1
|
Xia SY, Zhang SN, Xu D, Leng BL, Lu KY, Chen JS, Li XH. Programmable Mono-/Di-alkylation of Amines with Aldehydes Over a Pd δ --H Electrocatalyst. Angew Chem Int Ed Engl 2025; 64:e202425622. [PMID: 40099976 DOI: 10.1002/anie.202425622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
Programmable amine N-alkylation provides a new method to combine the required alkyl groups with amine molecules according to actual demand and to precisely regulate the biological and pharmaceutical properties of life science amine molecules. However, only the electrochemical mono-methylation of amines has been achieved via C─N coupling with CO2 accompanied by an unsatisfactory Faraday efficiency (FE) lower than 10%. Herein, we developed programmable electrocatalytic N-alkylation of amines with two controllable alkyl groups and one methyl group. Both experimental characterization and density functional theory (DFT) calculations have demonstrated the critical role of electron-enriched Pd metals in transforming amines into alkylamines with two chosen alkyl groups and a methyl group. Moreover, the electrocatalytic transformation of amines to alkylamines with satisfactory FE values (86%-96%) has been achieved, further expanding the scope of electrochemical C─N coupling and possibly opening a new world of electrochemical amine N-alkylation.
Collapse
Affiliation(s)
- Si-Yuan Xia
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shi-Nan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Dong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Bing-Liang Leng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kai-Yuan Lu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Brinkmann N, Austin D, Ashraf B, Le D, Rahman TS, Al-Shamery K. Role of Spectator Species for Amine-Surface Chemistry: Reactions of Amines and Alkenes on Pt(111). J Am Chem Soc 2025; 147:16964-16971. [PMID: 40353685 PMCID: PMC12100705 DOI: 10.1021/jacs.5c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
This study investigates the roles of ethylene and ethylidyne in the surface chemistry of N-methylaniline (NMA) on Pt(111). Using X-ray photoelectron spectroscopy, temperature-programmed desorption, and density functional theory calculations, we demonstrate that ethylidyne is not merely a passive spectator species but actively contributes to hydroamination. It facilitates C-N bond formation by transferring a methyl group to NMA, leading to the formation of N,N-dimethylaniline. Additionally, it stabilizes reaction intermediates and suppresses the decomposition of NMA. This works demonstrates, in contrast to the widely accepted notion, that ethylidyne is not just an inert spectator species; rather, it plays a dual role as both an active reaction partner and a stabilizer. In addition, the coadsorption of ethylene on an NMA-precovered surface shows a side reaction of ethylene with the decomposition products of NMA.
Collapse
Affiliation(s)
- Nils Brinkmann
- Institute
of Chemistry, Carl von Ossietzky University
of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129Oldenburg, Germany
| | - Dave Austin
- Department
of Physics, University of Central Florida, Orlando, Florida32816, United States
| | - Bushra Ashraf
- Department
of Physics, University of Central Florida, Orlando, Florida32816, United States
| | - Duy Le
- Department
of Physics, University of Central Florida, Orlando, Florida32816, United States
| | - Talat S. Rahman
- Department
of Physics, University of Central Florida, Orlando, Florida32816, United States
| | - Katharina Al-Shamery
- Institute
of Chemistry, Carl von Ossietzky University
of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129Oldenburg, Germany
| |
Collapse
|
3
|
Guo T, Zeng L, Liu J, Zhang X, Bai Y. Phase-Separated Multienzyme Condensates for Efficient Synthesis of Imines from Carboxylic Acids with Enhanced Dual-Cofactor Recycling. Int J Mol Sci 2025; 26:4795. [PMID: 40429936 PMCID: PMC12111831 DOI: 10.3390/ijms26104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Enzyme catalysis represents a promising approach for sustainable chemical synthesis, yet its industrial applications face limitations due to the inefficient regeneration and high cost of essential cofactors, such as adenosine-5'-triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). While natural metabolic systems efficiently recycle cofactors through spatially organized enzymes, replicating this efficiency in vitro remains challenging. Here, we prepare a five-enzyme condensate system using liquid-liquid phase separation (LLPS) mediated by intrinsically disordered proteins (IDPs). By colocalizing a carboxylic acid reductase from Norcadia iowensis (NiCAR) with a reductive aminase from Aspergillus oryzae (AspRedAm) and three cofactor-regenerating enzymes, we generated a phase-separated catalytic condensate that enhanced ATP and NADPH recycling efficiency by 4.7-fold and 1.9-fold relative to free enzymes, respectively. Catalytic performance was correlated with the extent of phase separation, as confirmed by fluorescence microscopy, which revealed clear enrichment of ATP and NADPH within the condensates. This proximity effect enabled efficient cofactor turnover in the one-step reaction, achieving substrate conversion above 90% within 6 h and enhancing the space-time yield (STY) of the chiral imines 1.6-fold, with only one-fifth of the standard cofactor load. This approach creates a scalable and economic tool for performing multienzyme cascade reactions in vitro that are driven by the efficient recycling of multiple cofactors.
Collapse
Affiliation(s)
- Tingxiao Guo
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Lifang Zeng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaxu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
| |
Collapse
|
4
|
Yi H, Wang C, Ge B, Xu F, Jiang P, Zhou M, Xing F, Huang C. Engineering Atomic Sites and Proton Transfer Microenvironments for Bioinspired Photocatalytic Alcohol-Amine Coupling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500253. [PMID: 40116587 DOI: 10.1002/smll.202500253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Achieving a precise understanding and accurate design of heterogeneous catalysts based on bioinspired principles is challenging yet crucial to digging out optimal materials for artificial catalysis. Here, an ADH-mimicking dual-site photocatalyst (YCuCdS) is developed, and demonstrates the powerful effects of atomic site configuration and proton transfer environments on alcohol-amine coupling. Mechanism studies reveal that the alcohol substrate is effectively dehydrogenated at the Y sites, forming the carbonyl intermediates that rapidly experience condensation with the amine. Meanwhile, the released hydrogen species (Hads) migrate from adjacent Cu sites to active S atoms, promoting H2 production and hindering the over-hydrogenation of imine. As a result, a high imine yield of 92% is achieved, along with an H2 production rate of 7400 µmol g-1 h-1. This work showcases an effective strategy for the design of heterogeneous catalysts with bioinspiration.
Collapse
Affiliation(s)
- Huimin Yi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chenyi Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Baoxin Ge
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Fangjie Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Pengyang Jiang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Fangshu Xing
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Caijin Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
5
|
Pawlak M, Pobłocki K, Drzeżdżon J, Jacewicz D. Recent developments in polymer chemistry, medicinal chemistry and electro-optics using Ni and Pd-based catalytic systems. J Mater Chem B 2025; 13:4964-4993. [PMID: 40178355 DOI: 10.1039/d4tb02859g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Catalysis is the fastest and continuously growing field in chemistry. A key component of this process is catalytic systems, which result in increased reaction rates and yields, as well as the ability to tailor the properties of products to the final application. With the development of catalysis, the requirements for catalysts used in these processes have also grown rapidly. Modern catalytic materials should overcome the challenges posed by the modern world of chemistry. They should be durable, and stable, have good catalytic properties, and allow catalytic processes to be carried out under mild and environmentally friendly conditions. In this article, we provide an overview of recent reports on the use of catalytic systems based on nickel and palladium ions in catalytic reactions, leading to functional materials used in the fields of medicinal chemistry, polymer chemistry and electro-optical materials chemistry. Research on the optimization and modification of existing synthetic methods, reports on the synthesis of new functional materials, and articles on new, more efficient catalytic systems that overcome the drawbacks of existing catalysts are described. The presented article reviews current knowledge, providing the newest information from the world of catalysis and synthesis of advanced functional materials, presenting potential directions for further development in these fields.
Collapse
Affiliation(s)
- Marta Pawlak
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Kacper Pobłocki
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
6
|
Tsuda T, Ishikawa H, Sheng M, Hirayama M, Suganuma S, Osuga R, Nakajima K, Kondo JN, Yamaguchi S, Mizugaki T, Mitsudome T. Highly Active and Air-Stable Iron Phosphide Catalyst for Reductive Amination of Carbonyl Compounds Enabled by Metal-Support Synergy. J Am Chem Soc 2025; 147:14326-14335. [PMID: 40237538 DOI: 10.1021/jacs.4c18611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Iron has long been recognized as an ideal catalytic material for sustainable chemistry. However, conventional iron catalysts employed in liquid-phase hydrogenation reactions suffer from poor activity and air instability, severely restricting their wide applicability in practical use. Herein, we present the development of highly active and air-stable iron phosphide nanocrystal immobilized on zirconia (Fe2P NC/ZrO2) for the reductive amination of aldehydes and ketones. The Fe2P NC/ZrO2 catalyst demonstrated broad substrate applicability, high recyclability, and scalability in both gram-scale and continuous-flow processes. This catalyst leverages the synergistic metal-support effect of Fe2P NCs and ZrO2 support, leading to activity 313 times higher than that of conventional iron nanoparticle catalysts. In-depth mechanistic studies elucidated that the distinctive interplay between Fe2P and ZrO2 significantly accelerates ammonolysis of Schiff bases, a key step for boosting reaction efficiency. This study sets a new benchmark for iron-based catalysis, offering a robust alternative to precious metals, thereby contributing significantly to sustainable chemical manufacturing and green organic synthesis.
