1
|
Wang L, Chen JH, Zhang YJ, Zhang MB, Zeng T. PPARβ/δ agonist GW0742 mitigates acute liver damage induced by acetaminophen overdose in mice. Toxicol Appl Pharmacol 2025; 494:117180. [PMID: 39617257 DOI: 10.1016/j.taap.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024]
Abstract
Liver damage caused by acetaminophen (APAP) overdose remains a worldwide medical problem. New therapeutic medicines for APAP poisoning are needed as the efficacy of the only antidote, N-acetyl-cysteine (NAC), significantly decreases if administered after 8 h of APAP intake and massive APAP overdose remains to induce hepatotoxicity despite the timely administration of NAC. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) possesses versatile roles including regulation of lipid homeostasis and anti-inflammation in the liver. This study aimed to investigate the effects of GW0742, one specific PPARβ/δ agonist, on APAP-caused liver damage in mice. We found that GW0742 (40 mg/kg, i.p.) pretreatment completely blocked the increase of serum aminotransferase activities, hepatocyte necrosis, oxidative stress, and liver inflammation in mice exposed to 300 mg/kg APAP (i.p.). Mechanistically, GW0742 pretreatment significantly suppressed the M1 polarization of liver Kupffer cells and activation of NLRP3 inflammasome. Interestingly, GW0742 remained effective when administered 6 h after APAP exposure, although its efficacy was less pronounced than that administered 6 h before the APAP challenge. Notably, GW0742 exhibited a more profound effect than NAC evidenced by the lower serum alanine transaminase (ALT) level and the improved histopathological manifestation. Furthermore, exposure to APAP for 6 h had resulted in dramatic liver inflammation, while pretreatment with GW0742 prior to APAP exposure did not influence the increase in serum aminotransferase activity and oxidative stress at 2 h after APAP exposure. These results highlight that PPARβ/δ may be a promising therapeutic target for treating APAP-caused acute liver damage probably acting on liver macrophages.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jing-Hui Chen
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan-Jing Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ming-Bao Zhang
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong 250033, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Wu Y, Li W, Zhang J, Lin J, You L, Su J, Zheng C, Gao Y, Kong X, Sun X. Shaoyao-Gancao Decoction, a famous Chinese medicine formula, protects against APAP-induced liver injury by promoting autophagy/mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156053. [PMID: 39326138 DOI: 10.1016/j.phymed.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Acetaminophen (APAP)-induced hepatotoxicity is a major cause of acute liver failure (ALF), during which autophagy is triggered as a cellular defense mechanism. Shaoyao-Gancao Decoction (SGD), a traditional prescription in Chinese Medicine, is renowned for its therapeutic effects on liver diseases. However, the efficacy and mechanisms of SGD in treating APAP-induced liver injury remain underexplored. PURPOSE This study aims to provide robust evidence regarding the protective effects of SGD against APAP overdose in vitro and in vivo, as well as to elucidate its hepatoprotective mechanisms and active components. STUDY DESIGN The hepatoprotective mechanisms and active components of SGD were investigated through a combination of in vivo and in vitro experiments. METHODS The protective effects of SGD on APAP-induced liver injury were assessed using a murine model and primary hepatocytes. RNA sequencing and subsequent experimental validations were conducted to uncover the underlying mechanisms of SGD's hepatoprotective actions. Comprehensive chemical profiling of SGD was performed using UHPLC-Q-Exactive Orbitrap HRMS to identify potential active ingredients. Immunohistochemistry, immunofluorescence, quantitative real-time PCR (qPCR), western blotting, enzyme-linked immunosorbent assay (ELISA), and flow cytometry were utilized to investigate the specific cellular changes in liver tissues and hepatocytes influenced by SGD. RESULTS SGD was observed to mitigate APAP-induced mitochondrial damage, inflammation, and necrosis by promoting mitochondrial autophagy. The inhibition of autophagy negated the hepatoprotective effects of SGD. Additionally, a detailed characterization of SGD's chemical composition revealed that Licoisoflavone B, Liquiritin, Liquiritin apioside, Licorice saponin G2 and Paeoniflorin Sulfit were potentially critical compounds in the regulation of autophagy and mitophagy. CONCLUSION Our findings demonstrate that SGD promotes autophagy/mitophagy, which effectively mitigates APAP-induced hepatotoxicity, suggesting SGD's potential as a promising therapeutic agent for APAP-induced liver injury.
