1
|
Abdul M, Zhang M, Ma T, Alotaibi NH, Mohammad S, Luo YS. Facile synthesis of Co 3Te 4-Fe 3C for efficient overall water-splitting in an alkaline medium. NANOSCALE ADVANCES 2025; 7:433-447. [PMID: 39760026 PMCID: PMC11698179 DOI: 10.1039/d4na00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
The large amounts of attention directed towards the commercialization of renewable energy systems have motivated extensive research to develop non-precious-metal-based catalysts for promoting the electrochemical production of H2 and O2 from water. Here, we report promising technology, i.e., electrochemical water splitting for OER and HER. This work used a simple hydrothermal method to synthesize a novel Co3Te4-Fe3C nanocomposite directly on a stainless-steel substrate. Various physical techniques like XRD, FESEM/EDX, and XPS have been used to characterize the good composite growth and confirm the correlation between the structural features. It has been shown that the composite's morphology consists of interconnected particles, each uniformly coated with a thin layer of carbon. This structure then forms a porous network with defects, which helps stabilize the material and improve its charge conductivity. XPS analysis shows that combining Fe3C with Co3Te4 adjusts the atomic structure of both metals. This interaction creates redox sites (Fe3+/Fe2+ and Co3+/Co2+) at the Co₃Te₄-Fe₃C interface, which are crucial for activating redox reactions and enhancing electrochemical performance. The results also confirm the presence of multiple synergistic active sites, which contribute to improved catalytic activity. The optimized chemical composition and conductive structure result in enhanced electrocatalytic activity of Co3Te4-Fe3C towards electron transportation between the material interface and medium. It is found that the Co3Te4-Fe3C catalyst exhibits robust OER/HER activity with reduced overpotential values of 235/210 mV@10 mA cm-2 and Tafel slopes of 62/45 mV dec-1 in an alkaline solution. For overall water-splitting, cell voltages of 1.44, 1.88, and 2.0 V at current densities of 10, 50, and 100 mA cm-2 were achieved with a stability of 102 h. The electrochemically active surface area of the composite is 1125 cm2, indicating that a large surface area offered numerous reactive sites for electron transfer in the promotion of the electrochemical activity. The enhancement in catalytic performance was also checked using chronoamperometry analysis, reflecting long-term stability. Our results provide a novel idea for designing a composite of carbide with chalcogenide with robust catalytic mechanisms, which is useful for various applications in environmental and energy conversion fields.
Collapse
Affiliation(s)
- M Abdul
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
- Research Institute of Electronic Science and Technology of UESTC Chengdu China
| | - Miao Zhang
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
| | - Tianjun Ma
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
| | - Nouf H Alotaibi
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Yin-Sheng Luo
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
| |
Collapse
|
2
|
Hegazy MBZ, Zander J, Weiss M, Simon C, Gerschel P, Sanden SA, Smialkowski M, Tetzlaff D, Kull T, Marschall R, Apfel UP. FeNi 2S 4-A Potent Bifunctional Efficient Electrocatalyst for the Overall Electrochemical Water Splitting in Alkaline Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311627. [PMID: 38462958 DOI: 10.1002/smll.202311627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/17/2024] [Indexed: 03/12/2024]
Abstract
For a carbon-neutral society, the production of hydrogen as a clean fuel through water electrolysis is currently of great interest. Since water electrolysis is a laborious energetic reaction, it requires high energy to maintain efficient and sustainable production of hydrogen. Catalytic electrodes can reduce the required energy and minimize production costs. In this context, herein, a bifunctional electrocatalyst made from iron nickel sulfide (FeNi2S4 [FNS]) for the overall electrochemical water splitting is introduced. Compared to Fe2NiO4 (FNO), FNS shows a significantly improved performance toward both OER and HER in alkaline electrolytes. At the same time, the FNS electrode exhibits high activity toward the overall electrochemical water splitting, achieving a current density of 10 mA cm-2 at 1.63 V, which is favourable compared to previously published nonprecious electrocatalysts for overall water splitting. The long-term chronopotentiometry test reveals an activation followed by a subsequent stable overall cell potential at around 2.12 V for 20 h at 100 mA cm-2.
