1
|
Swarna MR, Opi MH, Ahmed T, Piya AA, Habiba U, Shamim SUD. Understanding the adsorption performance of hetero-nanocages (C 12-B 6N 6, C 12-Al 6N 6, and B 6N 6-Al 6N 6) towards hydroxyurea anticancer drug: a comprehensive study using DFT. NANOSCALE ADVANCES 2024:d4na00472h. [PMID: 39372438 PMCID: PMC11447748 DOI: 10.1039/d4na00472h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Cancer is a paramount health challenge to global health, which forms tumors that can invade nearby tissues and spread to neighboring cells. Recently, nanotechnology has been used to control the growth of cancer, in which anticancer drugs are delivered to cancerous cells via nanoparticles without damaging healthy tissues. In this study, DFT investigations were carried out to examine the adsorption behavior of C24, B12N12, and Al12N12 nanocages as well as their heterostructures C12-B6N6, C12-Al6N6, and B6N6-Al6N6 towards the hydroxyurea (HU) anticancer drug. In this regard, adsorption energy, interaction distance between the drug and nanocages, charge transfer, energy gap, dipole moment, quantum molecular descriptors, work function, and COSMO surface analysis were analyzed to understand their adsorption performance. Findings demonstrate that the adsorption energies of two hetero-nanocages on their hexagonal (SH) and tetragonal (ST) sites are favorable for the drug delivery process. The computed adsorption energy of B6N6-Al6N6 of the ST/AlN site is 183.59 kJ mol-1, which is higher than that of the C12-Al6N6 nanocage, including minimum adsorption distances. Negative adsorption energy with low adsorption distances implies an attractive interaction between the drug and nanocages. During the interaction, a significant amount of charge is transferred between the drug and nanocages. Furthermore, for both complexes, larger dipole moments were observed in water media compared to gas media. From DOS spectra, prominent peaks were found in the Fermi level after adsorption of HU on the nanocages, implying the reduction of the energy gap. Noticeable overlaps between the PDOS spectra of the nanocages and HU's close contact atom demonstrate the formation of chemical bonds between two specific atoms. Therefore, it can be concluded that among the nanocages, C12-Al6N6 and B6N6-Al6N6 may be suitable carriers for HU drug.
Collapse
Affiliation(s)
- Mithila Roy Swarna
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Mehedi Hasan Opi
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Tanvir Ahmed
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Afiya Akter Piya
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Umme Habiba
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Siraj Ud Daula Shamim
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| |
Collapse
|
2
|
Jana SK, Som NN, Jha PK. Size-Dependent Fullerenes for Enhanced Interaction of l-Leucine: A Combined DFT and MD Simulations Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13844-13859. [PMID: 38916256 DOI: 10.1021/acs.langmuir.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fullerene-based biosensors have received great attention due to their unique electronic properties that allow them to transduce electrical signals by accepting electrons from amino acids. Babies with MSUD (maple syrup urine disease) are unable to break down amino acids such as l-leucine, and excess levels of the l-leucine are harmful. Therefore, sensing of l-leucine is foremost required. We aim to investigate the interaction tendencies of size-variable fullerenes (CX; X = 24, 36, 50, and 70) toward l-leucine (LEU) using density functional theory (DFT-D3) and classical molecular dynamics (MD) simulation. The C24 fullerene shows the highest affinity of the LEU biomolecule in the gas phase. Smaller fullerenes (C24 and C36) show stronger interactions with leucine due to their higher curvature in water environments. Moreover, recovery times in the ranges of 1010 and 104 s make it a viable candidate for the isolation application of LEU from the biological system. Further, the interaction between LEU and fullerenes is in line with the natural bond order (NBO) analysis, Mulliken charge analysis, quantum theory atom in molecule (QTAIM) analysis, and reduced density gradient (RDG) analysis. At 310 K, employing the explicit water model in classical MD simulations, fullerenes C24 and C36 demonstrate notably elevated binding free energies (-24.946 kJ/mol) in relation to LEU, showcasing their potential as sensors for l-leucine. Here, we demonstrate that the smaller fullerene exhibits a higher potential for l-leucine sensors than the larger fullerene.
