1
|
Mondal A, Breitwieser K, Danés S, Grünwald A, Heinemann FW, Morgenstern B, Müller F, Haumann M, Schütze M, Kass D, Ray K, Munz D. π-Lewis Base Activation of Carbonyls and Hexafluorobenzene. Angew Chem Int Ed Engl 2025; 64:e202418738. [PMID: 39714412 DOI: 10.1002/anie.202418738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
We report hitherto elusive side-on η2-bonded palladium(0) carbonyl (anthraquinone, benzaldehyde) and arene (benzene, hexafluorobenzene) palladium(0) complexes and present the catalytic hydrodefluorination of hexafluorobenzene by cyclohexene. The comparison with respective cyclohexene, pyridine and tetrahydrofuran complexes reveals that the experimental ligand binding strengths follow the order THF
Collapse
Affiliation(s)
- Aditesh Mondal
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| | - Kevin Breitwieser
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| | - Sergi Danés
- Departament de Química, Institut de Química Computacional I Catàlisi, Universitat de Girona, c/m. Aurelia Capmany 69, 17003, Girona, Spain
| | - Annette Grünwald
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
- Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058, Erlangen, Germany
| | - Frank W Heinemann
- Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058, Erlangen, Germany
| | - Bernd Morgenstern
- Solid State Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| | - Frank Müller
- Experimental Physics and Center for Biophysics, Saarland University, Campus E2.9, D-66123, Saarbrücken, Germany
| | - Michael Haumann
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Maximilian Schütze
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Dustin Kass
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Dominik Munz
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| |
Collapse
|
2
|
He W, Beattie DD, Zhou H, Bowes EG, Schafer LL, Love JA, Kennepohl P. Direct metal-carbon bonding in symmetric bis(C-H) agostic nickel(i) complexes. Chem Sci 2021; 12:15298-15307. [PMID: 34976350 PMCID: PMC8635179 DOI: 10.1039/d1sc03578a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Agostic interactions are examples of σ-type interactions, typically resulting from interactions between C–H σ-bonds with empty transition metal d orbitals. Such interactions often reflect the first step in transition metal-catalysed C–H activation processes and thus are of critical importance in understanding and controlling σ bond activation chemistries. Herein, we report on the unusual electronic structure of linear electron-rich d9 Ni(i) complexes with symmetric bis(C–H) agostic interactions. A combination of Ni K edge and L edge XAS with supporting TD-DFT/DFT calculations reveals an unconventional covalent agostic interaction with limited contributions from the valence Ni 3d orbitals. The agostic interaction is driven via the empty Ni 4p orbitals. The surprisingly strong Ni 4p-derived agostic interaction is dominated by σ contributions with minor π contributions. The resulting ligand–metal donation occurs directly along the C–Ni bond axis, reflecting a novel mode of bis-agostic bonding. Symmetric Ni(i) agostic complexes reveal an unusual mode of bonding that is dominated by direct carbon-to-metal charge transfer.![]()
Collapse
Affiliation(s)
- Weiying He
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada .,Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - D Dawson Beattie
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Hao Zhou
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada .,Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Eric G Bowes
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Laurel L Schafer
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Jennifer A Love
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada .,Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Pierre Kennepohl
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada .,Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
3
|
Liu J, Bollmeyer MM, Kim Y, Xiao D, MacMillan SN, Chen Q, Leng X, Kim SH, Zhao L, Lancaster KM, Deng L. An Isolable Mononuclear Palladium(I) Amido Complex. J Am Chem Soc 2021; 143:10751-10759. [PMID: 34232039 DOI: 10.1021/jacs.1c04965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mononuclear Pd(I) species are putative intermediates in Pd-catalyzed reactions, but our knowledge about them is limited due to difficulties in accessing them. Herein, we report the isolation of a Pd(I) amido complex, [(BINAP)Pd(NHArTrip)] (BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthalene, ArTrip = 2,6-bis(2',4',6'-triisopropylphenyl)phenyl), from the reaction of (BINAP)PdCl2 with LiNHArTrip. This Pd(I) amido species has been characterized by X-ray crystallography, electron paramagnetic resonance, and multiedge Pd X-ray absorption spectroscopy. Theoretical study revealed that, while the three-electron-two-center π-interaction between Pd and N in the Pd(I) complex imposes severe Pauli repulsion in its Pd-N bond, pronounced attractive interligand dispersion force aids its stabilization. In accord with its electronic features, reactions of homolytic Pd-N bond cleavage and deprotonation of primary amines are observed on the Pd(I) amido complex.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Melissa M Bollmeyer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dengmengfei Xiao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qi Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Greaves ME, Ronson TO, Maseras F, Nelson DJ. The Effect of Added Ligands on the Reactions of [Ni(COD)(dppf)] with Alkyl Halides: Halide Abstraction May Be Reversible. Organometallics 2021; 40:1997-2007. [PMID: 34295014 PMCID: PMC8288641 DOI: 10.1021/acs.organomet.1c00280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 11/28/2022]
Abstract
![]()
The reactions of
dppf-nickel(0) with alkyl halides proceed via
three-coordinate nickel(0) intermediates of the form [Ni(dppf)(L)].