Collapse
Affiliation(s)
- Mohamed Barakat Zakaria Hegazy
- Inorganic Chemistry I, Ruhr-University Bochum, 44801, Bochum, Germany
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Judith Zander
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany
- Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, 95447, Bayreuth, Germany
| | - Morten Weiss
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Christopher Simon
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Philipp Gerschel
- Inorganic Chemistry I, Ruhr-University Bochum, 44801, Bochum, Germany
| | | | - Mathias Smialkowski
- Inorganic Chemistry I, Ruhr-University Bochum, 44801, Bochum, Germany
- Fraunhofer Institute for Environmental, Safety, and Energy Technology, 46047, Oberhausen, Germany
| | - David Tetzlaff
- Inorganic Chemistry I, Ruhr-University Bochum, 44801, Bochum, Germany
- Fraunhofer Institute for Environmental, Safety, and Energy Technology, 46047, Oberhausen, Germany
| | - Tobias Kull
- Inorganic Chemistry I, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Roland Marschall
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany
- Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, 95447, Bayreuth, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Ruhr-University Bochum, 44801, Bochum, Germany
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
3
|
Jesudass SC, Surendran S, Moon DJ, Shanmugapriya S, Kim JY, Janani G, Veeramani K, Mahadik S, Kim IG, Jung P, Kwon G, Jin K, Kim JK, Hong K, Park YI, Kim TH, Heo J, Sim U. Defect engineered ternary metal spinel-type Ni-Fe-Co oxide as bifunctional electrocatalyst for overall electrochemical water splitting. J Colloid Interface Sci 2024; 663:566-576. [PMID: 38428114 DOI: 10.1016/j.jcis.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Transition metal spinel oxides were engineered with active elements as bifunctional water splitting electrocatalysts to deliver superior intrinsic activity, stability, and improved conductivity to support green hydrogen production. In this study, we reported the ternary metal Ni-Fe-Co spinel oxide electrocatalysts prepared by defect engineering strategy with rich and deficient Na+ ions, termed NFCO-Na and NFCO, which suggest the formation of defects with Na+ forming tensile strain. The Na-rich NiFeCoO4 spinel oxide reveals lattice expansion, resulting in the formation of a defective crystal structure, suggesting higher electrocatalytic active sites. The spherical NFCO-Na electrocatalysts exhibit lower OER and HER overpotentials of 248 mV and 153 mV at 10 mA cm-2 and smaller Tafel slope values of about 78 mV dec-1 and 129 mV dec-1, respectively. Notably, the bifunctional NFCO-Na electrocatalyst requires a minimum cell voltage of about 1.67 V to drive a current density of 10 mA cm-2. The present work highlights the significant electrochemical activity of defect-engineered ternary metal oxides, which can be further upgraded as highly active electrocatalysts for water splitting applications.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Dae Jun Moon
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Sathyanarayanan Shanmugapriya
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Krishnan Veeramani
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shivraj Mahadik
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Il Goo Kim
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Pildo Jung
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas Lawrence, KS 66045, United States
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Kootak Hong
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jaeyeong Heo
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea; Center for Energy Storage System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
4
|
He GY, He XF, Mu HY, Su R, Zhou Y, Meng C, Li FT, Chen XM. Electronic Structure Modulation Via Iron-Incorporated NiO to Boost Urea Oxidation/Oxygen Evolution Reaction. Inorg Chem 2024; 63:7937-7945. [PMID: 38629190 DOI: 10.1021/acs.inorgchem.4c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
The urea-assisted water splitting not only enables a reduction in energy consumption during hydrogen production but also addresses the issue of environmental pollution caused by urea. Doping heterogeneous atoms in Ni-based electrocatalysts is considered an efficient means for regulating the electronic structure of Ni sites in catalytic processes. However, the current methodologies for synthesizing heteroatom-doped Ni-based electrocatalysts exhibit certain limitations, including intricate experimental procedures, prolonged reaction durations, and low product yield. Herein, Fe-doped NiO electrocatalysts were successfully synthesized using a rapid and facile solution combustion method, enabling the synthesis of 1.1107 g within a mere 5 min. The incorporation of iron atoms facilitates the modulation of the electronic environment around Ni atoms, generating a substantial decrease in the Gibbs free energy of intermediate species for the Fe-NiO catalyst. This modification promotes efficient cleavage of C-N bonds and consequently enhances the catalytic performance of UOR. Benefiting from the tunability of the electronic environment around the active sites and its efficient electron transfer, Fe-NiO electrocatalysts only needs 1.334 V to achieve 50 mA cm-2 during UOR. Moreover, Fe-NiO catalysts were integrated into a dual electrode urea electrolytic system, requiring only 1.43 V of cell voltage at 10 mA cm-2.