Collapse
Affiliation(s)
- Tomohiro Tsuda
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hiroya Ishikawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Min Sheng
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Motoaki Hirayama
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Physical and Chemical Research (RIKEN), Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan
| | - Satoshi Suganuma
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Ryota Osuga
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kiyotaka Nakajima
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Junko N Kondo
- Office of Communication and DEI, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Shi J, Wu S, Huang H, Qin H, Geng H, Chang M. Kinetic Resolution to Simultaneously Access Both Primary and Secondary NH-Unprotected Chiral Amines via Ir-Catalyzed Asymmetric Reductive Amination. Org Lett 2025; 27:4322-4326. [PMID: 40214072 DOI: 10.1021/acs.orglett.5c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
This report describes a new kinetic resolution-asymmetric reductive amination strategy to collectively gain access to both primary and secondary chiral NH-unprotected amines. Catalyzed by the complex of iridium and bulky and tunable phosphoramidite ligands, various ketones and racemic primary amines could be smoothly converted to two different types of amine products. Bronsted acids as additives play triple roles, decreasing the inhibitory effect, promoting the formation of the imine intermediates, and guiding the reaction to proceed through "outer-sphere" H-addition along with the bulky ligand.
Collapse
Affiliation(s)
- Junbin Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaoxiong Wu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haizhou Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanlei Qin
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiling Geng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxin Chang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F Univer-sity, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Cheng A, Gu X, Yang C, Liu M, Zhang B, Liu H, Chen X, Feng A, Smith PES, Jiang J, Luo Y, Huang W, Zhang G. Rapid Fluorochromic Sensing of Tertiary Amines and Opioids via Dual-Emissive Ground and Excited Charge-Transfer States. J Am Chem Soc 2025; 147:13512-13521. [PMID: 40227250 DOI: 10.1021/jacs.5c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The recognition and differentiation of organic amines are crucial for applications in drug analysis, food spoilage, biomedical assays, and clinical diagnostics. Existing luminescence-based recognition methods for amines predominantly rely on fluorescence quenching, limiting the scope of sensitive and selective detection. Here, we present a fluorochromic approach for rapidly distinguishing different organic amines based on their unique excited-state and ground-state interactions with a naphthalimide derivative under ultraviolet light. Our findings reveal that the photoluminescence quantum yield and emission color are significantly influenced by the substituent group and the molecular flexibility of the amine. Specifically, primary amines, together with other common lone-pair donors, such as alcohol, ether, thiol, thioether, and phosphine, did not exhibit photoluminescence changes, while secondary amines exhibited only weak emission. For tertiary amines, however, bright green photoluminescence activation was rapidly produced for molecules containing at least one methyl group; red-shifted yellow emission was observed for ones with bulkier side groups other than methyl; and for conformationally locked bicycloamines, no emission was observed. In addition, this fluorochromic process of the naphthalimide derivative not only depends on tertiary amine substituent groups but also shows distinctly different ground- and excited-state photoluminescence dynamics in time-resolved spectroscopy. Based on these differences, a qualitative method is developed for visual recognition of natural and synthetic opioids, including heroin, fentanyl, and metonitazene, which is more facile and rapid compared to current methods such as the Marquis reagent kit, and could facilitate onsite testing, real-time monitoring, and streamlined workflows in both laboratory and field settings.
Collapse
Affiliation(s)
- Aoyuan Cheng
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuewen Gu
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chengze Yang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mei Liu
- Yunnan Key Laboratory of Intelligent Drug Control, Yunnan Police College, Kunming, Yunnan 650223, China
| | - Baicheng Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongping Liu
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyu Chen
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Airong Feng
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pieter E S Smith
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhuan Huang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoqing Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Song Y, Zou Y, Chen T, Zhang Z, Zhang W. Cobalt-Catalyzed Asymmetric Hydrogenation of α-Hydroxy Ketones Enabled by a Carboxylic Acid Additive Promotion Strategy. Angew Chem Int Ed Engl 2025:e202504159. [PMID: 40265970 DOI: 10.1002/anie.202504159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Highly enantioselective hydrogenation of α-hydroxy ketones was achieved by applying the catalytic combination of cobalt acetate and chiral Ph-BPE ligand, supplemented by a carboxylic acid additive promotion strategy. The carboxylic acid additive significantly increases both reactivity and enantioselectivity, allowing for the highly efficient generation of chiral 1,2-diols with up to 99% ee. The application utility is proved through derivations and a total synthesis of (R)-(-)-eliprodil. Mechanistic studies, including control experiments and DFT calculations, support the proposed catalytic mechanism and explain the origin of enantioselectivity.
Collapse
Affiliation(s)
- Yuxi Song
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
10
|
Ashraf B, Brinkmann N, Austin D, Le D, Al-Shamery K, Rahman TS. Unveiling Coverage-Dependent Interactions of N-Methylaniline with the Pt(111) Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:6196-6210. [PMID: 40201732 PMCID: PMC11973917 DOI: 10.1021/acs.jpcc.4c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
This study aims to elucidate the adsorption and surface chemistry of N-methylaniline (NMA) on Pt(111), using it as a model molecule to probe the activation mechanisms of aromatic amines on catalytic surfaces. Through a combination of density functional theory (DFT) calculations and experimental techniques such as temperature-programmed X-ray photoelectron spectroscopy (TP-XPS), temperature-programmed desorption (TPD), and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS), we explored the coverage-dependent behavior of NMA on Pt(111) to identify key steps in the activation process. The population of certain reaction paths is driven by a coverage-dependent balance between molecule surface charge transfer and intermolecular interactions, dictating the selective activation of specific bonds. Our findings reveal how coverage influences the orientation and bonding of NMA on the Pt(111) surface. At lower coverages, the molecule binds to the surface through the phenyl ring and activation, facilitating C-N bond cleavage to the ring under HCN formation. In comparison, at higher coverages, the molecule binds only through the nitrogen atom and desorbs intact. These insights into variable bond activation lay the groundwork for understanding the fundamental processes involved in potential heterogeneously catalyzed reactions of aromatic amines, contributing to the development of new catalytic strategies.
Collapse
Affiliation(s)
- Bushra Ashraf
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Nils Brinkmann
- Institute
of Chemistry, Carl von Ossietzky University
of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Dave Austin
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Duy Le
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Katharina Al-Shamery
- Institute
of Chemistry, Carl von Ossietzky University
of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Talat S. Rahman
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
11
|
Lv Z, Hong Z, Ke D, Qian C, Chen X, Zhou S. Regulating the production distribution in Ni-Cu nanoparticle mediated nitrile hydrogenation. J Colloid Interface Sci 2025; 683:247-261. [PMID: 39733540 DOI: 10.1016/j.jcis.2024.12.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
The selective hydrogenation of nitrile compounds represents a pivotal area of research within both industrial and academic catalysis. In this study, we prepared Ni-Cu bimetallic catalysts through a co-deposition-crystallization sequence, aimed at the efficient production of primary and secondary amines. The enhanced selectivity for primary amines is attributed to the downshift of the d-band center of Ni0.1Cu, which weakens the adsorption of key imine intermediates. Consequently, the synthesized Ni-Cu catalysts demonstrated exceptional catalytic performance in the selective hydrogenation of nitrile compounds, including those with reduction-sensitive functional groups such as -Cl and -Br, achieving 100 % conversion efficiency and significant yields ranging from 80 % to 99 %. The reaction conditions were comprehensively optimized, taking into account factors such as temperature, solvent, time, additives, and hydrogen pressure. Furthermore, the catalytic performance of Ni0.1Cu and Ni0.4Cu in the selective hydrogenation of nitriles was sustained over at least five reaction cycles. Temperature-programmed desorption results elucidated the structure-activity relationship, revealing that a strong interaction site prevails in Ni0.4Cu, while a weaker or moderate interaction site in Ni0.1Cu is responsible for the formation of primary amines. Theoretical calculations indicate that the reaction proceeds via an imine mechanism, with benzylideneimine serving as a key intermediate. This work may stimulate further research into the development of bimetallic nano-catalysts for selective nitrile hydrogenation in industrial catalytic processes.
Collapse
Affiliation(s)
- Zihan Lv
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China
| | - Zeng Hong
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China.
| | - Da Ke
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China.
| | - Xinzhi Chen
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, PR China; Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Institute of Zhejiang University - Quzhou, 324000, Quzhou, PR China.
| |
Collapse
|
12
|
Saini R, Kukreti P, Chauhan R, Panwar A, Ghosh K. A well-defined phosphine-free metal-ligand cooperative route for N-alkylation of aromatic amines via activation of renewable alcohols catalyzed by NNN pincer cobalt(II) complexes. Dalton Trans 2025; 54:5838-5848. [PMID: 40079181 DOI: 10.1039/d4dt03095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This study presents the direct N-alkylation of aromatic amines using greener primary alcohols as alkyl donors, catalyzed by base metal-derived Co(II) catalysts via the borrowing hydrogen (BH) method. Two well-defined phosphine-free NNN-type pincer ligands (L1 and L2) were synthesized and utilized to prepare cobalt(II) catalysts C1 and C2. The catalysts were well characterized by UV-vis, IR, HRMS, and single-crystal X-ray diffraction studies. The catalysts C1 and C2 were utilized for the N-alkylation of various aromatic, heteroaromatic as well as aromatic diamines, and a wide substrate scope total of 30 derivatives was explored with isolated yields up to 95%. Two antihistamine drug precursors for tripelennamine and mepyramine were synthesized on a gram scale for the large-scale applicability of the current protocol. Various control experiments were also performed to explore the possible reaction intermediates and reaction pathway. Cobalt(II) intermediates involved in the catalytic cycle were also characterized by the HRMS study.