Collapse
Affiliation(s)
- Yuelan Wu
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Su
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Bian X, Chen L, Bian X, Li L, Liu D, Liu S, Xu L, Huo X, Yang X. Protective effect of Tibetan medicine Qiwei Tiexie pills on liver injury induced by acetaminophen overdose: An integrated strategy of network pharmacology, metabolomics and transcriptomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155221. [PMID: 38039903 DOI: 10.1016/j.phymed.2023.155221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Drug-induced liver injury, particularly from acetaminophen (APAP), has emerged as a significant public health concern. Unfortunately, there is currently no effective treatment strategy available. Qiwei Tiexie pills (QWTX), a traditional Tibetan medicine, have demonstrated considerable clinical efficacy in treating various liver diseases. Nevertheless, the protective effect of QWTX against drug-induced liver injury and its underlying mechanism remains poorly understood. PURPOSE This study aimed to assess the therapeutic potential of QWTX, a Tibetan medicine, in an animal model of APAP-induced liver injury. Additionally, we sought to investigate the molecular mechanism through which QWTX exerts its effects. METHODS We employed LC-MS and network pharmacology to predict the potential targets of QWTX in drug-induced liver injury. Subsequently, we employed HE staining, transcriptomics, metabolomics, and qRT-PCR to analyze the mechanism underlying QWTX treatment in drug-induced liver injury. RESULTS Network pharmacology analysis revealed that the active components of QWTX are involved in inflammatory and drug metabolism-related pathways. In mouse models, pretreatment with QWTX effectively mitigated the elevated levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and inflammatory factors (IL-1β, IL-6, and TNF-α) induced by APAP overdose. Moreover, APAP inhibited 1459 differentially expressed genes (DEGs) and 874 differential accumulation metabolites (DAMs), while QWTX promoted their expression. Conversely, APAP promoted 874 genes and 119 metabolites, which were inhibited by QWTX. Further analysis demonstrated that QWTX ameliorated the metabolic disorders induced by APAP overdose and potentially exerted a protective effect by inhibiting the expression of critical genes in crucial inflammatory pathways. QWTX also up-regulated antioxidant enzymes, thereby mitigating the oxidative stress resulting from APAP overdose. CONCLUSION QWTX treatment effectively protects against APAP-induced liver damage in mice. Transcriptomic and metabolomic analyses further revealed that QWTX ameliorated hepatic metabolic disorders induced by APAP overdose while significantly suppressing the inflammatory response and oxidative stress associated with drug-induced liver injury. This study provides a new insight into the treatment of drug-induced liver injury by the TCM system and provides a basis for the development of new therapies for drug-induced liver injury by QWTX and its active ingredients.
Collapse
Affiliation(s)
- Xingbo Bian
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Lizhu Chen
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xuefeng Bian
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Lele Li
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Dan Liu
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Siying Liu
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Lu Xu
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xuyang Huo
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xiaohang Yang
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China.
