1
|
Kohn JT, Grimme S, Hansen A. A semi-automated quantum-mechanical workflow for the generation of molecular monolayers and aggregates. J Chem Phys 2024; 161:124707. [PMID: 39319657 DOI: 10.1063/5.0230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Organic electronics (OE) such as organic light-emitting diodes or organic solar cells represent an important and innovative research area to achieve global goals like environmentally friendly energy production. To accelerate OE material discovery, various computational methods are employed. For the initial generation of structures, a molecular cluster approach is employed. Here, we present a semi-automated workflow for the generation of monolayers and aggregates using the GFNn-xTB methods and composite density functional theory (DFT-3c). Furthermore, we present the novel D11A8MERO dye interaction energy benchmark with high-level coupled cluster reference interaction energies for the assessment of efficient quantum chemical and force-field methods. GFN2-xTB performs similar to low-cost DFT, reaching DFT/mGGA accuracy at two orders of magnitude lower computational cost. As an example application, we investigate the influence of the dye aggregate size on the optical and electrical properties and show that at least four molecules in a cluster model are needed for a qualitatively reasonable description.
Collapse
Affiliation(s)
- J T Kohn
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - S Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - A Hansen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| |
Collapse
|
2
|
Uribe L, Di Grande S, Crisci L, Lazzari F, Mendolicchio M, Barone V. Accurate Structures and Rotational Constants of Steroid Hormones at DFT Cost: Androsterone, Testosterone, Estrone, β-Estradiol, and Estriol. J Phys Chem A 2024; 128:2629-2642. [PMID: 38530336 DOI: 10.1021/acs.jpca.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A comprehensive analysis of the structural, conformational, and spectroscopic properties in the gas phase has been performed for five prototypical steroid hormones, namely, androsterone, testosterone, estrone, β-estradiol, and estriol. The revDSD-PBEP86 double-hybrid functional in conjunction with the D3BJ empirical dispersion and a suitable triple-ζ basis set provides accurate conformational energies and equilibrium molecular structures, with the latter being further improved by proper account of core-valence correlation. Average deviations within 0.1% between computed and experimental ground state rotational constants are reached when adding to those equilibrium values vibrational corrections obtained at the cost of standard harmonic frequencies thanks to the use of a new computational tool. Together with the intrinsic interest of the studied hormones, the accuracy of the results obtained at DFT cost for molecules containing about 50 atoms paves the way toward the accurate investigations of other flexible bricks of life.
Collapse
Affiliation(s)
- Lina Uribe
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Silvia Di Grande
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Luigi Crisci
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Federico Lazzari
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Mendolicchio
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | |
Collapse
|
3
|
Gelžinytė E, Öeren M, Segall MD, Csányi G. Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules. J Chem Theory Comput 2024; 20:164-177. [PMID: 38108269 PMCID: PMC10782450 DOI: 10.1021/acs.jctc.3c00710] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
We present a transferable MACE interatomic potential that is applicable to open- and closed-shell drug-like molecules containing hydrogen, carbon, and oxygen atoms. Including an accurate description of radical species extends the scope of possible applications to bond dissociation energy (BDE) prediction, for example, in the context of cytochrome P450 (CYP) metabolism. The transferability of the MACE potential was validated on the COMP6 data set, containing only closed-shell molecules, where it reaches better accuracy than the readily available general ANI-2x potential. MACE achieves similar accuracy on two CYP metabolism-specific data sets, which include open- and closed-shell structures. This model enables us to calculate the aliphatic C-H BDE, which allows us to compare reaction energies of hydrogen abstraction, which is the rate-limiting step of the aliphatic hydroxylation reaction catalyzed by CYPs. On the "CYP 3A4" data set, MACE achieves a BDE RMSE of 1.37 kcal/mol and better prediction of BDE ranks than alternatives: the semiempirical AM1 and GFN2-xTB methods and the ALFABET model that directly predicts bond dissociation enthalpies. Finally, we highlight the smoothness of the MACE potential over paths of sp3C-H bond elongation and show that a minimal extension is enough for the MACE model to start finding reasonable minimum energy paths of methoxy radical-mediated hydrogen abstraction. Altogether, this work lays the ground for further extensions of scope in terms of chemical elements, (CYP-mediated) reaction classes and modeling the full reaction paths, not only BDEs.
