1
|
Amankrah SA, Salpadoru T, Cotton K, Patrauchan MA, Wozniak KL, Gerasimchuk N. Synthesis, Characterization and Antimicrobial Activity of Trimethylantimony(V) Biscyanoximates, a New Family of Antimicrobials. Molecules 2024; 29:5779. [PMID: 39683936 DOI: 10.3390/molecules29235779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Antimicrobial compounds play a critical role in combating microbial infections. However, the emergence of antibiotic and antifungal resistance and the scarcity of new antibiotic developments pose a significant threat and demand the discovery of new antimicrobials for both bacterial and fungal pathogens. Our previous work described the first generation (G1) of organoantimony-based compounds that showed antimicrobial activity against several bacterial and fungal pathogens. Here, we present our efforts in modifying these compounds by replacing the tetraphenyl backbone in G1 compounds with a trimethyl group, thereby generating a new series of compounds we refer to as "generation 2", G2. In addition to the novel backbone structure, we introduced three new anionic chloro-cyanoxime ligand groups, namely 2,4-diCl-PhCO-, 2,6-diCl-PhCO- and 2Cl-PhCO-, which were found to be biologically active in the past. Nine new compounds of SbMe3L2 composition were obtained in high yields and characterized by NMR, IR spectroscopies, thermogravimetric TG/DSC and X-ray single crystal analyses. The antibacterial activity of the cyanoximates was tested against three bacterial (Pseudomonas aeruginosa PAO1, Escherichia coli S17 and methicillin-resistant Staphylococcus aureus (MRSA) NRS70) and two fungal (Candida albicans strain SC5314 and Cryptococcus neoformans strain H99) pathogens. Two compounds, SbMe3(MCO)2 and SbMe3(2,4-diClPhCO)2, were active against bacterial strains and inhibited the growth of PAO1 and MRSA with MICs of 50 and 100 µg/mL, respectively. Three compounds, SbMe3(MCO)2, SbMe3(ECO)2 and SbMe3(TCO)2, were active against fungal strains and inhibited either one of or both C. albicans and C. neoformans at MICs of 2.6-66.67 μg/mL. In addition, SbMe3(TCO)2 and SbMe3(MCO)2 were fungicidal at MFC 33.33-66.67 μg/mL. Ultra-thin-layer TEM imaging suggested that SbMe3(MCO)2 targets the integrity of bacterial membranes. Overall, four of the studied G2 series compounds possess antimicrobial activity against a broad range of microbial pathogens, with particular potential against fungal pathogens, which will be explored in further studies.
Collapse
Affiliation(s)
- Seth A Amankrah
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, MO 65897, USA
| | - Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, MO 65897, USA
| |
Collapse
|
2
|
Londoño-Salazar J, Ayala M, Powell DR, Shao Y, Richter-Addo GB. Interactions of arylhydroxylamines and alkylaldoximes with a rhodium porphyrin. J Inorg Biochem 2023; 247:112337. [PMID: 37517330 DOI: 10.1016/j.jinorgbio.2023.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Heme enzymes are involved in the binding and metabolism of hydroxylamine (RNHOH) and aldoxime (RCH=NOH) compounds (R = H, alkyl, aryl). We report the synthesis and X-ray crystal structure of a metalloporphyrin in complex with an arylhydroxylamine, namely that of (TPP)Rh(PhNHOH)(C6H4Cl) (TPP = tetraphenylpophryinato dianion). The crystal structure reveals, in addition to N-binding of PhNHOH to Rh, the presence of an intramolecular H-bond between the hydroxylamine -OH proton and a porphyrin N-atom. Results from density functional theory (DFT) calculations support the presence of this intramolecular H-bond in this global minimum structure, and a natural bond order (NBO) analysis reveals that this H-bond comprises a donor π N=C (porphyrin) to acceptor σ* O-H (hydroxylamine) interaction of 2.32 kcal/mol. While DFT calculations predict the presence of similar intramolecular H-bond interactions in the related aldoxime complexes (TPP)Rh(RCH=NOH)(C6H4Cl) in their global minima structures, the X-ray crystal structure obtained for the (TPP)Rh(CH3(CH2)2CH=NOH)(C6H4Cl) complex is consistent with the local (non-global) minima conformation that does not have this intramolecular H-bond interaction.