Collapse
Affiliation(s)
- Rahul Saini
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Prashant Kukreti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Abhishek Panwar
- Department of Chemistry National Institute of Technology Manipur, Langol-795004, Imphal West, Manipur, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
13
|
Yuan Z, Han B, Liu B, Sun J, Zhou P, Mu R, Zhang Z. Unexpected activity of MgO nanoclusters for the reductive-coupling synthesis of organonitrogen chemicals with C = N bonds. Nat Commun 2025; 16:2963. [PMID: 40140389 PMCID: PMC11947229 DOI: 10.1038/s41467-025-58222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Reductive-coupling of nitro compounds and alcohols is a sustainable route for constructing C = N bonds in organonitrogen chemicals, yet challenging due to the inertness of α-Csp3-H bond in alcohols and the vulnerability of C = N bonds towards hydrogenation. Here, we report the surprising catalytic activity of ultrafine alkaline-earth metal oxide MgO nanoclusters (0.9 ± 0.3 nm) that efficiently activate α-Csp3-H bonds, facilitating the transfer hydrogenation and synthesis of value-added chemicals bearing C = N bonds with high to excellent yields (86-99%). Controlled experiments and characterizations showed the crucial role of oxygen vacancies (Ov) and local Mg environment (Mg-O bond) in MgO for substrate adsorption and activation via electronic interactions between substrate's negatively charged oxygen atoms and Ov sites in MgO nanoclusters. Theoretical calculation further confirmed that Ov significantly lowered the energy barrier of the hydrogen atom transfer from α-Csp3-H in ethanol to the nitro group in nitrobenzene (29.3 vs. 52.9 kcal/mol), which is the rate-determining step with the highest energy barrier in reductive-coupling reactions. Our method not only provides an efficient and sustainable pathway for synthesizing organonitrogen chemicals with C = N bonds but also inspires the exploration of main group element catalysts as alternatives to transition metal and noble metal catalysts for organic transformations.
Collapse
Affiliation(s)
- Ziliang Yuan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, College of Chemistry and Material Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Bo Han
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Bing Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, College of Chemistry and Material Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Jie Sun
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, College of Chemistry and Material Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China.
| | - Peng Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, College of Chemistry and Material Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, College of Chemistry and Material Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China.
| |
Collapse
|
14
|
Rooney CL, Sun Q, Shang B, Wang H. Electrocatalytic Reductive Amination of Aldehydes and Ketones with Aqueous Nitrite. J Am Chem Soc 2025; 147:9378-9385. [PMID: 40065574 DOI: 10.1021/jacs.4c16344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The electrocatalytic utilization of oxidized nitrogen waste for C-N coupling chemistry is an exciting research area with great potential to be adopted as a sustainable method for generation of organonitrogen molecules. The most widely used C-N coupling reaction is reductive amination. In this work, we develop an alternative electrochemical reductive amination reaction that can proceed in neutral aqueous electrolyte with nitrite as the nitrogenous reactant and via an oxime intermediate. We develop a selection criterion for nitrite reduction electrocatalysts suited for oxime electrosynthesis and, in doing so, find Pd to be a highly efficient catalyst for this reaction, reaching an oxime Faradaic efficiency of 82% at -0.21 V vs the reversible hydrogen electrode. The aliphatic or aromatic structure of the carbonyl reactant impacts the efficacy of the catalyst, with aromatic substrates leading to suppressed oxime formation and detrimental reduction of the carbonyl to the alcohol. We developed a Pb/PbO electrocatalyst that selectively performs oxime reduction in the neutral aqueous electrolyte. With acetone as a model substrate, we demonstrate an efficient one-pot, two-step electrochemical reaction for the conversion of acetone to isopropyl amine with 85% yield and 50% global Faradaic efficiency.
Collapse
Affiliation(s)
- Conor L Rooney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Qi Sun
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Bo Shang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
15
|
Xin Z, Kou J, Li C, Li Y, Carraro M, Dong M, Daasbjerg K, Skrydstrup T, Huang Y. Magnetic Hollowed CoFe Alloy@C Prism Catalyst for N-Alkylation of Alcohols and Amines. Inorg Chem 2025; 64:4784-4790. [PMID: 40042087 DOI: 10.1021/acs.inorgchem.5c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
A novel magnetic hollowed CoFe@C-650 prism catalyst has been successfully prepared and applied in the N-alkylation of alcohols and amines through a hydrogen borrowing strategy. The catalyst demonstrates good to excellent activities in the reaction with a broad substrate scope to afford up to a 99% yield of target products. A preliminary mechanistic study reveals that a high valent Co species in the catalyst may promote the adsorption and conversion of alcohols, while the Fe species assists in hydrogenating the imine intermediates.
Collapse
Affiliation(s)
- Zhuo Xin
- School of Pharmacy and Institute for Advanced Study, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Jianyao Kou
- School of Pharmacy and Institute for Advanced Study, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Chun Li
- School of Pharmacy and Institute for Advanced Study, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yangsheng Li
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova and ITM-CNR, UOS of Padova via F. Marzolo 1, Padova 35131, Italy
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Novo Nordisk Foundation (NNF) CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Novo Nordisk Foundation CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Yuxing Huang
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| |
Collapse
|
16
|
Hua H, Ci C, Dixneuf PH, Zhang M. Reduction-Interrupted Tandem Reaction for General Synthesis of Functional Amino Acids by a Heterogeneous Cobalt Catalyst. J Am Chem Soc 2025; 147:6572-6582. [PMID: 39933122 DOI: 10.1021/jacs.4c15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Despite their significant importance in numerous fields, the challenges in direct and diverse synthesis of γ-amino-α-hydroxybutyric acids (AHBAs) pose substantial obstacles to explore their functions. Here, by preparation of a N-doped carbon-supported bifunctional cobalt catalyst (Co-DAPhen/C), it was applied to develop a reductive tandem reaction for general synthesis of AHBA derivatives from cheap and abundant nitroarenes, formaldehyde, and acrylates. This catalytic three-component reaction features broad substrate and functionality tolerance, an easily accessible and reusable catalyst, and high step and atom economy. The active Co sites of the catalyst are involved in the mild reduction processes with formic acid, whereas the N-doped carbon support enriches the HCHO and acrylates by physical adsorption, thus favoring the capture of hydroxylamine and nitrone intermediates via condensation and 1,3-dipolar cycloaddition, respectively. Such a metal-support synergy interrupts the conventional reduction of nitroarenes into anilines and results in a novel tandem reaction route. In this work, the concept merging mild reduction and effective intermediate transformations is anticipated to develop more useful tandem reactions by rational catalyst design.
Collapse
Affiliation(s)
- Haotian Hua
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology; Guangzhou 510641, China
| | - Chenggang Ci
- Key Laboratory of Computational Catalytic Chemistry of Guizhou Province, University Science and Technology Park of Qiannan Normal University for Nationalities, Department of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, P. R. China
| | | | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology; Guangzhou 510641, China
| |
Collapse
|
17
|
Shi S, Zhang B, Wang L, Yuan M, Yang J, Xiao W, Ding S, Wang S, Chen C. Thermally Triggered In Situ Template-Escape Strategy for Controlled Construction of Hollow MOFs. Inorg Chem 2025. [PMID: 40010375 DOI: 10.1021/acs.inorgchem.5c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Hollow spherical structures can endow metal-organic framework (MOF) materials with new capabilities. However, devising an uncomplicated synthesis method for hollow MOF spheres remains a formidable challenge. Here, the green hydrothermal method is employed to drive the polymer template, inducing a thermal transition (viscous flow state) that facilitates escape and enables the construction of a series of hollow MOF spheres. The hollow MIL-101(Cr) spherical capsules (Void@MIL-101) with high stability and well-defined morphology are synthesized as the first example. After encapsulating Pd nanoparticles, it exhibits an accelerated mass transfer effect and superior catalytic selectivity in synthesizing secondary aromatic amines. Furthermore, the versatility of this in situ template-escape strategy is demonstrated through the successful construction of hollow CPM-243(Cr) and SiO2 spheres. This innovative approach opens new avenues for the development of various hollow materials with enhanced properties.
Collapse
Affiliation(s)
- Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Hubei 430072, P. R. China
| | - Lei Wang
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, P. R. China
| | - Mingwei Yuan
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Jiaxuan Yang
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunmin Ding
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
18
|
Sun K, Su T, Lu GP, Franke R, Neumann H, Beller M. A Highly Dispersed Heterogeneous Cobalt Catalyst for Efficient Domino Hydroformylation Reductive Amination of Olefins. Angew Chem Int Ed Engl 2025; 64:e202419370. [PMID: 39887518 DOI: 10.1002/anie.202419370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 02/01/2025]
Abstract
The hydroaminomethylation of alkenes using CO and H2 proceeds efficiently in the presence of a heterogeneous Co-N/C catalyst with highly dispersed metal centers. Various secondary and tertiary amines can be effectively synthesized from cyclic and linear aliphatic alkenes using this specific material. The active sites of the optimal catalyst result from the synergistic effect of atomically dispersed Co sites with their surrounding N atoms, and the high surface area as well as structural defects of the NC support. The broad applicability (>54 examples), including pharmaceutically relevant molecules, together with the high activity and reusability, underline the general applicability of this catalytic system.