Collapse
Affiliation(s)
- Elena Gelžinytė
- Engineering
Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
| | - Mario Öeren
- Optibrium
Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.
| | - Matthew D. Segall
- Optibrium
Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.
| | - Gábor Csányi
- Engineering
Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
| |
Collapse
|
4
|
Teng C, Huang D, Donahue E, Bao JL. Exploring torsional conformer space with physical prior mean function-driven meta-Gaussian processes. J Chem Phys 2023; 159:214111. [PMID: 38051097 DOI: 10.1063/5.0176709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
We present a novel approach for systematically exploring the conformational space of small molecules with multiple internal torsions. Identifying unique conformers through a systematic conformational search is important for obtaining accurate thermodynamic functions (e.g., free energy), encompassing contributions from the ensemble of all local minima. Traditional geometry optimizers focus on one structure at a time, lacking transferability from the local potential-energy surface (PES) around a specific minimum to optimize other conformers. In this work, we introduce a physics-driven meta-Gaussian processes (meta-GPs) method that not only enables efficient exploration of target PES for locating local minima but, critically, incorporates physical surrogates that can be applied universally across the optimization of all conformers of the same molecule. Meta-GPs construct surrogate PESs based on the optimization history of prior conformers, dynamically selecting the most suitable prior mean function (representing prior knowledge in Bayesian learning) as a function of the optimization progress. We systematically benchmarked the performance of multiple GP variants for brute-force conformational search of amino acids. Our findings highlight the superior performance of meta-GPs in terms of efficiency, comprehensiveness of conformer discovery, and the distribution of conformers compared to conventional non-surrogate optimizers and other non-meta-GPs. Furthermore, we demonstrate that by concurrently optimizing, training GPs on the fly, and learning PESs, meta-GPs exhibit the capacity to generate high-quality PESs in the torsional space without extensive training data. This represents a promising avenue for physics-based transfer learning via meta-GPs with adaptive priors in exploring torsional conformer space.
Collapse
Affiliation(s)
- Chong Teng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Daniel Huang
- Department of Computer Science, San Francisco State University, San Francisco, California 94132, USA
| | - Elizabeth Donahue
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
5
|
Barone V, Uribe Grajales LM, Di Grande S, Lazzari F, Mendolicchio M. DFT Meets Wave-Function Methods for Accurate Structures and Rotational Constants of Histidine, Tryptophan, and Proline. J Phys Chem A 2023; 127:7534-7543. [PMID: 37665117 PMCID: PMC10510395 DOI: 10.1021/acs.jpca.3c04227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/12/2023] [Indexed: 09/05/2023]
Abstract
A new computational strategy has been applied to the conformational and spectroscopic properties in the gas phase of amino acids with very distinctive features, ranging from different tautomeric forms (histidine) to ring puckering (proline), and heteroaromatic structures with non-equivalent rings (tryptophan). The integration of modern double-hybrid functionals and wave-function composite methods has allowed us to obtain accurate results for a large panel of conformers with reasonable computer times. The remarkable agreement between computations and microwave experiments allows an unbiased interpretation of the latter in terms of stereoelectronic effects.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Lina Marcela Uribe Grajales
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Silvia Di Grande
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Federico Lazzari
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Mendolicchio
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
6
|
Barone V. Accurate structures and spectroscopic parameters of α,α-dialkylated α-amino acids in the gas-phase: a joint venture of DFT and wave-function composite methods. Phys Chem Chem Phys 2023; 25:22768-22774. [PMID: 37591810 DOI: 10.1039/d3cp02503a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Accurate computations of structural, conformational and spectroscopic properties in the gas phase have been performed for two α,α-dialkylated α-amino acids, namely aminoisobutyric acid and cyclopropylglycine. Thanks to the integration of modern double hybrid functionals and wave-function methods, several low-energy structures of the title molecules could be analyzed employing standard computer resources. The computed features of all the most stable conformers of the target amino acids closely match the corresponding spectroscopic parameters issued from microwave spectroscopic studies in the gas-phase. Together with their intrinsic interest, the accuracy of the results obtained with reasonable computer times paves the way for accurate investigations of other flexible bricks of life.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
7
|
Barone V, Di Grande S, Lazzari F, Mendolicchio M. Accurate Structures and Spectroscopic Parameters of Guanine Tautomers in the Gas Phase by the Pisa Conventional and Explicitly Correlated Composite Schemes (PCS and PCS-F12). J Phys Chem A 2023; 127:6771-6778. [PMID: 37535450 PMCID: PMC10440789 DOI: 10.1021/acs.jpca.3c03999] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Indexed: 08/05/2023]
Abstract