Collapse
Affiliation(s)
- Sourav Kanti Jana
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 39002, India
| | - Narayan N Som
- Institute of High-Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Prafulla K Jha
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 39002, India
| |
Collapse
|
3
|
Fokina A, Poletaeva Y, Dukova S, Klabenkova K, Rad’kova Z, Bakulina A, Zatsepin T, Ryabchikova E, Stetsenko D. Template-Assisted Assembly of Hybrid DNA/RNA Nanostructures Using Branched Oligodeoxy- and Oligoribonucleotides. Int J Mol Sci 2023; 24:15978. [PMID: 37958961 PMCID: PMC10650595 DOI: 10.3390/ijms242115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
A template-assisted assembly approach to a C24 fullerene-like double-stranded DNA polyhedral shell is proposed. The assembly employed a supramolecular oligonucleotide dendrimer as a 3D template that was obtained via the hybridization of siRNA strands and a single-stranded DNA oligonucleotide joined to three- or four-way branched junctions. A four-way branched oligonucleotide building block (a starlet) was designed for the assembly of the shell composed of three identical self-complementary DNA single strands and a single RNA strand for hybridization to the DNA oligonucleotides of the template. To prevent premature auto-hybridization of the self-complementary oligonucleotides in the starlet, a photolabile protecting group was introduced via the N3-substituted thymidine phosphoramidite. Cleavable linkers such as a disulfide linkage, RNase A sensitive triribonucleotides, and di- and trideoxynucleotides were incorporated into the starlet and template at specific points to guide the post-assembly disconnection of the shell from the template, and enzymatic disassembly of the template and the shell in biological media. At the same time, siRNA strands were modified with 2'-OMe ribonucleotides and phosphorothioate groups in certain positions to stabilize toward enzymatic digestion. We report herein a solid-phase synthesis of branched oligodeoxy and oligoribonucleotide building blocks for the DNA/RNA dendritic template and the branched DNA starlet for a template-assisted construction of a C24 fullerene-like DNA shell after initial molecular modeling, followed by the assembly of the shell around the DNA-coated RNA dendritic template, and visualization of the resulting nanostructure by transmission electron microscopy.
Collapse
Affiliation(s)
- Alesya Fokina
- Faculty of Physics, Novosibirsk State University, Novosibirsk 630090, Russia; (A.F.); (K.K.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yulia Poletaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (Y.P.); (E.R.)
| | | | - Kristina Klabenkova
- Faculty of Physics, Novosibirsk State University, Novosibirsk 630090, Russia; (A.F.); (K.K.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Zinaida Rad’kova
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia; (Z.R.); (A.B.)
| | - Anastasia Bakulina
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia; (Z.R.); (A.B.)
| | - Timofei Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Elena Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (Y.P.); (E.R.)
| | - Dmitry Stetsenko
- Faculty of Physics, Novosibirsk State University, Novosibirsk 630090, Russia; (A.F.); (K.K.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Tamafo Fouegue AD, de Paul Zoua V, Kounou GN, Ndjopme Wandji BL, Ghogomu JN, Ntieche RA. DFT investigation of temozolomide drug delivery by pure and boron doped C 24 fullerene-like nanocages. NANOSCALE ADVANCES 2023; 5:5880-5891. [PMID: 37881702 PMCID: PMC10597570 DOI: 10.1039/d3na00402c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/02/2023] [Indexed: 10/27/2023]
Abstract
In this paper, the DFT/M05-2X-D3/6-31+G(d,p) theoretical chemistry method is used to probe the adsorption ability of pure and boron doped C24 toward the temozolomide (TMZ) anticancer drug. The study is conducted in both gas and aqueous phases. The positive values of the Gibbs free energy of formation (12.03, 9.14 and 2.51 kcal mol-1) show that the adsorption of TMZ on C24 is not allowed. However, the boron-doped C24 (BC23) forms a very stable molecular complex with TMZ in the gas phase, characterized by the adsorption energy and Gibbs free energy values of -32.07 and -21.27 kcal mol-1 respectively. Analysis of Hirshfeld's atomic charge revealed the transfer of 0.6395e from TMZ to BC23, which is confirmed by the value of the dipole moment of the complex (13.42 D in the gas phase) as well as its molecular electrostatic potential map. The change in the frontier molecular orbital energy difference of BC23 is found to be 21.67% proving the good sensitivity of the cage toward the drug. The TMZ-BC23 molecular complex is very stable in water though the sensitivity of the cage is hugely reduced in that solvent. The reliability of these results was confirmed by checking the outcomes at both wB97XD/6-31+G(d,p) and B3LYP-D3/6-31+G(d,p) levels. This work shows that pristine BC23 is a better adsorbent of TMZ than some reported nanomaterials from the theoretical chemistry point of view.