Collapse
Affiliation(s)
| | - Megan Ayala
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Douglas R Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | - George B Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.
| |
Collapse
|
3
|
Gerasimchuk N, Pinks K, Salpadoru T, Cotton K, Michka O, Patrauchan MA, Wozniak KL. Non-Antibiotic Antimony-Based Antimicrobials. Molecules 2022; 27:7171. [PMID: 36363997 PMCID: PMC9654735 DOI: 10.3390/molecules27217171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 07/21/2023] Open
Abstract
A series of the eight novel organoantimony(V) cyanoximates of Sb(C6H5)4L composition was synthesized using the high-yield heterogeneous metathesis reaction between solid AgL (or TlL) and Sb(C6H5)4Br in CH3CN at room temperature. Cyanoximes L were specially selected from a large group of 48 known compounds of this subclass of oximes on the basis of their water solubility and history of prior biological activity. The synthesized compounds are well soluble in organic solvents and were studied using a variety of conventional spectroscopic and physical methods. The crystal structures of all reported organometallic compounds were determined and revealed the formation of the distorted trigonal bipyramidal environment of the Sb atom and monodentate axial binding of acido-ligands via the O atom of the oxime group. The compounds are thermally stable in the solid state and in solution molecular compounds. For the first time, this specially designed series of organoantimony(V) compounds is investigated as potential non-antibiotic antimicrobial agents against three bacterial and two fungal human pathogens known for their increasing antimicrobial resistance. Bacterial pathogens included Gram-negative Escherichia coli and Pseudomonas aeruginosa, and Gram-positive Staphylococcus aureus. Fungal pathogens included Cryptococcus neoformans and Candida albicans. The cyanoximates alone showed no antimicrobial impact, and the incorporation of the SbPh4 group enabled the antimicrobial effect. Overall, the new antimony compounds showed a strong potential as both broad- and narrow-spectrum antimicrobials against selected bacterial and fundal pathogens and provide insights for further synthetic modifications of the compounds to increase their activities.
Collapse
Affiliation(s)
- Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Temple Hall 456, Missouri State University, Springfield, MO 65897, USA
| | - Kevin Pinks
- Department of Chemistry and Biochemistry, Temple Hall 456, Missouri State University, Springfield, MO 65897, USA
| | - Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Olga Michka
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
4
|
Structural characterization of products in the Ni(II) – 2-oximino-2-cyan-N-piperidineacetamide (HPiPCO) system. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Razali MR, Urbatsch A, Moubaraki B, Murray KS, Deacon GB, Batten SR. Copper mediated in situ nucleophilic addition of polyalcohols to dicyanonitrosomethanide
†. Aust J Chem 2022. [DOI: 10.1071/ch21323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Domasevitch KV, Senchyk GA, Lysenko AB, Rusanov EB. Hydrogen-bonding landscape of the carbamoyl-cyano-nitro-somethanide anion in the crystal structure of its ammonium salt. Acta Crystallogr E Crystallogr Commun 2021; 77:1103-1108. [PMID: 34868645 PMCID: PMC8587992 DOI: 10.1107/s2056989021010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022]
Abstract
The structure of the title salt, ammonium carbamoyl-cyano-nitro-somethanide, NH4 +·C3H2N3O2 -, features the co-existence of different hydrogen-bonding patterns, which are specific to each of the three functional groups (nitroso, carbamoyl and cyano) of the methanide anion. The nitroso O-atoms accept as many as three N-H⋯O bonds from the ammonium cations [N⋯O = 2.688 (3)-3.000 (3) Å] to form chains of fused rhombs [(NH4)(O)2]. The most prominent bonds of the carbamoyl groups are mutual and they yield 21 helices [N⋯O = 2.903 (2) Å], whereas the cyano N-atoms accept hydrogen bonds from sterically less accessible carbamoyl H-atoms [N⋯N = 3.004 (3) Å]. Two weaker NH4 +⋯O=C bonds [N⋯O = 3.021 (2), 3.017 (2) Å] complete the hydrogen-bonded environment of the carbamoyl groups. A Hirshfeld surface analysis indicates that the most important inter-actions are overwhelmingly O⋯H/H⋯O and N⋯H/H⋯N, in total accounting for 64.1% of the contacts for the individual anions. The relatively simple scheme of these inter-actions allows the delineation of the supra-molecular synthons, which may be applicable to crystal engineering of hydrogen-bonded solids containing polyfunctional methanide anions.
