1
|
Motta M, Sung KJ, Shee J. Quantum Algorithms for the Variational Optimization of Correlated Electronic States with Stochastic Reconfiguration and the Linear Method. J Phys Chem A 2024; 128:8762-8776. [PMID: 39348598 DOI: 10.1021/acs.jpca.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Solving the electronic Schrodinger equation for strongly correlated ground states is a long-standing challenge. We present quantum algorithms for the variational optimization of wave functions correlated by products of unitary operators, such as Local Unitary Cluster Jastrow (LUCJ) ansatzes, using stochastic reconfiguration (SR) and the linear method (LM). While an implementation on classical computing hardware would require exponentially growing compute cost, the cost (number of circuits and shots) of our quantum algorithms is polynomial in system size. We find that classical simulations of optimization with the linear method consistently find lower energy solutions than with the L-BFGS-B optimizer across the dissociation curves of the notoriously difficult N2 and C2 dimers; LUCJ predictions of the ground-state energies deviate from exact diagonalization by 1 kcal/mol or less at all points on the potential energy curve. While we do characterize the effect of shot noise on the LM optimization, these noiseless results highlight the critical but often overlooked role that optimization techniques must play in attacking the electronic structure problem (on both classical and quantum hardware), for which even mean-field optimization is formally NP hard. We also discuss the challenge of obtaining smooth curves in these strongly correlated regimes, and propose a number of quantum-friendly solutions ranging from symmetry-projected ansatz forms to a symmetry-constrained optimization algorithm.
Collapse
Affiliation(s)
- Mario Motta
- IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Kevin J Sung
- IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - James Shee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Li X, Huang JC, Zhang GZ, Li HE, Shen ZP, Zhao C, Li J, Hu HS. Improved optimization for the neural-network quantum states and tests on the chromium dimer. J Chem Phys 2024; 160:234102. [PMID: 38884396 DOI: 10.1063/5.0214150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
The advent of Neural-network Quantum States (NQS) has significantly advanced wave function ansatz research, sparking a resurgence in orbital space variational Monte Carlo (VMC) exploration. This work introduces three algorithmic enhancements to reduce computational demands of VMC optimization using NQS: an adaptive learning rate algorithm, constrained optimization, and block optimization. We evaluate the refined algorithm on complex multireference bond stretches of H2O and N2 within the cc-pVDZ basis set and calculate the ground-state energy of the strongly correlated chromium dimer (Cr2) in the Ahlrichs SV basis set. Our results achieve superior accuracy compared to coupled cluster theory at a relatively modest CPU cost. This work demonstrates how to enhance optimization efficiency and robustness using these strategies, opening a new path to optimize large-scale restricted Boltzmann machine-based NQS more effectively and marking a substantial advancement in NQS's practical quantum chemistry applications.
Collapse
Affiliation(s)
- Xiang Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jia-Cheng Huang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Guang-Ze Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Hao-En Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Zhu-Ping Shen
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chen Zhao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Otis L, Neuscamman E. Optimization Stability in Excited-State-Specific Variational Monte Carlo. J Chem Theory Comput 2023; 19:767-782. [PMID: 36662538 DOI: 10.1021/acs.jctc.2c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We investigate the issue of optimization stability in variance-based state-specific variational Monte Carlo, discussing the roles of the objective function, the complexity of wave function ansatz, the amount of sampling effort, and the choice of minimization algorithm. Using a small cyanine dye molecule as a test case, we systematically perform minimizations using variants of the linear method as both a standalone algorithm and in a hybrid combination with accelerated descent. We demonstrate that adaptive step control is crucial for maintaining the linear method's stability when optimizing complicated wave functions and that the hybrid method enjoys both greater stability and minimization performance.