Collapse
Affiliation(s)
- Aymard Didier Tamafo Fouegue
- Department of Chemistry, Higher Teacher Training College, The University of Bertoua P.O. Box 652 Bertoua Cameroon
| | - Vincent de Paul Zoua
- Department of Chemistry, Faculty of Science, The University of Maroua P.O. Box 814 Maroua Cameroon
| | - Gervais Ndongo Kounou
- University Institute of Wood Technology of Mbalmayo, University of Yaoundé I P.O. Box 306 Mbalmayo Cameroon
| | | | - Julius Numbonui Ghogomu
- Department of Chemistry, Faculty of Science, The University of Bamenda P.O. Box 39 Bambili-Bamenda Cameroon
| | - Rahman Abdoul Ntieche
- Department of Chemistry, Higher Teacher Training College, The University of Bertoua P.O. Box 652 Bertoua Cameroon
| |
Collapse
|
5
|
Pisu AA, Siddi F, Cappellini G, Cardia R. Optical properties of nanostructured antiviral and anticancer drugs. RSC Adv 2023; 13:22481-22492. [PMID: 37534260 PMCID: PMC10392868 DOI: 10.1039/d3ra00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
We present a computational study on the optical absorption properties of some systems of interest in the field of drug delivery. In particular we considered as drug molecules favipiravir (T705, an antiviral molecule) and 5-fluorouracil (5FU, an anticancer molecule) and, on the other hand, pure fullerenes (C24, B12N12, Ga12N12) and doped fullerenes (C23B, CB11N12) are considered as nanocarriers. Some combined configurations between the drug molecules and the carrier nanostructures have been then studied. The optical absorption properties of the above mentioned drug molecules and their carrier nanostructures in the free and bound states are obtained by a TD-DFT method, in gas phase and in aqueous solution. We perform a detailed analysis of the modifications arising in the absorption spectra that take place in some linked configurations between the drug molecules and the carrier nanostructures. These changes could be of importance as an optical fingerprint of the realized drug/carrier link.
Collapse
Affiliation(s)
- Alessandra Angela Pisu
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
| | - Francesco Siddi
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
| | - Giancarlo Cappellini
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
- European Theoretical Spectroscopy Facility (ETSF) Italy
| | - Roberto Cardia
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
| |
Collapse
|
6
|
Bhikharee D, Rhyman L, Ramasami P. Computational study of the interaction of the psychoactive amphetamine with 1,2-indanedione and 1,8-diazafluoren-9-one as fingerprinting reagents. RSC Adv 2023; 13:4077-4088. [PMID: 36756547 PMCID: PMC9890558 DOI: 10.1039/d2ra07044h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
In this study, we used computational methods to investigate the interaction of amphetamine (AMP) with 1,2-indanedione (IND) and 1,8-diazafluoren-9-one (DFO) so as to understand whether AMP can be detected in latent fingerprints using either of these reagents. The results show that the binding energies of AMP with IND and DFO were enhanced by the presence of amino acid from -9.29 to -12.35 kcal mol-1 and -7.98 to -10.65 kcal mol-1, respectively. The physical origins of these interactions could be better understood by symmetry-adapted perturbation theory. The excited state properties of the binding structures with IND demonstrate distinguishable absorption peaks in the UV-vis spectra but zero fluorescence. Furthermore, the UV-vis spectra of the possible reaction products between AMP and the reagents reveal absorption peaks in the visible spectrum. Therefore, we could predict that reaction of AMP with IND would be observable by a reddish colour while with DFO, a colour change to violet is expected. To conclude, the reagents IND and DFO may be used to detect AMP by UV-vis spectroscopy and if their reactions are allowed, the reagents may then act as a potentially rapid, affordable and easy colorimetric test for AMP in latent fingerprints without destruction of the fingerprint sample.