A general strategy for the accurate computation of structural and spectroscopic properties of biomolecule building blocks in the gas phase is proposed and validated for tautomeric equilibria. The main features of the new model are the inclusion of core-valence correlation in geometry optimizations by a double hybrid functional and the systematic use of wave-function composite methods in conjunction with cc-pVnZ-F12 basis sets with separate extrapolation of MP2 and post-MP2 contributions. The resulting Pisa composite scheme employing conventional (PCS) or explicitly correlated (PCS-F12) approaches is applied to the challenging problem of guanine tautomers in the gas phase. The results are in remarkable agreement with the experimental structures, relative stabilities, and spectroscopic signatures of different tautomers. The accuracy of the results obtained at reasonable cost by means of black-box parameter-free approaches paves the way toward systematic investigations of other molecular bricks of life also by non-specialists.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Silvia Di Grande
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, Napoli 80138, Italy
| | - Federico Lazzari
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | | |
Collapse
|
8
|
Barone V. DFT Meets Wave-Function Composite Methods for Characterizing Cytosine Tautomers in the Gas Phase. J Chem Theory Comput 2023; 19:4970-4981. [PMID: 37479680 PMCID: PMC10413851 DOI: 10.1021/acs.jctc.3c00465] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 07/23/2023]
Abstract
A general strategy for the accurate computation of structural and spectroscopic properties of biomolecule building blocks in the gas phase has been further improved and validated with a special reference to tautomeric equilibria. The main improvements concern the use of the cc-pVTZ-F12 basis set in both DFT and CCSD(T)-F12 computations, the inclusion of core-valence correlation in geometry optimizations by double hybrid functionals, and the use of the cc-pVQZ-F12 basis set for complete basis set extrapolation at the MP2-F12 level. The resulting model chemistry is applied to the challenging problem of cytosine tautomers in the gas phase. The results are in remarkable agreement with experiment concerning both rotational and vibrational spectroscopic parameters and permit their unbiased interpretation in terms of structural and thermochemical features. Together with the intrinsic interest of the studied molecule, the accuracy of the results obtained at reasonable cost without any empirical parameter suggests that the proposed composite method can be profitably employed for accurate investigations of other molecular bricks of life.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore
di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
9
|
Barone V, Fusè M. Accurate Structures and Spectroscopic Parameters of Phenylalanine and Tyrosine in the Gas Phase: A Joint Venture of DFT and Composite Wave-Function Methods. J Phys Chem A 2023; 127:3648-3657. [PMID: 37052318 PMCID: PMC10150396 DOI: 10.1021/acs.jpca.3c01174] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A general strategy for the accurate computation of conformational and spectroscopic properties of flexible molecules in the gas phase is applied to two representative proteinogenic amino acids with aromatic side chains, namely, phenylalanine and tyrosine. The main features of all the most stable conformers predicted by this computational strategy closely match those of the species detected in microwave and infrared experiments. Together with their intrinsic interest, the accuracy of the results obtained with reasonable computer times paves the route for accurate investigations of other flexible bricks of life.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Fusè
- DMMT-sede Europa, Università di Brescia, Viale Europa 11, 25121 Brescia, Italy
| |
Collapse
|
10
|
Barone V, Fusè M, Lazzari F, Mancini G. Benchmark Structures and Conformational Landscapes of Amino Acids in the Gas Phase: A Joint Venture of Machine Learning, Quantum Chemistry, and Rotational Spectroscopy. J Chem Theory Comput 2023; 19:1243-1260. [PMID: 36731119 PMCID: PMC9979611 DOI: 10.1021/acs.jctc.2c01143] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The accurate characterization of prototypical bricks of life can strongly benefit from the integration of high resolution spectroscopy and quantum mechanical computations. We have selected a number of representative amino acids (glycine, alanine, serine, cysteine, threonine, aspartic acid and asparagine) to validate a new computational setup rooted in quantum-chemical computations of increasing accuracy guided by machine learning tools. Together with low-lying energy minima, the barriers ruling their interconversion are evaluated in order to unravel possible fast relaxation paths. Vibrational and thermal effects are also included in order to estimate relative free energies at the temperature of interest in the experiment. The spectroscopic parameters of all the most stable conformers predicted by this computational strategy, which do not have low-energy relaxation paths available, closely match those of the species detected in microwave experiments. Together with their intrinsic interest, these accurate results represent ideal benchmarks for more approximate methods.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy,
| | - Marco Fusè
- DMMT-sede
Europa, Universitá di Brescia, viale Europa 11, 25121 Brescia, Italy
| | - Federico Lazzari
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giordano Mancini
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
11
|
Steiner M, Reiher M. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Top Catal 2022; 65:6-39. [PMID: 35185305 PMCID: PMC8816766 DOI: 10.1007/s11244-021-01543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11244-021-01543-9.