| |
Collapse
|
4
|
Li X, Lao R, Lei J, Chen Y, Zhou Q, Wang T, Tong Y. Natural Products for Acetaminophen-Induced Acute Liver Injury: A Review. Molecules 2023; 28:7901. [PMID: 38067630 PMCID: PMC10708418 DOI: 10.3390/molecules28237901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The liver plays a vital role in metabolism, synthesis, and detoxification, but it is susceptible to damage from various factors such as viral infections, drug reactions, excessive alcohol consumption, and autoimmune diseases. This susceptibility is particularly problematic for patients requiring medication, as drug-induced liver injury often leads to underestimation, misdiagnosis, and difficulties in treatment. Acetaminophen (APAP) is a widely used and safe drug in therapeutic doses but can cause liver toxicity when taken in excessive amounts. This study aimed to investigate the hepatotoxicity of APAP and explore potential treatment strategies using a mouse model of APAP-induced liver injury. The study involved the evaluation of various natural products for their therapeutic potential. The findings revealed that natural products demonstrated promising hepatoprotective effects, potentially alleviating liver damage and improving liver function through various mechanisms such as oxidative stress and inflammation, which cause changes in signaling pathways. These results underscore the importance of exploring novel treatment options for drug-induced liver injury, suggesting that further research in this area could lead to the development of effective preventive and therapeutic interventions, ultimately benefiting patients with liver injury caused by medicine.
Collapse
Affiliation(s)
- Xiaoyangzi Li
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Ruyang Lao
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Jiawei Lei
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yuting Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116000, China;
| | - Qi Zhou
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| | - Ting Wang
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yingpeng Tong
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| |
Collapse
|
5
|
Wang S, Wu P, Fan Z, He X, Liu J, Li M, Chen F. Dandelion polysaccharide treatment protects against dextran sodium sulfate-induced colitis by suppressing NF-κB/NLRP3 inflammasome-mediated inflammation and activating Nrf2 in mouse colon. Food Sci Nutr 2023; 11:7271-7282. [PMID: 37970386 PMCID: PMC10630811 DOI: 10.1002/fsn3.3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 11/17/2023] Open
Abstract
The treatment of ulcerative colitis (UC) is still an intractable medical problem. Polysaccharides are promising candidates for the treatment of UC and have received widespread attention in recent years. The objective of this study was to explore the protective effect and underlying mechanism of dandelion polysaccharide (DP) on dextran sulfate sodium (DSS)-induced colitis in mice. Our results showed that oral administration of DP could dramatically alleviate colonic lesions, as evidenced by reduced DAI scores, shortening of colon length, and ameliorating pathologic abnormalities in colons. Additionally, the expressions of pro-inflammatory factors (TNF-α, IL-1β, and IL-6) and the infiltration of inflammation-regulation cells, marked by myeloperoxidase and F4/80, were also inhibited after DP treatment. Moreover, DP treatment also markedly suppressed the nuclear translocation of NF-κB-p65 and the activation of the NLRP3 inflammasome. Furthermore, DP also activated the Nrf2/HO-1 pathway and reduced the oxidative stress induced by DSS. Overall, these results suggest that DP could be a promising novel therapeutic approach for the treatment of UC.
Collapse
Affiliation(s)
- Shuo Wang
- School of Pharmaceutical SciencesLiaocheng UniversityLiaochengShandongChina
| | - Ping Wu
- School of Pharmaceutical SciencesLiaocheng UniversityLiaochengShandongChina
| | - Zongqiang Fan
- School of Pharmaceutical SciencesLiaocheng UniversityLiaochengShandongChina
| | - Xingrui He
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Jinqian Liu
- School of Pharmaceutical SciencesLiaocheng UniversityLiaochengShandongChina
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational MedicineShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Fang Chen
- School of Pharmaceutical SciencesLiaocheng UniversityLiaochengShandongChina
| |
Collapse
|
6
|
Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury. Antioxidants (Basel) 2023; 12:antiox12010158. [PMID: 36671020 PMCID: PMC9854665 DOI: 10.3390/antiox12010158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Acetaminophen (APAP) is the major cause of drug-induced liver injury, with limited treatment options. APAP overdose invokes excessive oxidative stress that triggers mitochondria-to-nucleus retrograde pathways, contributing to APAP-induced liver injury (AILI). Mesenchymal stem cell therapy is a promising tool for acute liver failure. Therefore, the purpose of this study was to investigate the beneficial effects of adipose-derived mesenchymal stem cell (AMSC) therapy on AILI and reveal the potential therapeutic mechanisms. C57BL/6 mice were used as the animal model and AML12 normal murine hepatocytes as the cellular model of APAP overdose. Immunohistochemical staining, Western blotting, immunofluorescence staining, and RNA sequencing assays were used for assessing the efficacy and validating mechanisms of AMSC therapy. We found AMSC therapy effectively ameliorated AILI, while delayed AMSC injection lost its efficacy related to the c-Jun N-terminal kinase (JNK)-mediated mitochondrial retrograde pathways. We further found that AMSC therapy inhibited JNK activation and mitochondrial translocation, reducing APAP-induced mitochondrial damage. The downregulation of activated ataxia telangiectasia-mutated (ATM) and DNA damage response proteins in AMSC-treated mouse liver indicated AMSCs blocked the JNK-ATM pathway. Overall, AMSCs may be an effective treatment for AILI by inhibiting the JNK-ATM mitochondrial retrograde pathway, which improves APAP-induced mitochondrial dysfunction and liver injury.
