1
|
Erbasan A, Ustunel H, Toffoli D. Electronic Structure of Rh and Ir Single Atom Catalysts Supported on Defective and Doped ZnO: Assessment of Their Activity Towards CO Oxidation. Molecules 2024; 29:5082. [PMID: 39519723 PMCID: PMC11547260 DOI: 10.3390/molecules29215082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated the electronic structure of single-atom Rhodium (Rh) and Iridium (Ir) adsorbed on defective and impurity-doped ZnO(0001) surfaces, and assessed their activity towards the CO oxidation reaction. Our findings reveal that surface impurities significantly influence the binding energies and electronic properties of the metal atoms, with Al and Cr serving as particularly effective promoters. While Rh and Ir acquire a positive charge upon incorporation on the unpromoted Zn(0001) surface, adsorption directly on the promoter results in a net negative charge, thus facilitating the activation of both CO and O2 species. These results highlight the potential of impurity-promoted ZnO surfaces in modulating and tailoring the electronic properties of SACs, which can be used for a rational design of active single-atom catalysts.
Collapse
Affiliation(s)
- Arda Erbasan
- Department of Physics, Middle East Technical University, Dumlupinar Blv 1, Ankara 06800, Turkey;
| | - Hande Ustunel
- Department of Physics, Middle East Technical University, Dumlupinar Blv 1, Ankara 06800, Turkey;
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- IOM-CNR, Istituto Officina dei Materiali-CNR, S.S.14, Km 163.5, 34149 Trieste, Italy
| |
Collapse
|
2
|
Han X, Jiang M, Li H, Li R, Sulaiman NHM, Zhang T, Li H, Zheng L, Wei J, He L, Zhou X. Upcycle polyethylene terephthalate waste by photoreforming: Bifunction of Pt cocatalyst. J Colloid Interface Sci 2024; 665:204-218. [PMID: 38522160 DOI: 10.1016/j.jcis.2024.03.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Upcycle polyethylene terephthalate (PET) waste by photoreforming (PR) is a sustainable and green approach to tackle environmental problems but with challenges to obtain valuable oxidation products and high purity hydrogen simultaneously. Noble metal cocatalysts are essential to enhance the overall PR reaction efficacy. In this work, TiO2 nanotubes (TiO2 NTs) decorated with single Pt atoms (Pt1/TiO2) or Pt nanoparticles (PtNPs/TiO2) are used in the photoreforming reaction (in one batch), and the oxidation products from ethylene glycol (EG, hydrolysed product of PET) in liquid phase and hydrogen are detected. With Pt1/TiO2, EG is oxidized to glyoxal, glyoxylate or lactate, and hydrogen evolution rate (r H2) reaches 51.8 μmol⋅h-1⋅gcat-1, that is 30 times higher than that of TiO2. For PtNPs/TiO2 (size of Pt NPs: 1.97 nm), hydrogen evolution reaches 219.1 μmol⋅h-1⋅gcat-1, but with the oxidation product of acetate only. DFT calculation demonstrates that for Pt NPs, the reaction path for hydrogen evolution is preferred thermodynamically, due to the formation of Schottky junction. On the oxidation of EG, theoretical and spectroscopic analysis suggest that bidentate adsorption of EG at the interface is facile on Pt1/TiO2, compared to that on PtNPs/TiO2 (two Pt sites), but oxidation products, adsorb less strongly, compared to PtNPs/TiO2, that eventually regulates the distribution of oxidation products. The results thus demonstrate the bifunctions of Pt in the PR reaction, i.e., electron transfer mediator for hydrogen evolution and reactive sites for molecules adsorption. The oxidation reaction is dominated by the adsorption-desorption behavior of molecules but the reduction reaction is controlled by the electron transfer. In addition, acidification of pretreated PET alkaline solution achieves separation of pure terephthalic acid (PTA), which further improves the reaction efficiency possibly by offering high density of active sites and acidic environment. Our work thus demonstrates that to upcycle PET plastics, an optimized process can be reached by atomic design of photocatalysts and proper treatment on the plastic wastes.