Collapse
Affiliation(s)
- Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Ferro-Costas D, Mosquera-Lois I, Fernández-Ramos A. TorsiFlex: an automatic generator of torsional conformers. Application to the twenty proteinogenic amino acids. J Cheminform 2021; 13:100. [PMID: 34952644 PMCID: PMC8710030 DOI: 10.1186/s13321-021-00578-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
In this work, we introduce TorsiFlex, a user-friendly software written in Python 3 and designed to find all the torsional conformers of flexible acyclic molecules in an automatic fashion. For the mapping of the torsional potential energy surface, the algorithm implemented in TorsiFlex combines two searching strategies: preconditioned and stochastic. The former is a type of systematic search based on chemical knowledge and should be carried out before the stochastic (random) search. The algorithm applies several validation tests to accelerate the exploration of the torsional space. For instance, the optimized structures are stored and this information is used to prevent revisiting these points and their surroundings in future iterations. TorsiFlex operates with a dual-level strategy by which the initial search is carried out at an inexpensive electronic structure level of theory and the located conformers are reoptimized at a higher level. Additionally, the program takes advantage of conformational enantiomerism, when possible. As a case study, and in order to exemplify the effectiveness and capabilities of this program, we have employed TorsiFlex to locate the conformers of the twenty proteinogenic amino acids in their neutral canonical form. TorsiFlex has produced a number of conformers that roughly doubles the amount of the most complete work to date.
Collapse
Affiliation(s)
- David Ferro-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Irea Mosquera-Lois
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antonio Fernández-Ramos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Barone V, Lupi J, Salta Z, Tasinato N. Development and Validation of a Parameter-Free Model Chemistry for the Computation of Reliable Reaction Rates. J Chem Theory Comput 2021; 17:4913-4928. [PMID: 34228935 PMCID: PMC8359010 DOI: 10.1021/acs.jctc.1c00406] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
A recently developed
model chemistry (jun-Cheap) has been slightly
modified and proposed as an effective, reliable, and parameter-free
scheme for the computation of accurate reaction rates with special
reference to astrochemical and atmospheric processes. Benchmarks with
different sets of state-of-the-art energy barriers spanning a wide
range of values show that, in the absence of strong multireference
contributions, the proposed model outperforms the most well-known
model chemistries, reaching a subchemical accuracy without any empirical
parameter and with affordable computer times. Some test cases show
that geometries, energy barriers, zero point energies, and thermal
contributions computed at this level can be used in the framework
of the master equation approach based on the ab initio transition-state
theory for obtaining accurate reaction rates.
Collapse
Affiliation(s)
- Vincenzo Barone
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Jacopo Lupi
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Zoi Salta
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Nicola Tasinato
- SMART Laboratory, Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56125 Pisa, Italy
| |
Collapse
|
14
|
Barone V, Puzzarini C, Mancini G. Integration of theory, simulation, artificial intelligence and virtual reality: a four-pillar approach for reconciling accuracy and interpretability in computational spectroscopy. Phys Chem Chem Phys 2021; 23:17079-17096. [PMID: 34346437 DOI: 10.1039/d1cp02507d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The established pillars of computational spectroscopy are theory and computer based simulations. Recently, artificial intelligence and virtual reality are becoming the third and fourth pillars of an integrated strategy for the investigation of complex phenomena. The main goal of the present contribution is the description of some new perspectives for computational spectroscopy, in the framework of a strategy in which computational methodologies at the state of the art, high-performance computing, artificial intelligence and virtual reality tools are integrated with the aim of improving research throughput and achieving goals otherwise not possible. Some of the key tools (e.g., continuous molecular perception model and virtual multifrequency spectrometer) and theoretical developments (e.g., non-periodic boundaries, joint variational-perturbative models) are shortly sketched and their application illustrated by means of representative case studies taken from recent work by the authors. Some of the results presented are already well beyond the state of the art in the field of computational spectroscopy, thereby also providing a proof of concept for other research fields.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | | | | |
Collapse
|
15
|
Terayama K, Sumita M, Katouda M, Tsuda K, Okuno Y. Efficient Search for Energetically Favorable Molecular Conformations against Metastable States via Gray-Box Optimization. J Chem Theory Comput 2021; 17:5419-5427. [PMID: 34261321 DOI: 10.1021/acs.jctc.1c00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to accurately understand and estimate molecular properties, finding energetically favorable molecular conformations is the most fundamental task for atomistic computational research on molecules and materials. Geometry optimization based on quantum chemical calculations has enabled the conformation prediction of arbitrary molecules, including de novo ones. However, it is computationally expensive to perform geometry optimizations for enormous conformers. In this study, we introduce the gray-box optimization (GBO) framework, which enables optimal control over the entire geometry optimization process, among multiple conformers. Algorithms designed for GBO roughly estimate energetically preferable conformers during their geometry optimization iterations. They then preferentially compute promising conformers. To evaluate the performance of the GBO framework, we applied it to a test set consisting of seven dipeptides and mycophenolic acid to determine their stable conformations at the density functional theory level. We thus preferentially obtained energetically favorable conformations. Furthermore, the computational costs required to find the most stable conformation were significantly reduced (approximately 1% on average, compared to the naive approach for the dipeptides).