Collapse
|
7
|
Wang S, Liu J, Dong J, Fan Z, Wang F, Wu P, Li X, Kou R, Chen F. Allyl methyl trisulfide protected against LPS-induced acute lung injury in mice via inhibition of the NF-κB and MAPK pathways. Front Pharmacol 2022; 13:919898. [PMID: 36003507 PMCID: PMC9394683 DOI: 10.3389/fphar.2022.919898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Allyl methyl trisulfide (AMTS) is one major lipid-soluble organosulfur compound of garlic. Previous studies have reported the potential therapeutic effect of garlic on acute lung injury (ALI) or its severe condition acute respiratory distress syndrome (ARDS), but the specific substances that exert the regulatory effects are still unclear. In this study, we investigate the protective effects of AMTS on lipopolysaccharide (LPS)-induced ALI mice and explored the underlying mechanisms. In vivo experiments, ICR mice were pretreated with 25–100 mg/kg AMTS for 7 days and followed by intratracheal instillation of LPS (1.5 mg/kg). The results showed that AMTS significantly attenuated LPS-induced deterioration of lung pathology, demonstrated by ameliorative edema and protein leakage, and improved pulmonary histopathological morphology. Meanwhile, the expression of inflammatory mediators and the infiltration of inflammation-regulation cells induced by LPS were also inhibited. In vitro experiments also revealed that AMTS could alleviate inflammation response and inhibit the exaggeration of macrophage M1 polarization in LPS-induced RAW264.7 cells. Mechanistically, we identified that AMTS treatment could attenuate the LPS-induced elevation of protein expression of p-IκBα, nuclear NF-κB-p65, COX2, iNOS, p-P38, p-ERK1/2, and p-JNK. Collectively, these data suggest that AMTS could attenuate LPS-induced ALI and the molecular mechanisms should be related to the suppression of the NF-κB and MAPKs pathways.