Collapse
Affiliation(s)
- Xiaochi Han
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Ming Jiang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Huaxing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Rongjie Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Nashwan H M Sulaiman
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Tao Zhang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Hongjiao Li
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jiake Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Lirong He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, PR China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, PR China.
| |
Collapse
|
3
|
Chakraborty S, Servottam S, Samal PK, Kalita D, Rao A, Bagchi D, Peter SC, Eswaramoorthy M. Highly Efficient Electrochemical Hydrogen Evolution with Ultra-Low Loading of Strongly Adhered Pt Nanoparticles on Carbon. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303495. [PMID: 37434340 DOI: 10.1002/smll.202303495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Indexed: 07/13/2023]
Abstract
The development of robust electrocatalysts with low platinum content for acidic hydrogen evolution reaction (HER) is paramount for large scale commercialization of proton exchange membrane electrolyzers. Herein, a simple strategy is reported to synthesize a well anchored, low Pt containing Vulcan carbon catalyst using ZnO as a sacrificial template. Pt containing ZnO (PZ) is prepared by a simultaneous borohydride reduction. PZ is then loaded onto Vulcan carbon to produce a very low Pt content electrocatalyst, PZ@VC. PZ@VC with 2 wt.% Pt shows excellent performance for acidic HER in comparison to the commercial Pt/C (20 wt.%) catalyst. PZ@VC with a very low Pt loading shows significantly low η10 and η100 values (15 and 46 mV, respectively). PZ@VC on coating with Nafion (PZ@VC-N) shows further improvement in its performance (η10 of 7 mV, η100 of 28 mV) with ≈300 h of stability (≈10 mA cm-2 ) with only 4 µgPt cm-2 . PZ@VC-N shows a record high mass activity of 71 A mgPt -1 (32 times larger than Pt/C (20 wt.%) at 50 mV of overpotential. Post reaction characterizations reveal Pt nanoparticles are embedded onto VC with no traces of zinc, suggestive of a strong metal-support interaction leading to this high stability at low Pt loading.
Collapse
Affiliation(s)
- Soumita Chakraborty
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
| | - Swaraj Servottam
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
| | - Pankaj Kumar Samal
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
| | - Daizy Kalita
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
| | - Ankit Rao
- Centre for Nano Science and Engineering, IISc, Bengaluru, Karnataka, 560012, India
| | - Debabrata Bagchi
- New Chemistry Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
| | - Sebastian C Peter
- New Chemistry Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
- International Centre for Materials Science, School of Advanced Materials (SAMat), JNCASR, Bengaluru, 560064, India
| |
Collapse
|
4
|
Awoke YA, Tsai MC, Adam DB, Ayele AA, Yang SC, Huang WH, Chen JL, Pao CW, Mou CY, Su WN, Hwang BJ. The synergistic effect Pt1-W dual sites as a highly active and durable catalyst for electrochemical methanol oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Chen L, Kovarik L, Meira D, Szanyi J. Differentiating and Understanding the Effects of Bulk and Surface Mo Doping on CO 2 Hydrogenation over Pd/Anatase-TiO 2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linxiao Chen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Debora Meira
- CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - János Szanyi
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Ligand-coordination effects on the selective hydrogenation of acetylene in single-site Pd-ligand supported catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|
8
|
Tomboc GM, Kim T, Jung S, Yoon HJ, Lee K. Modulating the Local Coordination Environment of Single-Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105680. [PMID: 35102698 DOI: 10.1002/smll.202105680] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Single-atom catalysts (SACs) hold the promise of utilizing 100% of the participating atoms in a reaction as active catalytic sites, achieving a remarkable boost in catalytic efficiency. Thus, they present great potential for noble metal-based electrochemical application systems, such as water electrolyzers and fuel cells. However, their practical applications are severely hindered by intrinsic complications, namely atom agglomeration and relocation, originating from the uncontrollably high surface energy of isolated single-atoms (SAs) during postsynthetic treatment processes or catalytic reactions. Extensive efforts have been made to develop new methodologies for strengthening the interactions between SAs and supports, which could ensure the desired stability of the active catalytic sites and their full utilization by SACs. This review covers the recent progress in SACs development while emphasizing the association between the regulation of coordination environments (e.g., coordination atoms, numbers, sites, structures) and the electrocatalytic performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The crucial role of coordination chemistry in modifying the intrinsic properties of SACs and manipulating their metal-loading, stability, and catalytic properties is elucidated. Finally, the future challenges of SACS development and the industrial outlook of this field are discussed.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sangmin Jung
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Tying Covalent Organic Frameworks through Alkene Metathesis and Supported Platinum as Efficient Catalysts for Hydrosilylation. NANOMATERIALS 2022; 12:nano12030499. [PMID: 35159846 PMCID: PMC8915182 DOI: 10.3390/nano12030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022]
Abstract
Recently there has been a great interest in covalent organic frameworks due to their fascinating properties. Current approaches to improve their hydrolytic stability mainly rely on the transformation of the dynamic bonds into strong and irreversible bonds, but these approaches also reduce the versatility of the frameworks. Herein, we would like to demonstrate a solution to this dilemma by forming hierarchical bonds through olefin metathesis to produce highly stable COFs. Our approach allows unprecedented opportunities for post-modification of the inner space through the dynamic imine bonds while maintaining the integrity of the framework. Specifically, we demonstrate an amorphous-to-crystalline transformation. In addition, the porosity can be enhanced by up to 70% after full removal of the amine subunits. Overall, our work provides a new direction for the generation of highly stable while still versatile COFs. Meanwhile, platinum(II) complexes can be supported on BHU-2 (Pt@BHU-2) or BHU-2-Oxidate(Pt@BHU-2-Oxidate) as efficient catalysts for hydrosilylation.