Collapse
Affiliation(s)
- Guang-Yuan He
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiong-Fei He
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Hui-Ying Mu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ran Su
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhou
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chao Meng
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fa-Tang Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xue-Min Chen
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
5
|
Meng D, Wei L, Shi J, Jiang Q, Wu X, Tang J. Loose spherical FeOOH/MnO nanoarrays from a simple in situ hydrothermal method for enhanced oxygen evolution electrocatalysis. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Effect of Fe on Calcined Ni(OH)2 Anode in Alkaline Water Electrolysis. Catalysts 2023. [DOI: 10.3390/catal13030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Ni (hydr)oxide is a promising and inexpensive material for oxygen evolution reaction (OER) catalysts and is known to dramatically increase the activity when used with Fe. Herein, we basified a Ni(II) solution and coated layered Ni(OH)2 on Ni coins to prepare a template with high stability and activity. To evaluate the stability and catalytic activity during high-current-density operation, we analyzed the electrochemical and physicochemical properties before and after constant current (CC) operation. The electrode with a Ni(OH)2 surface exhibited higher initial activity than that with a NiO surface; however, after the OER operation at a high-current density, degradation occurred owing to structural destruction. The activity of the electrodes with a NiO surface improved after the CC operation because of the changes on the electrode-surface caused by the CC operation and the subsequent Fe incorporation from the Fe impurity in the electrolyte. After confirming the improvement in activity due to Fe, we prepared NiFe-oxide electrodes with improved catalytic activity and optimized the Ni precursor and Fe loading solution concentrations. The Ni-Fe oxide electrode prepared under the optimal concentrations exhibited an overpotential of 287 mV at a current density of 10 mA/cm2, and a tafel slope of 37 mV dec−1, indicating an improvement in the OER activity.
Collapse
|
7
|
Al-Naggar AH, Shinde NM, Kim JS, Mane RS. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ghafoor Abid A, Al Huwayz M, Alwadai N, Manzoor S, Munawar T, Iqbal F, Hua R, Aman S, Al-Buriahi MS, Naeem Ashiq M. 3D nanosheet networks like mesoporous structure of NiO/CoSe 2nanohybrid directly grown on nickel foam for oxygen evolution process. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2148841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Abdul Ghafoor Abid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Al Huwayz
- Department of Physics, College of science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Norah Alwadai
- Department of Physics, College of science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ruimao Hua
- Department of Chemistry, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, People’s Republic of China
| | - Salma Aman
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan-, Pakistan
| | | | | |
Collapse
|
9
|
Supercapacitor and oxygen evolution reaction performances based on rGO and Mn2V2O7 nanomaterials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Majee R, Parvin S, Arif Islam Q, Kumar A, Debnath B, Mondal S, Bhattacharjee S, Das S, Kumar A, Bhattacharyya S. The Perfect Imperfections in Electrocatalysts. CHEM REC 2022; 22:e202200070. [PMID: 35675947 DOI: 10.1002/tcr.202200070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Indexed: 01/15/2023]
Abstract
Modern day electrochemical devices find applications in a wide range of industrial sectors, from consumer electronics, renewable energy management to pollution control by electric vehicles and reduction of greenhouse gas. There has been a surge of diverse electrochemical systems which are to be scaled up from the lab-scale to industry sectors. To achieve the targets, the electrocatalysts are continuously upgraded to meet the required device efficiency at a low cost, increased lifetime and performance. An atomic scale understanding is however important for meeting the objectives. Transitioning from the bulk to the nanoscale regime of the electrocatalysts, the existence of defects and interfaces is almost inevitable, significantly impacting (augmenting) the material properties and the catalytic performance. The intrinsic defects alter the electronic structure of the nanostructured catalysts, thereby boosting the performance of metal-ion batteries, metal-air batteries, supercapacitors, fuel cells, water electrolyzers etc. This account presents our findings on the methods to introduce measured imperfections in the nanomaterials and the impact of these atomic-scale irregularities on the activity for three major reactions, oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Grain boundary (GB) modulation of the (ABO3 )n type perovskite oxide by noble metal doping is a propitious route to enhance the OER/ORR bifunctionality for zinc-air battery (ZAB). The perovskite oxides can be tuned by calcination at different temperatures to alter the oxygen vacancy, GB fraction and overall reactivity. The oxygen defects, unsaturated coordination environment and GBs can turn a relatively less active nanostructure into an efficient redox active catalyst by imbibing plenty of electrochemically active sites. Obviously, the crystalline GB interface is a prerequisite for effective electron flow, which is also applicable for the crystalline surface oxide shell on metal alloy core of the nanoparticles (NPs). The oxygen vacancy of two-dimensional (2D) perovskite oxide can be made reversible by the A-site termination of the nanosheets, facilitating the reversible entry and exit of a secondary phase during the redox processes. In several instances, the secondary phases have been observed to introduce the right proportion of structural defects and orbital occupancies for adsorption and desorption of reaction intermediates. Also, heterogeneous interfaces can be created by wrapping the perovskite oxide with negatively charged surface by layered double hydroxide (LDH) can promote the OER process. In another approach, ion intercalation at the 2D heterointerfaces steers the interlayer spacing that can influence the mass diffusion. Similar to anion vacancy, controlled formation of the cation vacancies can be achieved by exsolving the B-site cations of perovskite oxides to surface anchored catalytically active metal/alloy NPs. In case of the alloy electrocatalysts, incomplete solid solution by two or more mutually immiscible metals results in heterogeneous alloys having differently exposed facets with complementary functionalities. From the future perspective, new categories of defect structures including the 2D empty spaces or voids leading to undercoordinated sites, the multiple interfaces in heterogeneous alloys, antisite defects between anions and cations, and the defect induced inverse charge transfer should bring new dimensionalities to this riveting area of research.