Collapse
Affiliation(s)
- Kangkang Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China)
- Applied Homogeneous Catalysis, Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Tianyue Su
- School of Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, P. R. China)
| | - Guo-Ping Lu
- School of Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, P. R. China)
| | - Robert Franke
- Evonik Industries AG, Paul-Baumann-Straße 1, 45772, Marl, Germany)
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Helfried Neumann
- Applied Homogeneous Catalysis, Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Applied Homogeneous Catalysis, Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
19
|
Qi H, Jiao Y, Duan J, Dummer NF, Zhang B, Ren Y, Taylor SH, Qin Y, Junge K, Jiao H, Hutchings GJ, Beller M. Tandem reductive amination and deuteration over a phosphorus-modified iron center. Nat Commun 2025; 16:1840. [PMID: 39984451 PMCID: PMC11845504 DOI: 10.1038/s41467-024-55722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/20/2024] [Indexed: 02/23/2025] Open
Abstract
Deuterated amines are key building blocks for drug synthesis and the identification of metabolites of new pharmaceuticals, which drives the search for general, efficient, and widely applicable methods for the selective synthesis of such compounds. Here, we describe a multifunctional phosphorus-doped carbon-supported Fe catalyst with highly dispersed isolated metal sites that allow for tandem reductive amination-deuteration sequences. The optimal phosphorus-modified Fe-based catalyst shows excellent performance in terms of both reactivity and regioselectivity for a wide range of deuterated anilines, amines, bioactive complexes, and drugs (>50 examples). Experiments on the gram scale and on catalyst recycling show the application potential of this method. Beyond the direct applicability of the developed method, the described approach opens a perspective for the development of multifunctional single-atom catalysts in other value-adding organic syntheses.
Collapse
Affiliation(s)
- Haifeng Qi
- Leibniz-Institut für Katalyse e. V., Rostock, Germany
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Translational Research Hub, Cardiff University, Cardiff, UK
| | - Yueyue Jiao
- Leibniz-Institut für Katalyse e. V., Rostock, Germany
| | - Jianglin Duan
- Leibniz-Institut für Katalyse e. V., Rostock, Germany
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Nicholas F Dummer
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Translational Research Hub, Cardiff University, Cardiff, UK
| | - Bin Zhang
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Translational Research Hub, Cardiff University, Cardiff, UK
| | - Yujing Ren
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Stuart H Taylor
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Translational Research Hub, Cardiff University, Cardiff, UK
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., Rostock, Germany.
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V., Rostock, Germany.
| | - Graham J Hutchings
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Translational Research Hub, Cardiff University, Cardiff, UK.
| | | |
Collapse
|
20
|
Zhang M, Qi Z, Xie M, Qu Y. Employing Ammonia for the Synthesis of Primary Amines: Recent Achievements over Heterogeneous Catalysts. CHEMSUSCHEM 2025; 18:e202401550. [PMID: 39189946 DOI: 10.1002/cssc.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024]
Abstract
Primary amines represent highly privileged chemicals for synthesis of polymers, pharmaceuticals, agrochemicals, coatings, etc. Consequently, the development of efficient and green methodologies for the production of primary amines are of great importance in chemical industry. Owing to the advantages of low cost and ease in availability, ammonia is considered as a feasible nitrogen source for synthesis of N-containing compounds. Thus, the efficient transformation of ammonia into primary amines has received much attention. In this review, the commonly applied synthetic routes to produce primary amines from ammonia were summarized, including the reductive amination of carbonyl compounds, the hydrogen transfer amination of alcohols, the hydroamination of olefins and the arylation with ammonia, in which the catalytic performance of the recent heterogeneous catalysts is discussed. Additionally, various strategies to modulate the surface properties of catalysts are outlined in conjunction with the analysis of reaction mechanism. Particularly, the amination of the biomass-derived substrates is highlighted, which could provide competitive advantages in chemical industry and stimulate the development of sustainable catalysis in the future. Ultimately, perspectives into the challenges and opportunities for synthesis of primary amines with ammonia as N-resource are discussed.
Collapse
Affiliation(s)
- Mingkai Zhang
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710072, China
| | - Min Xie
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710072, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
21
|
Ahmad N, Kanjariya P, Priya GP, Kumar A, Thakur R, Sharma RSK, Kumari M, Kaur S, Kumar A, Kadheem M. L-Histidine-functionalized KIT-6 with embedded palladium nanoparticles as an efficient heterogeneous catalyst for oxidation of sulfide to sulfoxide and amination of aryl halides. Sci Rep 2025; 15:3071. [PMID: 39856174 PMCID: PMC11759691 DOI: 10.1038/s41598-025-86579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Palladium nanoparticles were supported on L-H-functionalized KIT-6 (KIT-6@L-H-Pd) and evaluated using various characterization techniques such as TGA, FT-IR, SEM, XRD, EDS, and BET. KIT-6@L-H-Pd showed excellent catalytic performance as a recyclable nanocatalyst for the oxidation of sulfides to sulfoxides and the amination of aryl halides. This approach offers multiple benefits, including the use of readily available and cost-effective materials, a straightforward procedure, short reaction durations, high yields, and a catalyst that is easy to separate and reuse. Additionally, the catalyst can be recovered and reused multiple times without significant palladium loss or alteration in its activity.
Collapse
Affiliation(s)
- Nafis Ahmad
- Department of Physics, College of Science, King Khalid University, 61413, Abha, Saudi Arabia.
| | - Prakash Kanjariya
- Department of Physics, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - G Padma Priya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Anjan Kumar
- Department of Electronics and Communication Engineering, GLA University, Mathura, 281406, India
| | - Rishabh Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Sharnjeet Kaur
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia.
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Munther Kadheem
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
22
|
Babu R, Suresh AK, Kumar R, Balaraman E. Dehydrogenative Coupling of Alcohols with Hydrazines under Nickel Catalysis. J Org Chem 2025; 90:323-343. [PMID: 39707971 DOI: 10.1021/acs.joc.4c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The development of efficient and robust catalytic systems based on earth-abundant transition metals for fundamentally new transformations is crucial for sustainable chemical synthesis. Herein, an effective and selective Ni-catalyzed dehydrogenative coupling of alcohols with hydrazines with the liberation of ammonia gas is reported. Although several methods were documented for the N-alkylation reaction, the present strategy is conceptually novel, and the reaction proceeds through a pathway involving N-N bond cleavage of phenylhydrazine followed by hydrogen autotransfer. This unprecedented method demonstrates a wide substrate scope, allowing for the synthesis of C-N coupled products from arylhydrazines using various types of alcohols, including aryl, fused aryl, heteroaromatic, cyclic, and aliphatic alcohols, both primary and secondary alcohols. The present catalytic approach was expanded to facilitate selective deuterium incorporation reactions by employing deuterated alcohols at the α-methyl position of the resulting N-alkylated products. It is noteworthy that we have broadened the applicability of the current catalytic systems to facilitate the ketazine synthesis of hydrazine monohydrate by employing secondary alcohols. The reaction utilizes an inexpensive, abundant, and renewable alcohol that serves as both an alkylating and (transfer) hydrogenating agent. Kinetic studies reveal that the reaction rate depends on the concentration of arylhydrazine and the nickel catalyst, following fractional order.
Collapse
Affiliation(s)
- Reshma Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Abhijith Karattil Suresh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Rohit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
- DST-Nodal Center for APIs and KSM Production under the Therapeutic Chemicals Program, IISER-Tirupati, Tirupati 517619, India
| |
Collapse
|
23
|
Vermeeren B, Van Praet S, Arts W, Narmon T, Zhang Y, Zhou C, Steenackers HP, Sels BF. From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Chem Soc Rev 2024; 53:11804-11849. [PMID: 39365265 DOI: 10.1039/d4cs00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Aliphatic amines encompass a diverse group of amines that include alkylamines, alkyl polyamines, alkanolamines and aliphatic heterocyclic amines. Their structural diversity and distinctive characteristics position them as indispensable components across multiple industrial domains, ranging from chemistry and technology to agriculture and medicine. Currently, the industrial production of aliphatic amines is facing pressing sustainability, health and safety issues which all arise due to the strong dependency on fossil feedstock. Interestingly, these issues can be fundamentally resolved by shifting toward biomass as the feedstock. In this regard, cellulose and hemicellulose, the carbohydrate fraction of lignocellulose, emerge as promising feedstock for the production of aliphatic amines as they are available in abundance, safe to use and their aliphatic backbone is susceptible to chemical transformations. Consequently, the academic interest in bio-based aliphatic amines via the catalytic reductive amination of (hemi)cellulose-derived substrates has systematically increased over the past years. From an industrial perspective, however, the production of bio-based aliphatic amines will only be the middle part of a larger, ideally circular, value chain. This value chain additionally includes, as the first part, the refinery of the biomass feedstock to suitable substrates and, as the final part, the implementation of these aliphatic amines in various applications. Each part of the bio-based aliphatic amine value chain will be covered in this Review. Applying a holistic perspective enables one to acknowledge the requirements and limitations of each part and to efficiently spot and potentially bridge knowledge gaps between the different parts.
Collapse
Affiliation(s)
- Benjamin Vermeeren
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Sofie Van Praet
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Wouter Arts
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Thomas Narmon
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Yingtuan Zhang
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | | | - Bert F Sels
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| |
Collapse
|
24
|
Kümper J, Mürtz SD, Guan Y, Kumari S, Hausoul PJC, Kurig N, Sautet P, Palkovits R. Metallic Impurities in Electrolysis: Catalytic Effect of Pb Traces in Reductive Amination and Acetone Reduction. Angew Chem Int Ed Engl 2024; 63:e202411532. [PMID: 39205488 DOI: 10.1002/anie.202411532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical hydrogenation (e-hydrogenation) of unsaturated compounds like imines or carbonyls presents a benign reduction method. It enables direct use of electrons as reducing agent, water as proton source, while bypassing the need for elevated temperatures or pressures. In this contribution, we discuss the active species in electrocatalytic reductive amination with the transformation of acetone and methylamine as model reaction. Surprisingly, lead impurities in the ppm-range proved to possess a significant effect in e-hydrogenation. Accordingly, the influence of applied potential and cathode material in presence of 1 ppm Pb was investigated. Finally, we transferred the insights to the reduction of acetone manifesting comparable observations as for imine reduction. The results suggest that previous studies on electrochemical reduction in the presence of lead electrodes should be re-evaluated.
