1
|
Wang J, Zhang K, Zhou Y, Shang P, Yang S, Zhang B, Liu A, Liu J, Xie J, Xu J. POSS (epoxy)8 reinforced poly (butylene adipate-co-terephthalate)/lignin biodegradable films: Fabrication, enhanced mechanical properties and UV aging resistance. Int J Biol Macromol 2024; 255:127921. [PMID: 37944741 DOI: 10.1016/j.ijbiomac.2023.127921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
To reduce the white pollution, the eco-friendly biodegradable poly (butylene adipate-co-terephthalate) (PBAT)-based films had attracted increasing interests worldwide. However, the high-cost of the PBAT had limited the large-scale development and application. In this work, 10 wt% low-cost lignin was introduced into the PBAT to prepare composite films by melt blending and blow molding, and the POSS(epoxy)8 was selected as the compatibilizer to improve the compatibility of PBAT and lignin. The maximum tensile strength and the nominal strain at break subsequently increased by 48.2 % and 21.4 % respectively, while the water vapor permeability enhanced by 9.9 %. Furthermore, the UV aging resistance of PBAT/lignin films were significantly improved, with only 1 wt% POSS(epoxy)8 content. This work provides an efficient strategy to foster the end-user confidence in the low-cost and eco-friendly biodegradable polymer materials with efficient performance.
Collapse
Affiliation(s)
- Jiayin Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Kun Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China
| | - Yikai Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pengpeng Shang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China
| | - Shangshan Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Bing Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Anran Liu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiahuan Liu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiazhuo Xie
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China.
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
2
|
Qu J, Chen Q, Huang W, Zhang L, Liu J. Dispersion and Diffusion Mechanism of Nanofillers with Different Geometries in Bottlebrush Polymers: Insights from Molecular Dynamics Simulation. J Phys Chem B 2022; 126:7761-7770. [PMID: 36169228 DOI: 10.1021/acs.jpcb.2c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dispersion and diffusion mechanism of nanofillers in polymer nanocomposites (PNCs) are crucial for understanding the properties of PNCs, which is of great significance for the design of novel materials. Herein, we investigate the dispersion and diffusion behavior of two geometries of nanofillers, namely, spherical nanoparticles (SNPs) and nanorods (NRs), in bottlebrush polymers by utilizing coarse-grained molecular dynamics simulations. With the increase of the interaction strength between the nanofiller and polymer (εnp), both the SNPs and NRs experience a typical "aggregated phase-dispersed phase-bridged phase" state transition in the bottlebrush polymer matrix. We evaluate the validity of the Stokes-Einstein (SE) equation for predicting the diffusion coefficient of nanofillers in bottlebrush polymers. The results demonstrate that the SE predictions are slightly larger than the simulated values for small SNP sizes because the local viscosity that is felt by small SNPs in the densely grafted bottlebrush polymer does not differ much from the macroscopic viscosity. The relative size of the length of the NRs (L) and the radius of gyration (Rg) of the bottlebrush polymer play a key role in the diffusion of NRs. In addition, we characterize the anisotropic diffusion of NRs to analyze their translational and rotational diffusion. The motion of NRs in the direction perpendicular to the end-to-end vector is more hindered, indicating that there is a strong coupling between the rotation of NRs and the motion of the polymer. The NR motion shows stronger anisotropic diffusion at short time scales because of the steric effects generated by side chains of the bottlebrush polymer. In general, our results provide a fundamental understanding of the dispersion of nanofillers and the microscopic mechanism of nanofiller diffusion in bottlebrush polymers.