Collapse
Affiliation(s)
- Rahul Majee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sahanaz Parvin
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Quazi Arif Islam
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Ashwani Kumar
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Bharati Debnath
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Surajit Mondal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Subhajit Bhattacharjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Satarupa Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Arun Kumar
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
11
|
Li T, Shang D, Gao S, Wang B, Kong H, Yang G, Shu W, Xu P, Wei G. Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. BIOSENSORS 2022; 12:314. [PMID: 35624615 PMCID: PMC9138342 DOI: 10.3390/bios12050314] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 05/28/2023]
Abstract
Two-dimensional materials (2DMs) exhibited great potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and others due to their unique physical, chemical, and biological properties. In this review, we present recent advances in the fabrication of 2DM-based electrochemical sensors and biosensors for applications in food safety and biomolecular detection that are related to human health. For this aim, firstly, we introduced the bottom-up and top-down synthesis methods of various 2DMs, such as graphene, transition metal oxides, transition metal dichalcogenides, MXenes, and several other graphene-like materials, and then we demonstrated the structure and surface chemistry of these 2DMs, which play a crucial role in the functionalization of 2DMs and subsequent composition with other nanoscale building blocks such as nanoparticles, biomolecules, and polymers. Then, the 2DM-based electrochemical sensors/biosensors for the detection of nitrite, heavy metal ions, antibiotics, and pesticides in foods and drinks are introduced. Meanwhile, the 2DM-based sensors for the determination and monitoring of key small molecules that are related to diseases and human health are presented and commented on. We believe that this review will be helpful for promoting 2DMs to construct novel electronic sensors and nanodevices for food safety and health monitoring.
Collapse
Affiliation(s)
- Tao Li
- College of Textile & Clothing, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Dawei Shang
- Qingdao Product Quality Testing Research Institute, No. 173 Shenzhen Road, Qingdao 266101, China;
| | - Shouwu Gao
- State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (S.G.); (P.X.)
| | - Bo Wang
- Qingdao Institute of Textile Fiber Inspection, No. 173 Shenzhen Road, Qingdao 266101, China; (B.W.); (W.S.)
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| | - Weidong Shu
- Qingdao Institute of Textile Fiber Inspection, No. 173 Shenzhen Road, Qingdao 266101, China; (B.W.); (W.S.)
| | - Peilong Xu
- State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (S.G.); (P.X.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| |
Collapse
|
12
|
Abu Hatab AS, Ahmad YH, Abdul Rahman MB, Al-Qaradawi SY. Solution combustion synthesis of Ni-based hybrid metal oxides for oxygen evolution reaction in alkaline medium. RSC Adv 2022; 12:1694-1703. [PMID: 35425214 PMCID: PMC8978898 DOI: 10.1039/d1ra07304d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
Oxygen evolution reaction (OER) has arisen as an outstanding technology for energy generation, conversion, and storage. Herein, we investigated the synthesis of nickel-based hybrid metal oxides (Ni x M1-x O y ) and their catalytic performance towards OER. Ni x M1-x O y catalysts were synthesized by solution combustion synthesis (SCS) using the metal nitrates as oxidizer and glycine as fuel. Scanning electron microscope (SEM) micrographs display a porous morphology for the hybrid binary Ni x M1-x O y , the common feature of combusted materials. X-ray diffraction (XRD) of Ni x M1-x O y depicted well-defined diffraction peaks, which confirms the crystalline nature of synthesized catalysts. The particle size of as-synthesized materials ranges between 20 and 30 nm with a mesoporous nature as revealed by N2-physisorption. The electrocatalytic performance of the as-prepared materials was evaluated towards OER in alkaline medium. Among them, Ni x Co1-x O y showed the best catalytic performance. For instance, it exhibited the lowest overpotential at a current density of 10 mA cm-2 (404 mV), onset potential (1.605 V), and Tafel slope (52.7 mV dec-1). The enhanced electrocatalytic performance of Ni x Co1-x O y was attributed to the synergism between cobalt and nickel and the alteration of the electronic structure of nickel. Also, Ni x Co1-x O y afforded the highest Ni3+/Ni2+ when compared to other electrocatalysts. This leads to higher oxidation states of Ni species, which promote and improve the electrocatalytic activity.