Collapse
Affiliation(s)
- Justus Kümper
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Sonja D Mürtz
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Yani Guan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531-J Boelter Hall, Los Angeles, CA 90095, USA
| | - Simran Kumari
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531-J Boelter Hall, Los Angeles, CA 90095, USA
| | - Peter J C Hausoul
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Nils Kurig
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531-J Boelter Hall, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 5531-J Boelter Hall, Los Angeles, CA 90095, USA
| | - Regina Palkovits
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Institute for Sustainable Hydrogen Economy (INW-2), Forschungszentrum Jülich, Marie-Curie-Str. 5, 52428, Jülich, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Huang H, Liu S, Guo X, Jiang H, Cai Y, Tan Z, Zhou G, Cai X, Zhuang M, Xie S. Sustainable ammonia and amines from chitin. BIORESOURCE TECHNOLOGY 2024; 414:131582. [PMID: 39384048 DOI: 10.1016/j.biortech.2024.131582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Efforts are underway to explore alternative methods to the Haber-Bosch process for sustainable ammonia production, while the potential for ammonia extraction from natural nitrogenous biomass is under-exploited. Here, a synergistic catalytic strategy involving acid and modified Ru-based catalysts is communicated for the direct production of amines and ammonia from chitin. Phosphoric acid promotes the cleavage of ether bonds in biomass polymers and also serves to protect amino groups from being removed. Selective hydrogenation, deoxygenation, and amination can be achieved by controllably adjusting the ratio of Ru0/Run+. The utilization of nitrogen atoms in chitin can reach up to 95 % (21 % amines, 74 % ammonium), and the catalytic process is applicable to waste shrimp shells. This study demonstrates the possibility of efficient production of nitrogen-containing compounds from abundant biopolymers.
Collapse
Affiliation(s)
- Hao Huang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengyao Liu
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xucong Guo
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huoyan Jiang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yihong Cai
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zixuan Tan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guangping Zhou
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaolan Cai
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Min Zhuang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaoqu Xie
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China.
| |
Collapse
|
26
|
Goculdas T, Ramirez M, Crossley M, Sadula S, Vlachos DG. Biomass-Derived, Target Specific, and Ecologically Safer Insecticide Active Ingredients. CHEMSUSCHEM 2024; 17:e202400824. [PMID: 38924470 DOI: 10.1002/cssc.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
With the continuous increase in food production to support the growing population, ensuring agricultural sustainability using crop-protecting agents, such as pesticides, is vital. Conventional pesticides pose significant environmental risks, prompting the need for eco-friendly alternatives. This study reports the synthesis of new amide-based insecticidal active ingredients from biomass-derived monomers, specifically furfural and vanillin. The process involves reductive amination followed by carbonylation. The synthesis of the furfural-based carbamate yield reaches a cumulative 88 %, with catalysts Rh/Al2O3 and La(OTf)3 being recyclable at each stage. Insecticidal activity assessments reveal that the furfural carbamate exhibits competitive performance, achieving an LC50 of 254.22 μg/cm2, compared to 251.25 μg/cm2 for carbofuran. Ecotoxicity predictions indicate significantly lower toxicity levels toward non-target aquatic and terrestrial species. The importance of the low octanol-water partition coefficient of the biobased carbamate, attributed to the oxygen heteroatom and electron density of the furan ring, is discussed in detail. Building on these promising results, the synthesis strategy was extended to six other biobased aldehydes, resulting in a diverse portfolio of biomass-derived carbamates. A techno-economic analysis reveals a minimum selling price of 11.1 $/kg, only half that of comparable carbamates, demonstrating the economic viability of these new biobased insecticides.
Collapse
Affiliation(s)
- Tejas Goculdas
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, 19716, DE, USA
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, University of Delaware, Newark, 19716, DE, USA
| | - Maximus Ramirez
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, University of Delaware, Newark, 19716, DE, USA
| | - Michael Crossley
- Department of Entomology and Wildlife Ecology, 531 S. College Ave, University of Delaware, Newark, DE 19716, USA
| | - Sunitha Sadula
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, 19716, DE, USA
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, 19716, DE, USA
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, University of Delaware, Newark, 19716, DE, USA
| |
Collapse
|
27
|
Liu C, Wang L, Ge H. Multifunctionalization of Alkenyl Alcohols via a Sequential Relay Process. J Am Chem Soc 2024; 146:30733-30740. [PMID: 39470983 DOI: 10.1021/jacs.4c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Aryl-substituted aliphatic amines are widely recognized as immensely valuable molecules. Consequently, the development of practical strategies for the construction of these molecules becomes increasingly urgent and critical. Here, we have successfully achieved multifunctionalization reactions of alkenyl alcohols in a sequential relay process, which enables transformation patterns of arylamination, deuterated arylamination, and methylenated arylamination to the easy access of multifarious arylalkylamines. Notably, a novel functionalization mode for carbonyl groups has been developed to facilitate the processes of deuterium incorporation and methylene introduction, thereby providing new means for the diverse transformations of carbonyl groups. This methodology displays a wide tolerance toward functional groups, while also exhibiting good applicability across various skeletal structures of alkenols and amines.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ling Wang
- Residual Department, Merieux Testing Technology (Qingdao) Co., Ltd., Qingdao, 266000, China
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
28
|
Yang J, Tian M, Chang J, Liu B. One-pot transfer hydrogenation and reductive amination of polyenals. Chem Commun (Camb) 2024; 60:12241-12244. [PMID: 39363686 DOI: 10.1039/d4cc04071f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The efficient preparation of long-chain amines via a one-step transfer-hydrogenation/reductive-amination reaction (THRA) of polyenals has been achieved. This strategy, which combines transfer hydrogenation and reductive amination, significantly enhances the synthetic efficiency of amino compounds. Additionally, this protocol offers a practical method for carbon-chain elongation/amination to construct long-chain amino compounds. The reaction system exhibits remarkable versatility in substrate scope using a non-noble ruthenium catalyst with formate and isopropanol as hydrogen sources, making it an appealing method for drug synthesis and molecular modification.
Collapse
Affiliation(s)
- Juntao Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Miaomiao Tian
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Bingxian Liu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
29
|
Narobe R, Perner MN, Gálvez-Vázquez MDJ, Kuhwald C, Klein M, Broekmann P, Rösler S, Cezanne B, Waldvogel SR. Practical electrochemical hydrogenation of nitriles at the nickel foam cathode. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:10567-10574. [PMID: 39309016 PMCID: PMC11413620 DOI: 10.1039/d4gc03446e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
We report a scalable hydrogenation method for nitriles based on cost-effective materials in a very simple two-electrode setup under galvanostatic conditions. All components are commercially and readily available. The method is very easy to conduct and applicable to a variety of nitrile substrates, leading exclusively to primary amine products in yields of up to 89% using an easy work-up protocol. Importantly, this method is readily transferable from the milligram scale in batch-type screening cells to the multi-gram scale in a flow-type electrolyser. The transfer to flow electrolysis enabled us to achieve a notable 20 g day-1 productivity of phenylethylamine at a geometric current density of 50 mA cm-2 in a flow-type electrolyser with 48 cm2 electrodes. It is noteworthy that this method is sustainable in terms of process safety and reusability of components.
Collapse
Affiliation(s)
- Rok Narobe
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | - Marcel Nicolas Perner
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | | | | | | | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern 3012 Bern Switzerland
| | - Sina Rösler
- Sigma-Aldrich Production GmbH 9470 Buchs Switzerland
| | | | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| |
Collapse
|
30
|
Liu Y, Chen Y, Zhao YJ, Zhang GQ, Zheng Y, Yu P, Chen P, Jia ZJ. Iron-Catalyzed Primary Amination of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:24863-24870. [PMID: 39192496 DOI: 10.1021/jacs.4c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Primary amines are privileged molecules in drug development. Yet, there is a noticeable scarcity of methods for directly introducing a primary amine group into the ubiquitous C(sp3)-H bonds within organic compounds. Here, we report an iron-based catalytic system that enables direct primary amination of C(sp3)-H bonds under aqueous conditions and air. Various types of C(sp3)-H bonds, including benzylic, allylic, and aliphatic ones, can be readily functionalized with high selectivity and efficiency. The broad utility of this method has been further verified by late-stage amination of 11 complex bioactive molecules. Mechanistic studies unveil a protonated iron-nitrene complex as the key intermediate for the C-H bond activation. This work extends the toolbox for direct C(sp3)-H functionalizations, opening up new opportunities for late-stage modifications of organic molecules.