Collapse
Affiliation(s)
- Kostiantyn V. Domasevitch
- Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
| | - Ganna A. Senchyk
- Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
| | - Andrey B. Lysenko
- Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
| | - Eduard B. Rusanov
- Institute of Organic Chemistry, Murmanskaya Str. 4, Kyiv 253660, Ukraine
| |
Collapse
|
7
|
Polyzou CD, Nikolaou H, Raptopoulou CP, Konidaris KF, Bekiari V, Psycharis V, Perlepes SP. Dinuclear Lanthanide(III) Complexes from the Use of Methyl 2-Pyridyl Ketoxime: Synthetic, Structural, and Physical Studies. Molecules 2021; 26:1622. [PMID: 33804026 PMCID: PMC7999197 DOI: 10.3390/molecules26061622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
The first use of methyl 2-pyridyl ketoxime (mepaoH) in homometallic lanthanide(III) [Ln(III)] chemistry is described. The 1:2 reactions of Ln(NO3)3·nH2O (Ln = Nd, Eu, Gd, Tb, Dy; n = 5, 6) and mepaoH in MeCN have provided access to complexes [Ln2(O2CMe)4(NO3)2(mepaoH)2] (Ln = Nd, 1; Ln = Eu, 2; Ln = Gd, 3; Ln = Tb, 4; Ln = Dy, 5); the acetato ligands derive from the LnIII-mediated hydrolysis of MeCN. The 1:1 and 1:2 reactions between Dy(O2CMe)3·4H2O and mepaoH in MeOH/MeCN led to the all-acetato complex [Dy2(O2CMe)6(mepaoH)2] (6). Treatment of 6 with one equivalent of HNO3 gave 5. The structures of 1, 5, and 6 were solved by single-crystal X-ray crystallography. Elemental analyses and IR spectroscopy provide strong evidence that 2-4 display similar structural characteristics with 1 and 5. The structures of 1-5 consist of dinuclear molecules in which the two LnIII centers are bridged by two bidentate bridging (η1:η1:μ2) and two chelating-bridging (η1:η2:μ2) acetate groups. The LnIII atoms are each chelated by a N,N'-bidentate mepaoH ligand and a near-symmetrical bidentate nitrato group. The molecular structure of 6 is similar to that of 5, the main difference being the presence of two chelating acetato groups in the former instead of the two chelating nitrato groups in the latter. The geometry of the 9-coordinate LnIII centers in 1, 5 and 6 can be best described as a muffin-type (MFF-9). The 3D lattices of the isomorphous 1 and 5 are built through H-bonding, π⋯π stacking and C-H⋯π interactions, while the 3D architecture of 6 is stabilized by H bonds. The IR spectra of the complexes are discussed in terms of the coordination modes of the organic and inorganic ligands involved. The Eu(III) complex 2 displays a red, metal-ion centered emission in the solid state; the TbIII atom in solid 4 emits light in the same region with the ligand. Magnetic susceptibility studies in the 2.0-300 K range reveal weak antiferromagnetic intramolecular GdIII…GdIII exchange interactions in 3; the J value is -0.09(1) cm-1 based on the spin Hamiltonian Ĥ = -J(ŜGd1·ŜGd2).
Collapse
Affiliation(s)
- Christina D. Polyzou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.D.P.); (H.N.)
| | - Helen Nikolaou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.D.P.); (H.N.)
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece;
| | | | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece;
| | - Spyros P. Perlepes
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.D.P.); (H.N.)