Collapse
Affiliation(s)
- Divya Bhikharee
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
- Department of Chemistry, University of South Africa Private Bag X6 Florida 1710 South Africa
| |
Collapse
|
7
|
Kinani AABY, Abdulkareem Mahmood E, Shoaei SM, Heravi MRP, Habibzadeh S, Ebadi AG, Amini I, Vessally E. The chemical reaction of thioindole and [20] fullerene and the use of DFT to estimate some quantum chemical descriptors. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2139146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmad AB Yosef Kinani
- Department of pharmaceutics College of pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Evan Abdulkareem Mahmood
- Medical Laboratory Sciences Department, College of Health Sciences, University of Human Development, Sulaymaniyah, Iraq
| | | | | | | | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| | - Issa Amini
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
8
|
DFT study of therapeutic potential of graphitic carbon nitride as a carrier for controlled release of melphalan: an anticancer drug. J Mol Model 2022; 28:359. [PMID: 36227378 DOI: 10.1007/s00894-022-05337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
In the present research, the drug-delivery efficiency of graphitic carbon nitride (g-CN) for melphalan (an anti-cancer drug) was evaluated. To investigate the efficacy of g-CN as a drug-delivery system, the electronic properties of melphalan drug, g-CN, and g-CN-melphalan were calculated at the ground and excited states. The adsorption energy calculated for g-CN-melphalan complex in the water phase is - 1.51 eV. The interactions between g-CN and melphalan were investigated by a non-covalent interactions (NCl) analysis, which showed that there were weak interactions between g-CN and melphalan drug. These low intermolecular forces will allow for easy off-loading of the melphalan at the targeted site. Frontier molecular-orbitals (FMOs) analysis showed that the charge was transferred from melphalan to g-CN during the excitation process. Charge transfer was studied by charge decomposition analysis. Calculations at the excited state revealed that the g-CN-melphalan complex's λmax showed a redshift of 15 nm and 39 nm in the gas and water phase, respectively. The photoinduced electron transfer (PET) process was studied for 1-2 excited state by using electron hole theory. PET process suggests that fluorescence quenching may take place. The findings demonstrated that g-CN can be used as a drug-delivery system for melphalan drug to treat cancer. This investigation may also encourage more consideration of different 2D substances for drug delivery.
Collapse
|
9
|
Muktadir MG, Alam A, Piya AA, Shamim SUD. Exploring the adsorption ability with sensitivity and reactivity of C 12-B 6N 6, C 12-Al 6N 6, and B 6N 6-Al 6N 6 heteronanocages towards the cisplatin drug: a DFT, AIM, and COSMO analysis. RSC Adv 2022; 12:29569-29584. [PMID: 36320781 PMCID: PMC9578514 DOI: 10.1039/d2ra04011e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022] Open
Abstract
The DFT study on the adsorption behaviour of the C24, B12N12, and Al12N12 nanocages and their heteronanocages towards the anticancer drug cisplatin (CP) was performed in gas and water media. Among the three pristine nanocages, Al12N12 exhibited high adsorption energy ranging from -1.98 to -1.63 eV in the gas phase and -1.47 to -1.39 eV in water media. However, their heterostructures C12-Al6N6 and B6N6-Al6N6 showed higher interaction energies (-2.22 eV and -2.14 eV for C12-Al6N6 and B6N6-Al6N6) with a significant amount of charge transfer. Noteworthy variations in electronic properties were confirmed by FMO analysis and DOS spectra analysis after the adsorption of the cisplatin drug on B12N12 and B6N6-Al6N6 nanocages. Furthermore, an analysis of quantum molecular descriptors unveiled salient decrement in global hardness and increments in electrophilicity index and global softness occurred after the adsorption of CP on B12N12 and B6N6-Al6N6. On the other hand, the above-mentioned fluctuations are not so noteworthy in the case of the adsorption of CP on Al12N12, C12-B6N6, and C12-Al6N6. Concededly, energy calculation, FMO analysis, ESP map, DOS spectra, quantum molecular descriptors, dipole moment, COSMO surface analysis, QTAIM analysis, and work function analysis predict that B12N12 and B6N6-Al6N6 nanocages exhibit high sensitivity towards CP drug molecules.