Collapse
Affiliation(s)
- Ye Liu
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Jie Zhao
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guo-Qing Zhang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yongxiang Zheng
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peng Chen
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Zhang L, Su X, Zhou L, Li J, Xiao T, Li J, Zhao F, Cheng H. Reversal Effect of Phosphorus on Catalytic Performances of Supported Nickel Catalysts in Reductive Amination of 1,6-Hexanediol. CHEMSUSCHEM 2024; 17:e202400211. [PMID: 38547358 DOI: 10.1002/cssc.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Indexed: 04/23/2024]
Abstract
The reductive amination of 1,6-hexanediol with ammonia is one of the most promising green routes for synthesis of 1,6-hexanediamine. Herein, we developed a phosphorous modified Ni catalyst of Ni-P/Al2O3. It presented satisfactory improved selectivity to 1,6-hexanediamine in the reductive amination of 1,6-hexanediol compared to the Ni/Al2O3 catalyst. The phosphorous tended to interact with Al2O3 to form AlPOx species, induced Ni nanoparticle to be flatter, and the decrease of strong acid sites, the new-formed Ni-AlPOx-Al2O3 interface and the flatter Ni nanoparticle were the key to switch the dominating product from hexamethyleneimine to 1,6-hexanediamine. This work develops an efficient catalyst for production of 1,6-hexanediamine from the reductive amination of 1,6-hexanediol, and provides a point of view about designing selective non-noble metal catalysts for producing primary diamines via reductive amination of diols.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Xinluona Su
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Leilei Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Jingrong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Tingting Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Jian Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Fengyu Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Haiyang Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| |
Collapse
|
32
|
Ma Z, Kuloor C, Kreyenschulte C, Bartling S, Malina O, Haumann M, Menezes PW, Zbořil R, Beller M, Jagadeesh RV. Development of Iron-Based Single Atom Materials for General and Efficient Synthesis of Amines. Angew Chem Int Ed Engl 2024; 63:e202407859. [PMID: 38923207 DOI: 10.1002/anie.202407859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Earth abundant metal-based heterogeneous catalysts with highly active and at the same time stable isolated metal sites constitute a key factor for the advancement of sustainable and cost-effective chemical synthesis. In particular, the development of more practical, and durable iron-based materials is of central interest for organic synthesis, especially for the preparation of chemical products related to life science applications. Here, we report the preparation of Fe-single atom catalysts (Fe-SACs) entrapped in N-doped mesoporous carbon support with unprecedented potential in the preparation of different kinds of amines, which represent privileged class of organic compounds and find increasing application in daily life. The optimal Fe-SACs allow for the reductive amination of a broad range of aldehydes and ketones with ammonia and amines to produce diverse primary, secondary, and tertiary amines including N-methylated products as well as drugs, agrochemicals, and other biomolecules (amino acid esters and amides) utilizing green hydrogen.
Collapse
Affiliation(s)
- Zhuang Ma
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Chakreshwara Kuloor
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Carsten Kreyenschulte
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Ondrej Malina
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic
| | - Michael Haumann
- Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Prashanth W Menezes
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| |
Collapse
|
33
|
Sun T, Zhen T, Harakandi CH, Wang L, Guo H, Chen Y, Sun H. New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands. Eur J Med Chem 2024; 275:116569. [PMID: 38852337 DOI: 10.1016/j.ejmech.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Butyrylcholinesterase (BChE), also known as pseudocholinesterase and serum cholinesterase, is an isoenzyme of acetylcholinesterase (AChE). It mediates the degradation of acetylcholine, especially under pathological conditions. Proverbial pharmacological applications of BChE, its mutants and modulators consist of combating Alzheimer's disease (AD), influencing multiple sclerosis (MS), addressing cocaine addiction, detoxifying organophosphorus poisoning and reflecting the progression or prognosis of some diseases. Of interest, recent reports have shed light on the relationship between BChE and lipid metabolism. It has also been proved that BChE is going to increase abnormally as a compensator for AChE in the middle and late stages of AD, and BChE inhibitors can alleviate cognitive disorders and positively influence some pathological features in AD model animals, foreboding favorable prospects and potential applications. Herein, the selective BChE inhibitors and BChE-related multitarget-directed ligands published in the last three years were briefly summarized, along with the currently known pharmacological applications of BChE, aiming to grasp the latest research directions. Thereinto, some emerging strategies for designing BChE inhibitors are intriguing, and the modulators based on target combination of histone deacetylase and BChE against AD is unprecedented. Furthermore, the involvement of BChE in the hydrolysis of ghrelin, the inhibition of low-density lipoprotein (LDL) uptake, and the down-regulation of LDL receptor (LDLR) expression suggests its potential to influence lipid metabolism disorders. This compelling prospect likely stimulates further exploration in this promising research direction.
Collapse
Affiliation(s)
- Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | | | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huanchao Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
34
|
Wang J, Wang W, Huang H, Ma Z, Chang M. Direct synthesis of chiral β-arylamines via additive-free asymmetric reductive amination enabled by tunable bulky phosphoramidite ligands. Chem Sci 2024:d4sc04416a. [PMID: 39268211 PMCID: PMC11388092 DOI: 10.1039/d4sc04416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
This report describes an additive-free iridium-catalyzed direct asymmetric reductive amination that enables the efficient synthesis of chiral β-arylamines, which are important pharmacophores present in a wide variety of pharmaceutical drugs. The reaction makes use of bulky and tunable phosphoramidite ligands for high levels of enantiomeric control, even for alkylamino coupling partners which lack secondary coordinating sites. The synthetic value of this succinct procedure is demonstrated by single-step synthesis of multiple drugs, analogs and key intermediates. Mechanistic investigations reveal an enamine-reduction pathway, in which H-bonding, steric repulsion, and CH-π and electrostatic interactions play important roles in defining the spatial environment for the "outer-sphere" hydride addition.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry & Pharmacy, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
| | - Wenji Wang
- College of Chemistry & Pharmacy, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
| | - Haizhou Huang
- College of Chemistry & Pharmacy, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
| | - Zhiqing Ma
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
| | - Mingxin Chang
- College of Chemistry & Pharmacy, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
| |
Collapse
|
35
|
Zhang S, Hu Y, Li M, Xie Y. Reductive Amination of Aldehyde and Ketone with Ammonia and H 2 by an In Situ-Generated Cobalt Catalyst under Mild Conditions. Org Lett 2024; 26:7122-7127. [PMID: 39166977 DOI: 10.1021/acs.orglett.4c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Herein, we present the simplest approach for the synthesis of primary amines via reductive amination using H2 as a reductant and aqueous ammonia as a nitrogen source, catalyzed by amorphous Co particles. The highly active Co particles were prepared in situ by simply mixing commercially available CoCl2 and NaBH4/NaHBEt3 without any ligand or support. This reaction system features mild conditions (80 °C, 1-10 bar), high selectivity (99%), a wide substrate scope, simple operation, and easy separation of the catalyst. The successful large-scale application of this reaction in the production of primary amines suggests its potential industrial interest.
Collapse
Affiliation(s)
- Shiyun Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yue Hu
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yinjun Xie
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
36
|
Li X, Zhong H, Yang H, Li L, Wang Q. High-Throughput Screening and Prediction of Nucleophilicity of Amines Using Machine Learning and DFT Calculations. J Chem Inf Model 2024; 64:6361-6368. [PMID: 39116323 DOI: 10.1021/acs.jcim.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Nucleophilic index (NNu) as a significant parameter plays a crucial role in screening of amine catalysts. Indeed, the quantity and variety of amines are extensive. However, only limited amines exhibit an NNu value exceeding 4.0 eV, rendering them potential nucleophiles in chemical reactions. To address this issue, we proposed a computational method to quickly identify amines with high NNu values by using Machine Learning (ML) and high-throughput Density Functional Theory (DFT) calculations. Our approach commenced by training ML models and the exploration of Molecular Fingerprint methods as well as the development of quantitative structure-activity relationship (QSAR) models for the well-known amines based on NNu values derived from DFT calculations. Utilizing explainable Shapley Additive Explanation plots, we were able to determine the five critical substructures that significantly impact the NNu values of amine. The aforementioned conclusion can be applied to produce and cultivate 4920 novel hypothetical amines with high NNu values. The QSAR models were employed to predict the NNu values of 259 well-known and 4920 hypothetical amines, resulting in the identification of five novel hypothetical amines with exceptional NNu values (>4.55 eV). The enhanced NNu values of these novel amines were validated by DFT calculations. One novel hypothetical amine, H1, exhibits an unprecedentedly high NNu value of 5.36 eV, surpassing the maximum value (5.35 eV) observed in well-established amines. Our research strategy efficiently accelerates the discovery of the high nucleophilicity of amines using ML predictions, as well as the DFT calculations.
Collapse
Affiliation(s)
- Xu Li
- Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Haoliang Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Haoyu Yang
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Lin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Qingji Wang
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
37
|
Sharma M, Patton ZE, Shoemaker CR, Bacsa J, Biegasiewicz KF. N-Halogenation by Vanadium-Dependent Haloperoxidases Enables 1,2,4-Oxadiazole Synthesis. Angew Chem Int Ed Engl 2024:e202411387. [PMID: 39183368 DOI: 10.1002/anie.202411387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Nitrogen-containing compounds are valuable synthetic intermediates and targets in nearly every chemical industry. While methods for nitrogen-carbon and nitrogen-heteroatom bond formation have primarily relied on nucleophilic nitrogen atom reactivity, molecules containing nitrogen-halogen bonds allow for electrophilic or radical reactivity modes at the nitrogen center. Despite the growing synthetic utility of nitrogen-halogen bond-containing compounds, selective catalytic strategies for their synthesis are largely underexplored. We recently discovered that the vanadium-dependent haloperoxidase (VHPO) class of enzymes are a suitable biocatalyst platform for nitrogen-halogen bond formation. Herein, we show that VHPOs perform selective halogenation of a range of substituted benzamidine hydrochlorides to produce the corresponding N'-halobenzimidamides. This biocatalytic platform is applied to the synthesis of 1,2,4-oxadiazoles from the corresponding N-acylbenzamidines in high yield and with excellent chemoselectivity. Finally, the synthetic applicability of this biotechnology is demonstrated in an extension to nitrogen-nitrogen bond formation and the chemoenzymatic synthesis of the Duchenne muscular dystrophy drug, ataluren.