Collapse
Affiliation(s)
- Jiajun Qu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qionghai Chen
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Wanhui Huang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
3
|
Power AJ, Papananou H, Rissanou AN, Labardi M, Chrissopoulou K, Harmandaris V, Anastasiadis SH. Dynamics of Polymer Chains in Poly(ethylene oxide)/Silica Nanocomposites via a Combined Computational and Experimental Approach. J Phys Chem B 2022; 126:7745-7760. [PMID: 36136347 DOI: 10.1021/acs.jpcb.2c04325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of polymer chains in poly(ethylene oxide)/silica (PEO/SiO2) nanoparticle nanohybrids have been investigated via a combined computational and experimental approach involving atomistic molecular dynamics simulations and dielectric relaxation spectroscopy (DRS) measurements. The complementarity of the approaches allows us to study systems with different polymer molecular weights, nanoparticle radii, and compositions across a broad range of temperatures. We study the effects of spatial confinement, which is induced by the nanoparticles, and chain adsorption on the polymer's structure and dynamics. The investigation of the static properties of the nanocomposites via detailed atomistic simulations revealed a heterogeneous polymer density layer at the vicinity of the PEO/SiO2 interface that exhibited an intense maximum close to the inorganic surface, whereas the bulk density was reached for distances ∼1-1.2 nm away from the nanoparticle. For small volume fractions of nanoparticles, the polymer dynamics, probed by the atomistic simulations of low-molecular-weight chains at high temperatures, are consistent with the presence of a thin adsorbed layer that exhibits slow dynamics, with the dynamics far away from the nanoparticle being similar to those in the bulk. However, for high volume fractions of nanoparticles (strong confinement), the dynamics of all polymer chains were predicted slower than that in the bulk. On the other hand, similar dynamics were found experimentally for both the local β-process and the segmental dynamics for high-molecular-weight systems measured at temperatures below the melting temperature of the polymer, which were probed by DRS. These differences can be attributed to various parameters, including systems of different molecular weights and nanoparticle states of dispersion, the different temperature range studied by the different methods, the potential presence of a reduced-mobility PEO/SiO2 interfacial layer that does not contribute to the dielectric spectrum, and the presence of amorphous-crystalline interfaces in the experimental samples that may lead to a different dynamical behaviors of the PEO chains.
Collapse
Affiliation(s)
- Albert J Power
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Hellen Papananou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Chemistry, University of Crete, P.O. Box 2208, Heraklion 71003, Greece
| | - Anastassia N Rissanou
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013, Greece.,Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Massimiliano Labardi
- CNR-IPCF, c/o Physics Department, University of Pisa, Largo Pontecorvo 3, Pisa 56127, Italy
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Spiros H Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Chemistry, University of Crete, P.O. Box 2208, Heraklion 71003, Greece
| |
Collapse
|
4
|
Javanainen M, Martinez-Seara H, Kelly CV, Jungwirth P, Fábián B. Anisotropic diffusion of membrane proteins at experimental timescales. J Chem Phys 2021; 155:015102. [PMID: 34241397 DOI: 10.1063/5.0054973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Single-particle tracking (SPT) experiments of lipids and membrane proteins provide a wealth of information about the properties of biomembranes. Careful analysis of SPT trajectories can reveal deviations from ideal Brownian behavior. Among others, this includes confinement effects and anomalous diffusion, which are manifestations of both the nanoscale structure of the underlying membrane and the structure of the diffuser. With the rapid increase in temporal and spatial resolution of experimental methods, a new aspect of the motion of the particle, namely, anisotropic diffusion, might become relevant. This aspect that so far received only little attention is the anisotropy of the diffusive motion and may soon provide an additional proxy to the structure and topology of biomembranes. Unfortunately, the theoretical framework for detecting and interpreting anisotropy effects is currently scattered and incomplete. Here, we provide a computational method to evaluate the degree of anisotropy directly from molecular dynamics simulations and also point out a way to compare the obtained results with those available from SPT experiments. In order to probe the effects of anisotropic diffusion, we performed coarse-grained molecular dynamics simulations of peripheral and integral membrane proteins in flat and curved bilayers. In agreement with the theoretical basis, our computational results indicate that anisotropy can persist up to the rotational relaxation time [τ=(2Dr)-1], after which isotropic diffusion is observed. Moreover, the underlying topology of the membrane bilayer can couple with the geometry of the particle, thus extending the spatiotemporal domain over which this type of motion can be detected.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, 666 W Hancock Street, Detroit, Michigan 48201, USA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
5
|
Skountzos EN, Tsalikis DG, Stephanou PS, Mavrantzas VG. Individual Contributions of Adsorbed and Free Chains to Microscopic Dynamics of Unentangled poly(ethylene Glycol)/Silica Nanocomposite Melts and the Important Role of End Groups: Theory and Simulation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02485] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emmanuel N. Skountzos
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras, GR 26504, Greece
| | - Dimitrios G. Tsalikis
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras, GR 26504, Greece
| | - Pavlos S. Stephanou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras, GR 26504, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
6
|
Kritikos G, Rissanou AN, Harmandaris V, Karatasos K. Bound Layer Polymer Behavior on Graphene and Graphene Oxide Nanosheets. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Georgios Kritikos
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Anastassia N. Rissanou
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion GR-71110, Greece
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion GR-71110, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR-71110, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Kostas Karatasos
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
7
|
Kumar A, Sharma K, Dixit AR. A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1680844] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Amit Kumar
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura, India
| | - Kamal Sharma
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura, India
| | - Amit Rai Dixit
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| |
Collapse
|