Collapse
Affiliation(s)
- Md Golam Muktadir
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Ariful Alam
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Afiya Akter Piya
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Siraj Ud Daula Shamim
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| |
Collapse
|
10
|
Wang Q, Zhang P, Javed Ansari M, Aldawsari MF, Alalaiwe AS, Kaur J, Kumar R, Ng Kay Lup A, Enayati A, Mirzaei H, Soltani A, Su CH, Nguyen HC. Electrostatic interaction assisted Ca-decorated C20 fullerene loaded to anti-inflammatory drugs to manage cardiovascular disease risk in rheumatoid arthritis patients. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Rafique J, Afzal QQ, Perveen M, Iqbal J, Akhter MS, Nazir S, Al-Buriahi MS, Alomairy S, Alrowaili ZA. Drug delivery of carvedilol (cardiovascular drug) using phosphorene as a drug carrier: a DFT study. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2021.2021789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Javeria Rafique
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Qaba Qusain Afzal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mehvish Perveen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
- Punjab Bio-Energy Institute, University of Agriculture, Faisalabad, Pakistan
| | | | - Sidra Nazir
- Faisalabad Institute of Cardiology, Faisalabad, Pakistan
| | | | - Sultan Alomairy
- Department of Physics, College of Science, Taif University, Taif, Saudi Arabia
| | - Z. A. Alrowaili
- Department of Physics, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
12
|
Uzelac MM, Armaković SJ, Armaković S, Četojević-Simin DD, Agbaba J, Banić ND. The role of environmental waters ionic composition and UV–LED radiation on photodegradation, mineralization and toxicity of commonly used β-blockers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Murjani BO, Kadu PS, Bansod M, Vaidya SS, Yadav MD. Carbon nanotubes in biomedical applications: current status, promises, and challenges. CARBON LETTERS 2022; 32:1207-1226. [PMCID: PMC9252568 DOI: 10.1007/s42823-022-00364-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 06/17/2023]
Abstract
In the past decade, there has been phenomenal progress in the field of nanomaterials, especially in the area of carbon nanotubes (CNTs). In this review, we have elucidated a contemporary synopsis of properties, synthesis, functionalization, toxicity, and several potential biomedical applications of CNTs. Researchers have reported remarkable mechanical, electronic, and physical properties of CNTs which makes their applications so versatile. Functionalization of CNTs has been valuable in modifying their properties, expanding their applications, and reducing their toxicity. In recent years, the use of CNTs in biomedical applications has grown exponentially as they are utilized in the field of drug delivery, tissue engineering, biosensors, bioimaging, and cancer treatment. CNTs can increase the lifespan of drugs in humans and facilitate their delivery directly to the targeted cells; they are also highly efficient biocompatible biosensors and bioimaging agents. CNTs have also shown great results in detecting the SARS COVID-19 virus and in the field of cancer treatment and tissue engineering which is substantially required looking at the present conditions. The concerns about CNTs include cytotoxicity faced in in vivo biomedical applications and its high manufacturing cost are discussed in the review.
Collapse
Affiliation(s)
- Bhushan O. Murjani
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Parikshit S. Kadu
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Manasi Bansod
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Saloni S. Vaidya
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Manishkumar D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| |
Collapse
|
14
|
Khezri B, Maskanati M, Zohrevand B, Liyaghati-Delshad M, Soltanali F. Theoretical investigation of adsorption of the gabapentin drug on the heteroborospherene. Struct Chem 2021. [DOI: 10.1007/s11224-021-01840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Soliman KA, Aal SA. Theoretical investigation of favipiravir antiviral drug based on fullerene and boron nitride nanocages. DIAMOND AND RELATED MATERIALS 2021; 117:108458. [PMID: 34025036 PMCID: PMC8123382 DOI: 10.1016/j.diamond.2021.108458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 05/09/2021] [Indexed: 05/16/2023]
Abstract
Smart implementation of novel advanced nanocarriers such as functionalized C24 and B12N12 nanocages is used supplement for antiviral activity 5-Fluoro-2-hydroxypyrazine-3-carboxamide (Favipiravir; Avigan; T-705), as treatment of COVID-19. The interaction energies of Favipiravir with perfect (B12N12 and C24) and doped (BC23 and CB11N12) nanocages were studied at temperatures equal to 310.15 K and 298.15 K using DFT. Our results have shown that the interaction of the Favipiravir (C[bond, double bond]O group) with BC23 and CB11N12 is more favorable than with the C24 and B12N12 nanocages in the gas and aqueous environments. Additionally, the natural bond orbital, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), energy gap, chemical reactivity, molecular electrostatic potential, and thermodynamic parameters of the optimized structure have been examined. Furthermore, the UV-Vis and infrared spectroscopy have been evaluated for the investigation of the molecular orbitals Participated in the absorption spectrum of the Favipiravir before and after the interaction with the C24, BC23, B12N12, and CB11N12, sites at maximum wavelength utilizing the time-dependent density functional theory (TD-B3LYP and TD-CAM-B3LYP). The intermolecular interactions have been analyzed by non-covalent interactions (NCI) and also, the electron localization function (ELF) is discussed.