Collapse
|
10
|
Zhou X, Sterbinsky GE, Wasim E, Chen L, Tait SL. Tuning Ligand-Coordinated Single Metal Atoms on TiO 2 and their Dynamic Response during Hydrogenation Catalysis. CHEMSUSCHEM 2021; 14:3825-3837. [PMID: 33955201 DOI: 10.1002/cssc.202100208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Ligand-coordinated supported catalysts (LCSCs) are of growing interest for heterogeneous single-atom catalysis. Here, the effect of the choice of organic ligand on the activity and stability of TiO2 -supported single-atom Pt-ligand catalysts was investigated for ethylene hydrogenation. The activity of these catalysts showed a significant dependence on the choice of ligand and also correlated with coordination number for Pt-ligand and Pt-Cl- . Of the three ligands examined in this study, the one with the lowest Pt coordination number, 1,10-phenanthroline-5,6-dione (PDO), showed the lowest reaction temperature and highest reaction rate, likely due to those metal sites being more accessible to reactant adsorption. In-situ X-ray absorption spectroscopy (XAS) experiments showed that the activity also correlated with good heterolytic dissociation of hydrogen, which was supported by OH/OD exchange experiments and was the rate-determining step of the hydrogenation reaction. In these in-situ XAS experiments up to 190 °C, the supported Pt-ligand catalyst showed excellent stability against structural and chemical change. Instead of Pt, the PDO ligand could be coordinated with Ir on TiO2 to form Ir LCSCs that showed slow activation by loss of Ir-Cl bonds, then excellent stability in the hydrogenation of ethylene. These results provide the chance to engineer ligand-coordinated supported catalysts at the single-atom catalyst level by the choice of ligand and enable new applications at relatively high temperature.
Collapse
Affiliation(s)
- Xuemei Zhou
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
- School of Chemical Engineering, Sichuan University No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - George E Sterbinsky
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois, 60439, USA
| | - Eman Wasim
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
| | - Linxiao Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Steven L Tait
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
| |
Collapse
|
11
|
Chen L, Unocic RR, Hoffman AS, Hong J, Braga AH, Bao Z, Bare SR, Szanyi J. Unlocking the Catalytic Potential of TiO 2-Supported Pt Single Atoms for the Reverse Water-Gas Shift Reaction by Altering Their Chemical Environment. JACS AU 2021; 1:977-986. [PMID: 34467344 PMCID: PMC8395703 DOI: 10.1021/jacsau.1c00111] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/05/2023]
Abstract
Single-atom catalysts (SACs) often exhibit dynamic responses to the reaction and pretreatment environment that affect their activity. The lack of understanding of these behaviors hinders the development of effective, stable SACs, and makes their investigations rather difficult. Here we report a reduction-oxidation cycle that induces nearly 5-fold activity enhancement on Pt/TiO2 SACs for the reverse water-gas shift (rWGS) reaction. We combine microscopy (STEM) and spectroscopy (XAS and IR) studies with kinetic measurements, to convincingly show that the low activity on the fresh SAC is a result of limited accessibility of Pt single atoms (Pt1) due to high Pt-O coordination. The reduction step mobilizes Pt1, forming small, amorphous, and unstable Pt aggregates. The reoxidation step redisperses Pt into Pt1, but in a new, less O-coordinated chemical environment that makes the single metal atoms more accessible and, consequently, more active. After the cycle, the SAC exhibits superior rWGS activity to nonatomically dispersed Pt/TiO2. During the rWGS, the activated Pt1 experience slow deactivation, but can be reactivated by mild oxidation. This work demonstrates a clear picture of how the structural evolution of Pt/TiO2 SACs leads to ultimate catalytic efficiency, offering desired understanding on the rarely explored dynamic chemical environment of supported single metal atoms and its catalytic consequences.