Collapse
Affiliation(s)
- Manik Sharma
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| | - Zoe E Patton
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
| | - Carlie R Shoemaker
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
| | - Kyle F Biegasiewicz
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| |
Collapse
|
38
|
Zhu FY, Wu BD, Du MH, Yao JL, Abrahams BF, Gu H, Braunstein P, Lang JP. Tandem Protocol for Diversified Deuteration of Secondary Aliphatic Amines under Mild Conditions. J Org Chem 2024; 89:11414-11420. [PMID: 39102497 DOI: 10.1021/acs.joc.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Deuteration of amine compounds has been widely of concern because of its practical role in organic reaction mechanisms and drug research; however, only limited deuteration label methods are accessible with D2O as a deuterium source. Herein, we propose a convenient deuteration protocol, including preparing D2 by the AlGa activation method, using PtRu nanowires as catalysts, and utilizing the elementary step in the couple reaction involving an imine unit, to realize the rapid preparation of a secondary amine with a diversified deuteration label. The self-coupling between nitriles not only provides a symmetric secondary amine with four α-D atoms but also produces high-valued ND3 in an atomic-economic way.
Collapse
Affiliation(s)
- Feng-Yuan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Bao-De Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Ming-Hao Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | | | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Pierre Braunstein
- Université de Strasbourg─CNRS, Institut de Chimie (UMR 7177 CNRS), 4 rue Blaise Pascal-CS 90032, Strasbourg 67081, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
39
|
Kim R, Wu Y, Tong R. Asymmetric total syntheses of sarglamides A, C, D, E, and F. Chem Sci 2024; 15:12856-12860. [PMID: 39148793 PMCID: PMC11322964 DOI: 10.1039/d4sc03553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Sarglamides A-E were identified as a structurally new class of alkaloids with potential application for inflammation-associated diseases. Reported is the first asymmetric total synthesis of sarglamides A, C, D, E, and F within 7 steps, featuring an intermolecular Diels-Alder cycloaddition of (S)-phellandrene and 1,4-benzoquinone and intramolecular (aza-)Michael addition to construct the tetracyclic core of sarglamides. Importantly, our work demonstrated that the hypothetic Diels-Alder reaction of α-phellandrene with dienophile toussaintine C (or analogues) originally proposed as a biosynthetic pathway was not viable under non-enzymatic conditions. Additionally, we discovered novel and efficient double cyclization (cycloetherification and oxa-Michael cyclization) to construct the core framework of sarglamides E and D. Our concise synthetic strategy might allow rapid access to a library of sarglamide analogues for further evaluation of their bioactivity and mode of action.
Collapse
Affiliation(s)
- Ryungwoo Kim
- Department of Chemistry, The Hong Kong University of Science and Technology Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Yanting Wu
- Department of Chemistry, The Hong Kong University of Science and Technology Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| |
Collapse
|
40
|
Lyu K, Jian X, Nie K, Liu S, Huai M, Kang Z, Liu D, Lan X, Wang T. Structural Ni 0-Ni δ+ Pair Sites for Highly Active Hydrogenation of Nitriles to Primary Amines. J Am Chem Soc 2024; 146:21623-21633. [PMID: 39056253 DOI: 10.1021/jacs.4c05572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Supported metal pair sites have sparked interest due to their tremendous potential as bifunctional catalysts. Here, we report the structural Ni0-Niδ+ pair sites constructed in a well-defined nanocrystal phase of Ni3P. These Ni0-Niδ+ pair sites exhibited a remarkable product formation rate of 123 molBA/molmetal/h for the hydrogenation of benzonitrile (BN) to benzylamine (BA). The heterogeneity of surface Ni atoms over the Ni3P crystal created two types of metal centers, Ni0 and Niδ+, with a specific spatial distance of 4-5 Å. The Ni0 site acted as the center for H2 activation, while the Niδ+ site served as the adsorption and activation center for the C ≡ N group. The highly efficient cooperation effect of Ni0-Niδ+ pair sites resulted in a TOF of 2915 h-1 in BN hydrogenation, which is 2.4 and 9.7 times higher than that over the mono-Ni0 and -Niδ+ sites, respectively.
Collapse
Affiliation(s)
- Kyeinfar Lyu
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xianfeng Jian
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kaiqi Nie
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shaoxiong Liu
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Mengjiao Huai
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenyu Kang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehuai Liu
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Smirnov IV, Biriukov KO, Shvydkiy NV, Perekalin DS, Afanasyev OI, Chusov D. Air-Stable Arene Manganese Complexes as Catalysts for the Syngas-Assisted Direct Reductive Amination, Cyanation of Aldehyde, and CO 2 Fixation by Epoxide with High Functional Groups Tolerance. J Org Chem 2024; 89:10338-10343. [PMID: 38943599 DOI: 10.1021/acs.joc.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Manganese complexes [(arene)Mn(CO)3]+ were prepared in one step from arenes and Mn(CO)5Br. They were found to be efficient catalysts in the carbonyl cyanation with TMSCN, CO2 fixation by epoxides, and direct reductive amination in the presence of syngas. The amination reaction tolerated various reducible functional groups. The synergy of carbon monoxide and hydrogen in syngas provides high efficiency of the catalytic system. The developed protocols do not require an inert atmosphere, and the catalysts can be handled in air.
Collapse
Affiliation(s)
- Ivan V Smirnov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Klim O Biriukov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
| | - Nikita V Shvydkiy
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
| | - Dmitry S Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
42
|
Zhang Z, Li Q, Cheng Z, Jiao N, Zhang C. Selective nitrogen insertion into aryl alkanes. Nat Commun 2024; 15:6016. [PMID: 39019881 PMCID: PMC11255249 DOI: 10.1038/s41467-024-50383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Molecular structure-editing through nitrogen insertion offers more efficient and ingenious pathways for the synthesis of nitrogen-containing compounds, which could benefit the development of synthetic chemistry, pharmaceutical research, and materials science. Substituted amines, especially nitrogen-containing alkyl heterocyclic compounds, are widely found in nature products and drugs. Generally, accessing these compounds requires multiple steps, which could result in low efficiency. In this work, a molecular editing strategy is used to realize the synthesis of nitrogen-containing compounds using aryl alkanes as starting materials. Using derivatives of O-tosylhydroxylamine as the nitrogen source, this method enables precise nitrogen insertion into the Csp2-Csp3 bond of aryl alkanes. Notably, further synthetic applications demonstrate that this method could be used to prepare bioactive molecules with good efficiency and modify the molecular skeleton of drugs. Furthermore, a plausible reaction mechanism involving the transformation of carbocation and imine intermediates has been proposed based on the results of control experiments.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Qi Li
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Chun Zhang
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
43
|
Li J, Chen X, Xie S, Wang H, Mo J, Huang H. Photoredox/Bismuth Relay Catalysis Enabling Reductive Alkylation of Nitroarenes with Aldehydes. Chemistry 2024; 30:e202401456. [PMID: 38738505 DOI: 10.1002/chem.202401456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
The effective transition metal-free photoredox/bismuth dual catalytic reductive dialkylation of nitroarenes with benzaldehydes has been reported. The nitroarene reduction through visible light-driven photoredox catalysis was integrated with subsequent reductive dialkylation of anilines under bismuth catalysis to enable the cascade reductive alkylation of nitroarenes with carbonyls. Salient features of this relay catalysis system include mild reaction conditions, no requirement for transition metal catalysts, easy handling, step-economy, and high selectivity.
Collapse
Affiliation(s)
- Jinlian Li
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, 530021, Nanning, P. R. China
- Department Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Shuangyong Road 22, 530021, Nanning, P. R. China
| | - Xing Chen
- College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Shenxia Xie
- Department Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Shuangyong Road 22, 530021, Nanning, P. R. China
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, 530021, Nanning, P. R. China
| | - Jiayu Mo
- Department Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Shuangyong Road 22, 530021, Nanning, P. R. China
| | - Huawen Huang
- College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
44
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
45
|
Liu J, Bai J, Liu Y, Zhou L, He Y, Ma L, Liu G, Gao J, Jiang Y. Integrating Au Catalysis and Engineered Amine Dehydrogenase for the Chemoenzymatic Synthesis of Chiral Aliphatic Amines. JACS AU 2024; 4:2281-2290. [PMID: 38938794 PMCID: PMC11200242 DOI: 10.1021/jacsau.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Direct synthesis of aliphatic amines from alkynes is highly desirable due to its atom economy and high stereoselectivity but still challenging, especially for the long-chain members. Here, a combination of Au-catalyzed alkyne hydration and amine dehydrogenase-catalyzed (AmDH) reductive amination was constructed, enabling sequential conversion of alkynes into chiral amines in aqueous solutions, particularly for the synthesis of long-chain aliphatic amines on a large scale. The production of chiral aliphatic amines with more than 6 carbons reached 36-60 g/L. A suitable biocatalyst [PtAmDH (A113G/T134G/V294A)], obtained by data mining and active site engineering, enabled the transformation of previously inactive long-chain ketones at high concentrations. Computational analysis revealed that the broader substrate scope and tolerance with the high substrate concentrations resulted from the additive effects of mutations introduced to the three gatekeeper residues 113, 134, and 294.