Collapse
Affiliation(s)
- Kei Terayama
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan.,Medical Sciences Innovation Hub Program, RIKEN, Yokohama 230-0045, Japan.,Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masato Sumita
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan.,International Center for Materials Nanoarchitectonics(WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Michio Katouda
- Department of Computational Science and Technology, Research Organization for Information Science and Technology, Minato-ku, Tokyo 105-0013, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, Sinjuku-ku, Tokyo 169-8555, Japan
| | - Koji Tsuda
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan.,Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Yasushi Okuno
- Medical Sciences Innovation Hub Program, RIKEN, Yokohama 230-0045, Japan.,Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
16
|
Spoel D, Zhang J, Zhang H. Quantitative predictions from molecular simulations using explicit or implicit interactions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology Uppsala University Uppsala Sweden
| | - Jin Zhang
- Department of Chemistry Southern University of Science and Technology Shenzhen China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
17
|
Potenti S, Spada L, Fusè M, Mancini G, Gualandi A, Leonardi C, Cozzi PG, Puzzarini C, Barone V. 4-Fluoro-Threonine: From Diastereoselective Synthesis to pH-Dependent Conformational Equilibrium in Aqueous Solution. ACS OMEGA 2021; 6:13170-13181. [PMID: 34056467 PMCID: PMC8158790 DOI: 10.1021/acsomega.1c01007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
4-Fluoro-threonine, the only fluoro amino acid of natural origin discovered so far, is an interesting target for both synthetic and theoretical investigations. In this work, we lay the foundation for spectroscopic characterization of 4-fluoro-threonine. First, we report a diastereoselective synthetic route, which is suitable to produce synthetic material for experimental characterization. The addition of the commercially available ethyl isocyanoacetate to benzyloxyacetaldehyde led to the corresponding benzyloxy-oxazoline, which was hydrolyzed and transformed into ethyl (4S*,5S*)-5-hydroxymethyl-2-oxo-4-oxazolidinecarboxylate in a few steps. Fluorination with diethylamino sulfur trifluoride (DAST) afforded ethyl (4S*,5S*)-5-fluoromethyl-2-oxo-4-oxazolidinecarboxylate, which was deprotected to give the desired diastereomerically pure 4-fluoro-threonine, in 8-10% overall yield. With the synthetic material in our hands, acid-base titrations have been carried out to determine acid dissociation constants and the isoelectric point, which is the testing ground for the theoretical analysis. We have used machine learning coupled with quantum chemistry at the state-of-the-art to analyze the conformational space of 4-fluoro-threonine, with the aim of gaining insights from the comparison of computational and experimental results. Indeed, we have demonstrated that our approach, which couples a last-generation double-hybrid density functional including empirical dispersion contributions with a model combining explicit first-shell molecules and a polarizable continuum for describing solvent effects, provides results and trends in remarkable agreement with experiments. Finally, the conformational analysis applied to fluoro amino acids represents an interesting study for the effect of fluorine on the stability and population of conformers.