Collapse
Affiliation(s)
- Kamal A Soliman
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - S Abdel Aal
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
- Department of Chemistry, College of Science, Qassim University, Saudi Arabia
| |
Collapse
|
16
|
Mary YS, Mary YS, Bielenica A, Armaković S, Armaković SJ, Chandramohan V, Dammalli M. Investigation of the reactivity properties of a thiourea derivative with anticancer activity by DFT and MD simulations. J Mol Model 2021; 27:217. [PMID: 34218339 DOI: 10.1007/s00894-021-04835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Spectroscopic analysis of 1-(2-fluorophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (FPTT) is reported. Experimental and theoretical analyses of FPTT, with molecular dynamics (MD) simulations, are reported for finding different parameters like identification of suitable excipients, interactions with water, and sensitivity towards autoxidation. Molecular dynamics and docking show that FPTT can act as a potential inhibitor for new drug. Additionally, local reactivity, interactivity with water, and compatibility of FPTT molecule with frequently used excipients have been studied by combined application of density functional theory (DFT) and MD simulations. Analysis of local reactivity has been performed based on selected fundamental quantum-molecular descriptors, while interactivity with water was studied by calculations of radial distribution functions (RDFs). Compatibility with excipients has been assessed through calculations of solubility parameters, applying MD simulations. Graphical abstract Reactive sites identified.
Collapse
Affiliation(s)
| | | | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 02-097, Warszawa, Poland
| | - Stevan Armaković
- Faculty of Sciences, Department of Physics, University of Novi Sad, Trg D. Obradovića 4, Novi Sad, 21000, Serbia
| | - Sanja J Armaković
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg D. Obradovića 3, Novi Sad, 21000, Serbia
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| | - Manjunath Dammalli
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| |
Collapse
|
17
|
First-principles study of the adsorption of chlormethine anticancer drug on C24, B12N12 and B12C6N6 nanocages. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113156] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Mahboobeh Kian, Elham Tazikeh-Lemeski. Adsorption Behavior of Aromasin onto C20 and C24 Nano-Cages: Density Functional Theory Study. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620120074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Sheena Mary Y, Shyma Mary Y, Armaković S, Armaković SJ, Narayana B. Understanding reactivity of a triazole derivative and its interaction with graphene and doped/undoped-coronene—a DFT study. J Biomol Struct Dyn 2020; 40:2316-2326. [DOI: 10.1080/07391102.2020.1837677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Y. Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Y. Shyma Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Stevan Armaković
- Department of Physics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sanja J. Armaković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - B. Narayana
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, India
| |
Collapse
|
20
|
Al-Otaibi JS. Detailed quantum mechanical studies on bioactive benzodiazepine derivatives and their adsorption over graphene sheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 235:118333. [PMID: 32272424 DOI: 10.1016/j.saa.2020.118333] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Estazolam (Z1) and related derivatives, adinazolam (Z2), alprazolam (Z3), 4-hydroxyalprazolam (Z4) and triazolam (Z5) have been studied by using various computational tools to analyze their geometry and spectral characteristics. The compounds were found to interact with graphene monolayer results shows that there is enhancement in various physico-chemical descriptors and surface enhanced Raman spectra (SERS). The various reactive descriptors obtained from the FMO analysis predict the reactive nature of the compound. The various lone pair/sigma to pi conjugation was analyzed using NBO formalism, which provides valuable information about intra molecular electron transfer which is vital in predicting the inherent stability of the molecule. Simulated electronic spectra using TD-DFT and CAM-B3LYP functional are discussed in detail with respect to electronic transitions and light harvesting efficiency. Suitability of candidates as a photo sensitizer in dye sensitized solar cells was studied and 4-Hydroxyalprazolam is identified as a suitable candidate. Nucleophilic and electrophilic regions of the molecules are identified using MESP, which adds to the reactivity information. It can be seen that the highest interaction energy has been obtained in the case of the Z5-graphene system, while the lowest interaction energy has been obtained in the case of the Z1-graphene system. Docking indicates that the ligands adsorbed over graphene also form stable complexes with the receptors as indicated by the high binding affinity energy values.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia.
| |
Collapse
|