Collapse
Affiliation(s)
- Leon Otis
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Otis L, Neuscamman E. A promising intersection of excited‐state‐specific methods from quantum chemistry and quantum Monte Carlo. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Leon Otis
- Department of Physics University of California Berkeley Berkeley California USA
| | - Eric Neuscamman
- Department of Chemistry University of California Berkeley Berkeley California USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley California USA
| |
Collapse
|
5
|
Ammar A, Giner E, Scemama A. Optimization of Large Determinant Expansions in Quantum Monte Carlo. J Chem Theory Comput 2022; 18:5325-5336. [PMID: 35997484 DOI: 10.1021/acs.jctc.2c00556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new method for the optimization of large configuration interaction (CI) expansions in the quantum Monte Carlo (QMC) framework. The central idea here is to replace the nonorthogonal variational optimization of CI coefficients performed in usual QMC calculations by an orthogonal non-Hermitian optimization thanks to the so-called transcorrelated (TC) framework, the two methods yielding the same results in the limit of a complete basis set. By rewriting the TC equations as an effective self-consistent Hermitian problem, our approach requires the sampling of a single quantity per Slater determinant, leading to minimal memory requirements in the QMC code. Using analytical quantities obtained from both the TC framework and the usual CI-type calculations, we also propose improved estimators which reduce the statistical fluctuations of the sampled quantities by more than an order of magnitude. We demonstrate the efficiency of this method on wave functions containing 105-106 Slater determinants, using effective core potentials or all-electron calculations. In all the cases, a sub-milli-Hartree convergence is reached within only two or three iterations of optimization.
Collapse
Affiliation(s)
- Abdallah Ammar
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse - CNRS, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique (UMR 7616), Université Paris Sorbonne - CNRS, 4 place Jussieu, 75052 Paris cedex, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse - CNRS, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| |
Collapse
|
6
|
Neural Error Mitigation of Near-Term Quantum Simulations. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Blunt NS. Fixed- and Partial-Node Approximations in Slater Determinant Space for Molecules. J Chem Theory Comput 2021; 17:6092-6104. [PMID: 34549947 DOI: 10.1021/acs.jctc.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a study of fixed- and partial-node approximations in Slater determinant basis sets, using full configuration interaction quantum Monte Carlo (FCIQMC) to perform sampling. Walker annihilation in the FCIQMC method allows partial-node simulations to be performed, relaxing the nodal constraint to converge to the FCI solution. This is applied to ab initio molecular systems, using symmetry-projected Jastrow mean-field wave functions for complete active space (CAS) problems. Convergence and the sign problem within the partial-node approximation are studied, which is shown to eventually be limited in its use due to the large walker populations required. However, the fixed-node approximation results in an accurate and practical method. We apply these approaches to various molecular systems and active spaces, including ferrocene and acenes. This also provides a test of symmetry-projected Jastrow mean-field wave functions in variational Monte Carlo for a new set of problems. For trans-polyacetylene molecules and acenes, we find that the time to perform a constant number of fixed-node FCIQMC iterations scales as O(N1.44) and O(N1.75), respectively, resulting in an efficient method for CAS-based problems that can be applied accurately to large active spaces.
Collapse
Affiliation(s)
- Nick S Blunt
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, U.K.,St John's College, St John's Street, Cambridge CB2 1TP, U.K
| |
Collapse
|
8
|
Prayogo GI, Shin H, Benali A, Maezono R, Hongo K. Importance of Van der Waals Interactions in Hydrogen Adsorption on a Silicon-carbide Nanotube Revisited with vdW-DFT and Quantum Monte Carlo. ACS OMEGA 2021; 6:24630-24636. [PMID: 34604645 PMCID: PMC8482461 DOI: 10.1021/acsomega.1c03318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Density functional theory (DFT) is a valuable tool for calculating adsorption energies toward designing materials for hydrogen storage. However, dispersion forces being absent from the local/semi-local theory, it remains unclear as to how the consideration of van der Waals (vdW) interactions affects such calculations. For the first time, we applied diffusion Monte Carlo (DMC) to evaluate the adsorption characteristics of a hydrogen molecule on a (5,5) armchair silicon-carbide nanotube (H2-SiCNT). Within the DFT framework, we benchmarked various exchange-correlation functionals, including those recently developed for treating dispersion or vdW interactions. We found that the vdW-corrected DFT methods agree well with DMC, whereas the local (semilocal) functional significantly over (under)-binds. Furthermore, we fully optimized the H2-SiCNT geometry within the DFT framework and investigated the correlation between the structure and charge density. The vdW contribution to the adsorption was found to be non-negligible at ∼1 kcal/mol per hydrogen molecule, which amounts to 9-29% of the ideal adsorption energy required for hydrogen storage applications.