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Platani, B.O. Box 1414, 26504 Patras, Greece
| |
Collapse
|
8
|
D'Acunzo F, Carbonaro L, Cort AD, Di Sabato A, Filippini D, Leonelli F, Mancini L, Gentili P. Click‐Connected 2‐(Hydroxyimino)aldehydes for the Design of UV‐Responsive Functional Molecules. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Francesca D'Acunzo
- Istituto per i Sistemi Biologici Sezione Meccanismi di Reazione Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
| | - Linda Carbonaro
- Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
| | - Antonella Dalla Cort
- Istituto per i Sistemi Biologici Sezione Meccanismi di Reazione Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
- Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
| | - Antonio Di Sabato
- Istituto per i Sistemi Biologici Sezione Meccanismi di Reazione Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
- Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
| | - Dario Filippini
- Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
| | - Francesca Leonelli
- Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
| | - Laura Mancini
- Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
| | - Patrizia Gentili
- Istituto per i Sistemi Biologici Sezione Meccanismi di Reazione Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
- Dipartimento di Chimica Sapienza Università di Roma P.le A. Moro 5 00185 Roma Italy
| |
Collapse
|
9
|
Bangar PG, Nahide PD, Meroliya HK, Waghmode SA, Iyer S. Oxime ligands for Pd catalysis of the Mizoroki–Heck reaction, Suzuki–Miyaura coupling & annulation reactions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1826969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Pronnoy G. Bangar
- Organic Chemistry Division, National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Pradip D. Nahide
- Organic Chemistry Division, National Chemical Laboratory, Pune, India
| | | | | | - Suresh Iyer
- Organic Chemistry Division, National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
10
|
Gerasimchuk N. Unusual Four-Membered Metallocycles in Complexes of Main Group III Metals. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Reactivity of Coordinated 2-Pyridyl Oximes: Synthesis, Structure, Spectroscopic Characterization and Theoretical Studies of Dichlorodi{(2-Pyridyl)Furoxan}Zinc(II) Obtained from the Reaction between Zinc(II) Nitrate and Pyridine-2-Chloroxime. INORGANICS 2020. [DOI: 10.3390/inorganics8090047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work reports our first results in the area of the reactivity of coordinated chloroximes. The 1:2:2:2 Zn(NO3)2∙6H2O/Eu(NO3)3∙6H2O/ClpaoH/Et3N reaction mixture in MeOH, where ClpaoH is pyridine-2-chloroxime, resulted in complex [ZnCl2(L)] (1); L is the di(2-pyridyl)furoxan [3,4-di(2-pyridyl)-1,2,5-oxadiazole-2-oxide] ligand. The same complex can be isolated in the absence of the lanthanoid. The direct reaction of ZnCl2 and pre-synthesized L in MeOH also provides access to 1. In the tetrahedral complex, L behaves as a Npyridyl,N′pyridyl-bidentate ligand, forming an unusual seven-membered chelating ring. The Hirshfeld Surface analysis of the crystal structure reveals a multitude of intermolecular interactions, which generate an interesting 3D architecture. The complex has been characterized by FTIR and Raman spectroscopies. The structure of 1 is not retained in DMSO (dimethylsulfoxide) solution, as proven by NMR (1H, 13C, 15N) spectroscopy and its molar conductivity value. Upon excitation at 375 nm, solid 1 emits blue light with a maximum at 452 nm; the emission is of an intraligand character. The geometric and energetic profiles of possible pathways involved in the reaction of ClpaoH and Zn(NO3)2∙6H2O in MeOH in the presence of Et3N has been investigated by DFT (Density Functional Theory) computational methodologies at the PBE0/Def2-TZVP(Cr)∪6-31G(d,p)(E)/Polarizable Continuum Model (PCM) level of theory. This study reveals an unprecedented cross-coupling reaction between two coordinated 2-pyridyl nitrile oxide ligands.
Collapse
|
12
|
Search for the shortest intermetallic Tl---Tl contacts: Synthesis and characterization of Thallium(I) coordination polymers with several mono- and bis-cyanoximes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Takamura T, Harada T, Furuta T, Ikariya T, Kuwata S. Half-Sandwich Iridium Complexes Bearing a Diprotic Glyoxime Ligand: Structural Diversity Induced by Reversible Deprotonation. Chem Asian J 2019; 15:72-78. [PMID: 31577045 DOI: 10.1002/asia.201901276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Indexed: 12/23/2022]
Abstract
Synthesis and deprotonation reactions of half-sandwich iridium complexes bearing a vicinal dioxime ligand were studied. Treatment of [{Cp*IrCl(μ-Cl)}2 ] (Cp*=η5 -C5 Me5 ) with dimethylglyoxime (LH2 ) at an Ir:LH2 ratio of 1:1 afforded the cationic dioxime iridium complex [Cp*IrCl(LH2 )]Cl (1). The chlorido complex 1 undergoes stepwise and reversible deprotonation with potassium carbonate to give the oxime-oximato complex [Cp*IrCl(LH)] (2) and the anionic dioximato(2-) complex K[Cp*IrCl(L)] (3) sequentially. Meanwhile, twofold deprotonation of the sulfato complex [Cp*Ir(SO4 )(LH2 )] (4) resulted in the formation of the oximato-bridged dinuclear complex [{Cp*Ir(μ-L)}2 ] (5). X-ray analyses disclosed their supramolecular structures with one-dimensional infinite chain (1 and 2), hexagonal open channels (3), and a tetrameric rhomboid (4) featuring multiple intermolecular hydrogen bonds and electrostatic interactions.
Collapse
Affiliation(s)
- Taishin Takamura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Takuya Harada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tatsuro Furuta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Takao Ikariya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Shigeki Kuwata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|