte solutions.
Collapse
Affiliation(s)
- Arghya Chakraborty
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103, Leipzig, Germany
| | - Sonja Schmahl
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103, Leipzig, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103, Leipzig, Germany
| |
Collapse
|
8
|
Kurfman LA, Odbadrakh TT, Shields GC. Calculating Reliable Gibbs Free Energies for Formation of Gas-Phase Clusters that Are Critical for Atmospheric Chemistry: (H 2SO 4) 3. J Phys Chem A 2021; 125:3169-3176. [PMID: 33825467 DOI: 10.1021/acs.jpca.1c00872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of atmospheric aerosols on our climate are one of the biggest uncertainties in global climate models. Calculating the pathway for the formation of pre-nucleation clusters that become aerosols is challenging, requiring a comprehensive analysis of configurational space and highly accurate Gibbs free energy calculations. We identified a large set of minimum energy configurations of (H2SO4)3 using a sampling technique based on a genetic algorithm and a stepwise density functional theory (DFT) approach and computed the thermodynamics of formation of these configurations with more accurate wavefunction-based electronic energies computed on the DFT geometries. The DLPNO-CCSD(T) methods always return more positive energies compared to the DFT energies. Within the DLPNO-CCSD(T) methods, extrapolating to the complete basis set limit gives more positive free energies compared to explicitly correlated single-point energies. The CBS extrapolation was shown to be robust as both the 4-5 inverse polynomial and Riemann zeta function schemes were within chemical accuracy of one another.
Collapse
Affiliation(s)
- Luke A Kurfman
- Department of Chemistry, Furman University, Greenville, South Carolina 29613-0002, United States
| | - Tuguldur T Odbadrakh
- Department of Chemistry, Furman University, Greenville, South Carolina 29613-0002, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613-0002, United States
| |
Collapse
|
9
|
Knorke H, Li H, Warneke J, Liu ZF, Asmis KR. Cryogenic ion trap vibrational spectroscopy of the microhydrated sulfate dianions SO 42-(H 2O) 3-8. Phys Chem Chem Phys 2020; 22:27732-27745. [PMID: 33242322 DOI: 10.1039/d0cp04386a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infrared photodissociation spectra of the D2-tagged microhydrated sulfate dianions with three to eight water molecules are presented over a broad spectral range that covers the OH stretching and H2O bending modes of the solvent molecules at higher energies, the sulfate stretching modes of the solute at intermediate energies and the intermolecular solute librational modes at the lowest energies. A low ion temperature combined with messenger-tagging ensures well-resolved vibrational spectra that allow for structure assignments based on a comparison to harmonic and anharmonic IR spectra from density functional theory (DFT) calculations. DFT ab initio molecular dynamics simulations are required to disentangle the broad and complex spectral signatures of microhydrated sulfate dianions in the OH stretching region and to identify systematic trends in the correlation of the strength and evolution of the solute-solvent and solvent-solvent interactions with cluster size. The onset for the formation of the second solvation shell is observed for n = 8.
Collapse
Affiliation(s)
- Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|