Collapse
Affiliation(s)
- Linxiao Chen
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99352, United States
| | - Raymond R. Unocic
- Center
for Nanophase Materials Science, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Adam S. Hoffman
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jiyun Hong
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adriano H. Braga
- Institute
of Chemistry, University of São Paulo, São Paulo, São
Paulo 05508-000, Brazil
| | - Zhenghong Bao
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Simon R. Bare
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Janos Szanyi
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Tieu P, Yan X, Xu M, Christopher P, Pan X. Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006482. [PMID: 33624398 DOI: 10.1002/smll.202006482] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The drive for atom efficient catalysts with carefully controlled properties has motivated the development of single atom catalysts (SACs), aided by a variety of synthetic methods, characterization techniques, and computational modeling. The distinct capabilities of SACs for oxidation, hydrogenation, and electrocatalytic reactions have led to the optimization of activity and selectivity through composition variation. However, characterization methods such as infrared and X-ray spectroscopy are incapable of direct observations at atomic scale. Advances in transmission electron microscopy (TEM) including aberration correction, monochromators, environmental TEM, and micro-electro-mechanical system based in situ holders have improved catalysis study, allowing researchers to peer into regimes previously unavailable, observing critical structural and chemical information at atomic scale. This review presents recent development and applications of TEM techniques to garner information about the location, bonding characteristics, homogeneity, and stability of SACs. Aberration corrected TEM imaging routinely achieves sub-Ångstrom resolution to reveal the atomic structure of materials. TEM spectroscopy provides complementary information about local composition, chemical bonding, electronic properties, and atomic/molecular vibration with superior spatial resolution. In situ/operando TEM directly observe the evolution of SACs under reaction conditions. This review concludes with remarks on the challenges and opportunities for further development of TEM to study SACs.
Collapse
Affiliation(s)
- Peter Tieu
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Mingjie Xu
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
- Irvine Materials Research Institute (IMRI), University of California, Irvine, CA, 92697, USA
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
- Irvine Materials Research Institute (IMRI), University of California, Irvine, CA, 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
13
|
Abstract
The discussion concerning cooperativity in supported single-atom (SA) catalysis is often limited to the metal-support interaction, which is certainly important, but which is not the only lever for modifying the catalytic performance. Indeed, if the interaction between the SA and the support, which can be seen as a solid ligand presenting its own specificities that fix the first coordination sphere of the metal, plays a central role as in homogeneous catalysis, other factors can strongly contribute to modification of the activity, selectivity and stability of SAs. Therefore, in this mini-review, we briefly summarize the importance of the support (oxide, carbon or a second metal) in SA photo- electro- and thermal-catalysis (support-assisted operation), and concentrate on other types of cooperativities that in some cases enable previously impossible reaction pathways on supported metal SAs. This includes topics that are not specific to SA catalysis, such as metal-ligand or heterobimetallic cooperativity, and cooperativity which is SA-specific such as nanoparticle-SA or mixed-valence SA cooperativity.
Collapse
Affiliation(s)
- Philippe Serp
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France.
| |
Collapse
|
14
|
Wang K, Wang X, Liang X. Synthesis of High Metal Loading Single Atom Catalysts and Exploration of the Active Center Structure. ChemCatChem 2020. [DOI: 10.1002/cctc.202001255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kaiying Wang
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology Rolla MO 65409 USA
| | - Xiaofeng Wang
- College of Environmental Science and Engineering Dalian Maritime University Dalian 116026 P.R. China
| | - Xinhua Liang
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology Rolla MO 65409 USA
| |
Collapse
|
15
|
Qin R, Liu K, Wu Q, Zheng N. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chem Rev 2020; 120:11810-11899. [DOI: 10.1021/acs.chemrev.0c00094] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|