Collapse
Affiliation(s)
- Genki I. Prayogo
- School
of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
| | - Hyeondeok Shin
- Computational
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Anouar Benali
- Computational
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ryo Maezono
- School
of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
| | - Kenta Hongo
- Research
Center for Advanced Computing Infrastructure, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
9
|
Levy R, Clark BK. Mitigating the Sign Problem through Basis Rotations. PHYSICAL REVIEW LETTERS 2021; 126:216401. [PMID: 34114868 DOI: 10.1103/physrevlett.126.216401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 06/24/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Quantum Monte Carlo simulations of quantum many-body systems are plagued by the Fermion sign problem. The computational complexity of simulating Fermions scales exponentially in the projection time β and system size. The sign problem is basis dependent and an improved basis, for fixed errors, leads to exponentially quicker simulations. We show how to use sign-free quantum Monte Carlo simulations to optimize over the choice of basis on large two-dimensional systems. We numerically illustrate these techniques decreasing the "badness" of the sign problem by optimizing over single-particle basis rotations on one- and two-dimensional Hubbard systems. We find a generic rotation which improves the average sign of the Hubbard model for a wide range of U and densities for L×4 systems. In one example improvement, the average sign (and hence simulation cost at fixed accuracy) for the 16×4 Hubbard model at U/t=4 and n=0.75 increases by exp[8.64(6)β]. For typical projection times of β⪆100, this accelerates such simulation by many orders of magnitude.
Collapse
Affiliation(s)
- Ryan Levy
- Institute for Condensed Matter Theory and IQUIST and Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Bryan K Clark
- Institute for Condensed Matter Theory and IQUIST and Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
10
|
Otis L, Craig I, Neuscamman E. A hybrid approach to excited-state-specific variational Monte Carlo and doubly excited states. J Chem Phys 2020; 153:234105. [PMID: 33353344 DOI: 10.1063/5.0024572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We extend our hybrid linear-method/accelerated-descent variational Monte Carlo optimization approach to excited states and investigate its efficacy in double excitations. In addition to showing a superior statistical efficiency when compared to the linear method, our tests on small molecules show good energetic agreement with benchmark methods. We also demonstrate the ability to treat double excitations in systems that are too large for a full treatment by using selected configuration interaction methods via an application to 4-aminobenzonitrile. Finally, we investigate the stability of state-specific variance optimization against collapse to other states' variance minima and find that symmetry, Ansatz quality, and sample size all have roles to play in achieving stability.
Collapse
Affiliation(s)
- Leon Otis
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
| | - Isabel Craig
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Garner SM, Neuscamman E. A variational Monte Carlo approach for core excitations. J Chem Phys 2020; 153:144108. [DOI: 10.1063/5.0020310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Scott M. Garner
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Neufeld VA, Thom AJW. Accelerating Convergence in Fock Space Quantum Monte Carlo Methods. J Chem Theory Comput 2020; 16:1503-1510. [DOI: 10.1021/acs.jctc.9b01023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Verena A. Neufeld
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
13
|
Sabzevari I, Mahajan A, Sharma S. An accelerated linear method for optimizing non-linear wavefunctions in variational Monte Carlo. J Chem Phys 2020; 152:024111. [DOI: 10.1063/1.5125803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Iliya Sabzevari
- Department of Chemistry, The University of Colorado at Boulder, Boulder, Colorado 80302, USA
| | - Ankit Mahajan
- Department of Chemistry, The University of Colorado at Boulder, Boulder, Colorado 80302, USA
| | - Sandeep Sharma
- Department of Chemistry, The University of Colorado at Boulder, Boulder, Colorado 80302, USA
| |
Collapse
|
14
|
Mahajan A, Blunt NS, Sabzevari I, Sharma S. Multireference configuration interaction and perturbation theory without reduced density matrices. J Chem Phys 2019; 151:211102. [DOI: 10.1063/1.5128115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Nick S. Blunt
- Department of Chemistry, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Iliya Sabzevari
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| |
Collapse
|
15
|
Blunt NS. A hybrid approach to extending selected configuration interaction and full configuration interaction quantum Monte Carlo. J Chem Phys 2019; 151:174103. [DOI: 10.1063/1.5123146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Nick S. Blunt
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|