Collapse
Affiliation(s)
- Aymen S Abu Hatab
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia UPM 43400 Serdang Selangor Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia UPM 43400 Serdang Selangor Malaysia
| | - Yahia H Ahmad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University Doha 2713 Qatar
| | - Mohd B Abdul Rahman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia UPM 43400 Serdang Selangor Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia UPM 43400 Serdang Selangor Malaysia
| | - Siham Y Al-Qaradawi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University Doha 2713 Qatar
| |
Collapse
|
13
|
Song K, Yuan L, Liu Z, Qiao H, Yu Y, Shen X, Hu X. Synthesis of Fe-doped NiO nanosheets on carbon cloth for improved catalytic performance in Li–O 2 batteries. NEW J CHEM 2022. [DOI: 10.1039/d1nj05277b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The substitution of Ni2+ in NiO with Fe3+ can significantly improve the cycling stability and discharge/recharge capacities of Li–O2 batteries.
Collapse
Affiliation(s)
- Kefan Song
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Lefan Yuan
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Zeyu Liu
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Handan Qiao
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Yawei Yu
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Xiulan Hu
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No. 30, Nanjing, Jiangsu 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, China
- The Synergetic Innovation Center for Advanced Materials, Nanjing, China
| |
Collapse
|
14
|
Li X, Hu Q, Yang H, Ma T, Chai X, He C. Bimetallic two-dimensional materials for electrocatalytic oxygen evolution. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Liu M, Ji Y, Li Y, An P, Zhang J, Yan J, Liu SF. Single-Atom Doping and High-Valence State for Synergistic Enhancement of NiO Electrocatalytic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102448. [PMID: 34323372 DOI: 10.1002/smll.202102448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Indexed: 06/13/2023]
Abstract
The NiO-based electrocatalytic oxygen evolution reaction (OER) of water splitting is recognized as a promising approach to produce clean H2 fuel. However, the OER performance is still low, and especially, the overpotential is larger than 200 mV at the current density of 10 mA cm-2 . Herein, an Ir@IrNiO sample is prepared with single-atom (SA) Ir4+ doping and surface metallic Ir nanoparticles loaded onto the NiO. Owing to the bonding of the loaded Ir with surface-exposed Ni2+ , the nearby Ni atoms exist in the +3 valence state, that is, the surface-loaded Ir particles behave like a stabilizer for the Ni3+ sites. Under the synergistic effect of SA Ir4+ and high-valance-state Ni3+ , the Ir@IrNiO nanostructure effectively reduces the overpotential to 195 mV at a current density of 10 mA cm-2 . Moreover, it gives an Ir-content-normalized current density of 0.0457 A mgIr -1 , 72.1 times higher than that of the best commercialized IrO2 (6.33 × 10-4 A mgIr -1 ), under the condition of 1.5 V versus reversible hydrogen electrode. Operando Raman and X-ray absorption fine-structure (XAFS) measurements reveal that there are more surface-active species of Ni3+ , which adsorb and activate water molecules to form Ni3+ -*OH at low voltage, the intermediate of Ni4+ -•O is then formed at a relatively high bias voltage, and then the •O is transferred to the SA Ir4+ sites to generate Ir4+ -O-O with OH at increased voltage. This work can help design more SA-based highly active OER materials.