Collapse
Affiliation(s)
- Simone Potenti
- Laboratorio
SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Lorenzo Spada
- Laboratorio
SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Fusè
- Laboratorio
SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giordano Mancini
- Laboratorio
SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Istituto
Nazionale di Fisica Nucleare (INFN), Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Andrea Gualandi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Costanza Leonardi
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Pier Giorgio Cozzi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Cristina Puzzarini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Vincenzo Barone
- Laboratorio
SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
18
|
Ravutsov M, Dobrikov GM, Dangalov M, Nikolova R, Dimitrov V, Mazzeo G, Longhi G, Abbate S, Paoloni L, Fusè M, Barone V. 1,2-Disubstituted Planar Chiral Ferrocene Derivatives from Sulfonamide-Directed ortho-Lithiation: Synthesis, Absolute Configuration, and Chiroptical Properties. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Ravutsov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Rositsa Nikolova
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 107, Sofia 1113, Bulgaria
| | - Vladimir Dimitrov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
- Research Unit of Brescia, Istituto Nazionale di Ottica (INO), CNR, 25123 Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
- Research Unit of Brescia, Istituto Nazionale di Ottica (INO), CNR, 25123 Brescia, Italy
| | - Lorenzo Paoloni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
19
|
Lewis-Atwell T, Townsend PA, Grayson MN. Comparisons of different force fields in conformational analysis and searching of organic molecules: A review. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131865] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Mancini G, Fusè M, Lazzari F, Chandramouli B, Barone V. Unsupervised search of low-lying conformers with spectroscopic accuracy: A two-step algorithm rooted into the island model evolutionary algorithm. J Chem Phys 2020; 153:124110. [DOI: 10.1063/5.0018314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Federico Lazzari
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | | | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| |
Collapse
|
21
|
Puzzarini C, Barone V. The challenging playground of astrochemistry: an integrated rotational spectroscopy - quantum chemistry strategy. Phys Chem Chem Phys 2020; 22:6507-6523. [PMID: 32163090 DOI: 10.1039/d0cp00561d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While it is now well demonstrated that the interstellar medium (ISM) is characterized by a diverse and complex chemistry, a significant number of features in radioastronomical spectra are still unassigned and call for new laboratory efforts, which are increasingly based on integrated experimental and computational strategies. In parallel, the identification of an increasing number of molecules containing more than five atoms and at least one carbon atom (the so-called "interstellar" complex organic molecules), which can play a relevant role in the chemistry of life, raises the additional issue of how these species can be produced in the typical harsh conditions of the ISM. On these grounds, this perspective aims to present an integrated rotational spectroscopy - quantum chemistry approach for supporting radioastronomical observations and a computational strategy for contributing to the elucidation of chemical reactivity in the interstellar space.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| |
Collapse
|
22
|
Fusè M, Mazzeo G, Longhi G, Abbate S, Masi M, Evidente A, Puzzarini C, Barone V. Unbiased Determination of Absolute Configurations by vis-à-vis Comparison of Experimental and Simulated Spectra: The Challenging Case of Diplopyrone. J Phys Chem B 2019; 123:9230-9237. [PMID: 31580674 DOI: 10.1021/acs.jpcb.9b08375] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new experimental-computational strategy for the determination of the absolute configuration (AC) of complex chiral molecules is proposed by combining diverse experimental spectroscopies with quantum-mechanical simulations well beyond the current computational practice. Key features are the conformer search and relative stability evaluation performed by a new stochastic two-level tool followed by a vis-à-vis comparison of experimental and computed spectra without any ad hoc adjustment. The entire computational procedure is embedded in the user-friendly VMS software, and its reliability is granted by the inclusion of mechanic/electric/magnetic anharmonicity as well as ro-vibrational and vibronic couplings by means of generalized perturbation theory in conjunction with double-hybrid functionals combined with empirical dispersion contributions and suitable basis sets. To test and validate the new approach, the puzzling case of diplopyrone, a fungal phytotoxic metabolite, has been chosen: the close match between new experimental and simulated infrared absorption and vibrational circular dichroism spectra has led to the unbiased evaluation of its AC.
Collapse
Affiliation(s)
- Marco Fusè
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy.,Consiglio Nazionale delle Ricerche-I.N.O. c/o CSMT , via Branze, 45 - 25123 Brescia , Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy.,Consiglio Nazionale delle Ricerche-I.N.O. c/o CSMT , via Branze, 45 - 25123 Brescia , Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Complesso Universitario Monte S. Angelo, Via Cintia 4 , 80126 Napoli , Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Complesso Universitario Monte S. Angelo, Via Cintia 4 , 80126 Napoli , Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician" , Università di Bologna , Via Selmi 2 , I-40126 Bologna , Italy
| | - Vincenzo Barone
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| |
Collapse
|