Collapse
Affiliation(s)
- Jianqiao Liu
- School
of Chemical Engineering and Technology, Hebei University of Technology, 5340 Xiping Rd., Tianjin 300130, China
| | - Jing Bai
- College
of Food Science and Biology, Hebei University
of Science & Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| | - Yunting Liu
- School
of Chemical Engineering and Technology, Hebei University of Technology, 5340 Xiping Rd., Tianjin 300130, China
| | - Liya Zhou
- School
of Chemical Engineering and Technology, Hebei University of Technology, 5340 Xiping Rd., Tianjin 300130, China
| | - Ying He
- School
of Chemical Engineering and Technology, Hebei University of Technology, 5340 Xiping Rd., Tianjin 300130, China
| | - Li Ma
- School
of Chemical Engineering and Technology, Hebei University of Technology, 5340 Xiping Rd., Tianjin 300130, China
| | - Guanhua Liu
- School
of Chemical Engineering and Technology, Hebei University of Technology, 5340 Xiping Rd., Tianjin 300130, China
| | - Jing Gao
- School
of Chemical Engineering and Technology, Hebei University of Technology, 5340 Xiping Rd., Tianjin 300130, China
| | - Yanjun Jiang
- School
of Chemical Engineering and Technology, Hebei University of Technology, 5340 Xiping Rd., Tianjin 300130, China
| |
Collapse
|
46
|
Bai M, Zhang S, Lin Z, Hao Z, Han Z, Lu GL, Lin J. Ruthenium Complexes with NNN-Pincer Ligands for N-Methylation of Amines Using Methanol. Inorg Chem 2024; 63:11821-11831. [PMID: 38848310 DOI: 10.1021/acs.inorgchem.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
A series of ruthenium complexes (Ru1-Ru4) bearing new NNN-pincer ligands were synthesized in 58-78% yields. All of the complexes are air and moisture stable and were characterized by IR, NMR, and high-resolution mass spectra (HRMS). In addition, the structures of Ru1-Ru3 were confirmed by X-ray crystallographic analysis. These Ru(II) complexes exhibited high catalytic efficiency and broad functional group tolerance in the N-methylation reaction of amines using CH3OH as both the C1 source and solvent. Experimental results indicated that the electronic effect of the substituents on the ligands considerably affects the catalytic reactivity of the complexes in which Ru3 bearing an electron-donating OMe group showed the highest activity. Deuterium labeling and control experiments suggested that the dehydrogenation of methanol to generate ruthenium hydride species was the rate-determining step in the reaction. Furthermore, this protocol also provided a ready approach to versatile trideuterated N-methylamines under mild conditions using CD3OD as a deuterated methylating agent.
Collapse
Affiliation(s)
- Mengxuan Bai
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shengxin Zhang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhengguo Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhiqiang Hao
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhangang Han
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019,Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jin Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
47
|
He J, Han B, Xian C, Hu Z, Fang T, Zhang Z. Hydrogen-Bond-Mediated Formation of C-N or C=N Bond during Photocatalytic Reductive Coupling Reaction over CdS Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202404515. [PMID: 38637293 DOI: 10.1002/anie.202404515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Reductive amination of carbonyl compounds and nitro compounds represents a straightforward way to attain imines or secondary amines, but it is difficult to control the product selectivity. Herein, we report the selective formation of C-N or C=N bond readily manipulated through a solvent-induced hydrogen bond bridge, facilitating the swift photocatalytic reductive coupling process. The reductive-coupling of nitro compounds with carbonyl compounds using formic acid and sodium formate as the hydrogen donors over CdS nanosheets selectively generates imines with C=N bonds in acetonitrile solvent; while taking methanol as solvent, the C=N bonds are readily hydrogenated to the C-N bonds via hydrogen-bonding activation. Experimental and theoretical study reveals that the building of the hydrogen-bond bridge between the hydroxyl groups in methanol and the N atoms of the C=N motifs in imines facilitates the transfer of hydrogen atoms from CdS surface to the N atoms in imines upon illumination, resulting in the rapid hydrogenation of the C=N bonds to give rise to the secondary amines with C-N bonds. Our method provides a simple way to control product selectivity by altering the solvents in photocatalytic organic transformations.
Collapse
Affiliation(s)
- Jie He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Bo Han
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Chensheng Xian
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Zhao Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Tingfeng Fang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
48
|
Boulos J, Goc F, Vandenbrouck T, Perret N, Dhainaut J, Royer S, Rataboul F. Carbon-Supported Ru-Ni and Ru-W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol-Derived Primary Amines. CHEMSUSCHEM 2024; 17:e202400540. [PMID: 38572685 DOI: 10.1002/cssc.202400540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
Nitrogen-containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short-chain primary amines are of interest for the polymer industry, like 2-aminopropanol, 1-aminopropan-2-ol, and 1,2-diaminopropane. These amines can be formed through the amination of oxygenated substrates, preferably in aqueous phase. This is possible with heterogeneous catalysts, however, effective systems that allow reactions under mild conditions are lacking. We report an efficient catalyst Ru-Ni/AC for the reductive amination of hydroxyacetone into 2-aminopropanol. The catalyst has been reused during 3 cycles demonstrating a good stability. As a prospective study, extension to the reactivity of (poly)carbohydrates has been realized. Despite a lesser efficiency, 2-aminopropanol (9 % yield of amines) has been formed from fructose, the first example from a carbohydrate. This was possible using a 7.5 %Ru-36 %WxC/AC catalyst, composition allowing a one-pot retro-aldol cleavage into hydroxyacetone and reductive amination. The transformation of cellulose through sequential reactions with a combination of 30 %W2C/AC and 7.5 %Ru-36 %WxC/AC system gave 2 % of 2-aminopropanol, corresponding to the first example of the formation of this amine from cellulose with heterogeneous catalysts.
Collapse
Affiliation(s)
- Joseph Boulos
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, Unité de Catalyse et de Chimie du Solide, UMR 8181, 59000, Lille, France
| | - Firat Goc
- Univ Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, UMR 5256, 2 avenue Albert Einstein, 69626, Villeurbanne, France
| | - Tom Vandenbrouck
- Univ Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, UMR 5256, 2 avenue Albert Einstein, 69626, Villeurbanne, France
| | - Noémie Perret
- Univ Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, UMR 5256, 2 avenue Albert Einstein, 69626, Villeurbanne, France
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, Unité de Catalyse et de Chimie du Solide, UMR 8181, 59000, Lille, France
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, Unité de Catalyse et de Chimie du Solide, UMR 8181, 59000, Lille, France
| | - Franck Rataboul
- Univ Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, UMR 5256, 2 avenue Albert Einstein, 69626, Villeurbanne, France
| |
Collapse
|
49
|
Hisata Y, Washio T, Takizawa S, Ogoshi S, Hoshimoto Y. In-silico-assisted derivatization of triarylboranes for the catalytic reductive functionalization of aniline-derived amino acids and peptides with H 2. Nat Commun 2024; 15:3708. [PMID: 38714662 PMCID: PMC11076482 DOI: 10.1038/s41467-024-47984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 05/10/2024] Open
Abstract
Cheminformatics-based machine learning (ML) has been employed to determine optimal reaction conditions, including catalyst structures, in the field of synthetic chemistry. However, such ML-focused strategies have remained largely unexplored in the context of catalytic molecular transformations using Lewis-acidic main-group elements, probably due to the absence of a candidate library and effective guidelines (parameters) for the prediction of the activity of main-group elements. Here, the construction of a triarylborane library and its application to an ML-assisted approach for the catalytic reductive alkylation of aniline-derived amino acids and C-terminal-protected peptides with aldehydes and H2 is reported. A combined theoretical and experimental approach identified the optimal borane, i.e., B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2, which exhibits remarkable functional-group compatibility toward aniline derivatives in the presence of 4-methyltetrahydropyran. The present catalytic system generates H2O as the sole byproduct.
Collapse
Affiliation(s)
- Yusei Hisata
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takashi Washio
- Department of Reasoning for Intelligence and Artificial Intelligence Research Center, SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Shinobu Takizawa
- Department of Synthetic Organic Chemistry and Artificial Intelligence Research Center, SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
- Division of Applied Chemistry, Center for Future Innovation (CFi), Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
50
|
Sun JL, Jiang H, Dixneuf PH, Zhang M. Multicomponent Reductive Coupling for Selective Access to Functional γ-Lactams by a Single-Atom Cobalt Catalyst. J Am Chem Soc 2024. [PMID: 38512775 DOI: 10.1021/jacs.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Despite their significant importance to numerous fields, the difficulties in direct and diverse synthesis of α-hydroxy-γ-lactams pose substantial obstacles to their practical applications. Here, we designed a nitrogen and TiO2 co-doped graphitic carbon-supported material with atomically dispersed cobalt sites (CoSA-N/NC-TiO2), which was successfully applied as a multifunctional catalyst to establish a general method for direct construction of α-hydroxy-γ-lactams from cheap and abundant nitro(hetero)arenes, aldehydes, and H2O with alkynoates. The striking features of operational simplicity, broad substrate and functionality compatibility (>100 examples), high step and atom efficiency, good selectivity, and exceptional catalyst reusability highlight the practicality of this new catalytic transformation. Mechanistic studies reveal that the active CoN4 species and the dopants exhibit a synergistic effect on the formation of key acid-masked nitrones; their subsequent nucleophilic addition to the alkynoates followed by successive reduction, alkenyl hydration, and intramolecular ester ammonolysis delivers the desired products. In this work, the concept of reduction interruption leading to new reaction route will open a door to further develop useful transformations by rational catalyst design.
Collapse
Affiliation(s)
- Jia-Lu Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | | | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|