The effects of the identity of the added ligand (L) on catalyst speciation
and the rates of reactions of [Ni(COD)(dppf)] with alkyl halides have
been investigated using kinetic experiments and density functional
theory calculations. A series of monodentate ligands have been investigated
in attempts to identify trends in reactivity. Sterically bulky and
electron-donating ligands are found to decrease the reaction rate.
It was found that (i) the halide abstraction step is not always irreversible
and the subsequent recombination of a nickel(I) complex with an alkyl
halide can have a significant effect on the overall rate of the reaction
and (ii) some ligands lead to very stable [Ni(dppf)(L)2] species. The yields of prototypical (dppf)nickel-catalyzed Kumada
cross-coupling reactions of alkyl halides are significantly improved
by the addition of free ligands, which provides another important
variable to consider when optimizing nickel-catalyzed reactions of
alkyl halides.
Collapse
Affiliation(s)
- Megan E Greaves
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland.,Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Thomas O Ronson
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| |
Collapse
|
5
|
Greaves ME, Johnson Humphrey ELB, Nelson DJ. Reactions of nickel(0) with organochlorides, organobromides, and organoiodides: mechanisms and structure/reactivity relationships. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00374g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reactions of nickel(0) complexes with phosphine, bipyridine-type, and N-heterocyclic carbene ligands with aryl, vinyl, and alkyl halides is reviewed.
Collapse
Affiliation(s)
- Megan E. Greaves
- WestCHEM Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
- Chemical Development
| | | | - David J. Nelson
- WestCHEM Department of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
6
|
Cooper AK, Leonard DK, Bajo S, Burton PM, Nelson DJ. Aldehydes and ketones influence reactivity and selectivity in nickel-catalysed Suzuki-Miyaura reactions. Chem Sci 2020; 11:1905-1911. [PMID: 34123283 PMCID: PMC8148322 DOI: 10.1039/c9sc05444h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The energetically-favorable coordination of aldehydes and ketones - but not esters or amides - to Ni0 during Suzuki-Miyaura reactions can lead either to exquisite selectivity and enhanced reactivity, or to inhibition of the reaction. Aryl halides where the C-X bond is connected to the same π-system as an aldehyde or ketone undergo unexpectedly rapid oxidative addition to [Ni(COD)(dppf)] (1), and are selectively cross-coupled during competition reactions. When aldehydes and ketones are present in the form of exogenous additives, the cross-coupling reaction is inhibited to an extent that depends on the strength of the coordination of the pendant carbonyl group to Ni0. This work advances our understanding of how common functional groups interact with Ni0 catalysts and how these interactions affect workhorse catalytic reactions in academia and industry.
Collapse
Affiliation(s)
- Alasdair K Cooper
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| | - David K Leonard
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| | - Sonia Bajo
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| | - Paul M Burton
- Syngenta, Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY UK
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| |
Collapse
|