Collapse
Affiliation(s)
- Meng Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- iChEM, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
16
|
Electro catalytic oxidation reactions for harvesting alternative energy over non noble metal oxides: Are we a step closer to sustainable energy solution? ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Yang L, Han J, Zhang J, Li Y, Wang W, Cao L, Dong B. Well‐Monodispersed Iron‐Doped InOOH Nanoparticles with Enhanced Activity for Oxygen Evolution. ChemElectroChem 2020. [DOI: 10.1002/celc.202000919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Liping Yang
- School of Materials Science and Engineering Ocean University of China 238 Songling Road Qingdao Shandong 266100 P. R. China
| | - Jianxin Han
- School of Materials Science and Engineering Ocean University of China 238 Songling Road Qingdao Shandong 266100 P. R. China
| | - Jifu Zhang
- School of Materials Science and Engineering Ocean University of China 238 Songling Road Qingdao Shandong 266100 P. R. China
| | - Yanxin Li
- School of Materials Science and Engineering Ocean University of China 238 Songling Road Qingdao Shandong 266100 P. R. China
| | - Wei Wang
- School of Materials Science and Engineering Ocean University of China 238 Songling Road Qingdao Shandong 266100 P. R. China
- Aramco Research Center-Boston Aramco Services Company Cambridge Massachusetts 02139 USA
| | - Lixin Cao
- School of Materials Science and Engineering Ocean University of China 238 Songling Road Qingdao Shandong 266100 P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering Ocean University of China 238 Songling Road Qingdao Shandong 266100 P. R. China
| |
Collapse
|
18
|
Yang Y, Wan H, Chen G, Zhang N, Li J, Ma W, Liu X, Ma R. Multi-shelled cobalt-nickel oxide/phosphide hollow spheres for an efficient oxygen evolution reaction. Dalton Trans 2020; 49:10918-10927. [PMID: 32720957 DOI: 10.1039/d0dt01523g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of their low cost and Earth-abundant characteristics, materials based on 3d transition metals have attracted great research interest and are considered as promising electrocatalysts for the oxygen evolution reaction (OER), besides the commercial noble metal-based materials, in recent years. In order to improve electrocatalytic activity, it is necessary to design the structures and compositions of electrocatalysts. In this study, a series of multi-shelled CoxNi1-x oxide/phosphide hollow spheres with tunable element ratios were prepared. The electrocatalytic activity of the multi-shelled CoxNi1-x oxide/phosphide is strongly dependent on the molar ratio of Co and Ni. Based on the combined advantages of complex structures and compositions, the multi-shelled Co0.5Ni0.5 oxide/phosphide displays outstanding electrocatalytic performance in terms of high activity and stable durability for the OER, surpassing those of RuO2 and multi-shelled CoxNi1-x oxide/phosphide with other element ratios of Co and Ni. This result suggests a great possibility of rationally designing the composition for highly efficient electrocatalysts.
Collapse
Affiliation(s)
- Yaru Yang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ding W, Sun M, Gao B, Liu W, Ding Z, Anandan S. A ball-milling synthesis of N-graphyne with controllable nitrogen doping sites for efficient electrocatalytic oxygen evolution and supercapacitors. Dalton Trans 2020; 49:10958-10969. [PMID: 32725021 DOI: 10.1039/d0dt01855d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-cost and efficient multifunctional electrodes play an important part in promoting the practical application of energy conversion and storage. Herein, we report the facile synthesis of N-graphyne, with a novel structure, by one-step ball milling of CaC2 and pyrazine. The accurate doping of nitrogen atoms at the controllable sites of the molecular skeleton of γ-graphyne was achieved using the nitrogenous precursor (pyrazine) as a reactant. Various techniques were adopted for the investigation of the composition, structure, and morphology of the obtained samples. The electrochemical measurements demonstrated that N-graphyne can serve as an excellent electrode material for both electrocatalysis and supercapacitors. As an electrocatalyst, N-graphyne exhibited an overpotential of 280 mV at 100 mA cm-2 and a Tafel slope of 122 mV dec-1 for the oxygen evolution reaction with highly stable morphology and electrocatalytic performance. As a supercapacitor electrode, N-graphyne showed a maximum capacitance of 235 F g-1 at 1 A g-1, and capacitance retention of 87% after 3000 cycles. The superior electrochemical performance of N-graphyne is due to the nitrogen heteroatomic defects, large electrochemical active surface areas and fast electron migration. Our studies provide a facile synthesis of novel N-graphyne with controllable doping sites and promote its potential applications in electrocatalysis and supercapacitors.
Collapse
Affiliation(s)
- Wen Ding
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Mingxuan Sun
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China. and State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Bowen Gao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Wenzhu Liu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Zhipeng Ding
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| |
Collapse
|