Collapse
Affiliation(s)
- Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Jinqian Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Jing Dong
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Zongqiang Fan
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Fugui Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Ping Wu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Xiaojing Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Ruirui Kou
- School of Public Health, Shandong University, Jinan, Shandong, China
- *Correspondence: Ruirui Kou, ; Fang Chen,
| | - Fang Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
- *Correspondence: Ruirui Kou, ; Fang Chen,
| |
Collapse
|
8
|
Guo FF, Meng FG, Zhang XN, Zeng T. Spermidine inhibits LPS-induced pro-inflammatory activation of macrophages by acting on Nrf2 signaling but not autophagy. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Vidović S, Tomšik A, Vladić J, Jokić S, Aladić K, Pastor K, Jerković I. Supercritical Carbon Dioxide Extraction of Allium ursinum: Impact of Temperature and Pressure on the Extracts Chemical Profile. Chem Biodivers 2021; 18:e2100058. [PMID: 33660411 DOI: 10.1002/cbdv.202100058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The aim of this study was to extract Allium ursinum L. for the first time by supercritical carbon dioxide (SC-CO2 ) as green sustainable method. The impact of temperature in the range from 40 to 60 °C and pressure between 150 and 400 bar on the quality of the obtained extracts and efficiency of the extraction was investigated. The highest extraction yield (3.43 %) was achieved by applying the extraction conditions of 400 bar and 60 °C. The analysis of the extracts was performed by gas chromatography and mass spectrometry (GC/MS). The most dominant sulfur-containing constituent of the extracts was allyl methyl trisulfide with the highest abundance at 350 bar and 50 °C. In addition, the presence of other pharmacologically potent sulfur compounds was recorded including S-methyl methanethiosulfinate, diallyl trisulfide, S-methyl methylthiosulfonate, and dimethyl trisulfide. Multivariate data analysis tool was utilized to investigate distributions of the identified compounds among the extracts obtained under various extraction conditions and yields. It was determined that the SC-CO2 extraction can by efficiently used for A. ursinum.
Collapse
Affiliation(s)
- Senka Vidović
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Alena Tomšik
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jelena Vladić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000, Osijek, Croatia
| | - Krunoslav Aladić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000, Osijek, Croatia
| | - Kristian Pastor
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| |
Collapse
|
10
|
Xie J, Liao B, Tang RY. Functional Application of Sulfur-Containing Spice Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12505-12526. [PMID: 33138361 DOI: 10.1021/acs.jafc.0c05002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfur-containing spice compounds possess diverse biological functions and play an important role in food, chemicals, pharmaceuticals, and agriculture. The development of functional spices has become increasingly popular, especially for medicinal functions for dietary health. Thus, this review focuses on the properties and functions of sulfur-containing spice compounds, including antioxidant, anti-inflammatory, antiobesity, anticancer, antibacterial, and insecticidal functions, among others. Developments over the last five years concerning the properties of sulfur-containing spice compounds are summarized and discussed.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Benjian Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Kurihara K, Moteki H, Natsume H, Ogihara M, Kimura M. The Enhancing Effects of S-Allylcysteine on Liver Regeneration Are Associated with Increased Expression of mRNAs Encoding IGF-1 and Its Receptor in Two-Thirds Partially Hepatectomized Rats. Biol Pharm Bull 2020; 43:1776-1784. [PMID: 33132323 DOI: 10.1248/bpb.b20-00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two-thirds partial hepatectomy (PHx) was performed in rats, and the differences in effects between S-allylcysteine (SAC) and other sulfur-containing compounds on regeneration of the remaining liver and restoration of the injury were examined. Three days after two-thirds PHx, rats treated with 300 mg/kg/d, per os (p.o.) SAC showed a 1.2-fold increase in liver weight per 100 g body weight compared with saline-treated controls. In contrast, S-methylcysteine (SMC) (300 mg/kg/d, p.o.) or cysteine (Cys) (300 mg/kg/d, p.o.) did not have a regeneration-promoting effect. In the comparison with control rats, the regenerating liver of SAC-treated rats showed a significantly higher 5-bromo-2'-deoxyuridine labeling index on day 1. In contrast, serum alanine aminotransferase activity, which increases following PHx, was significantly inhibited by SAC and SMC (but not Cys) on day 1 after two-thirds PHx. In addition, SAC induced increases in insulin-like growth factor (IGF)-1 and its receptor mRNA expressions at 1 h after two-thirds PHx, and it increased phosphorylation of extracellular signal-regulated kinase (ERK)2 and Akt at 3 h after two-thirds PHx without affecting serum growth hormone levels. These results demonstrate that SAC is a mitogenic effector of normal remnant liver and promotes recuperation of liver function after two-thirds PHx. Moreover, SAC-induced proliferative effects are mediated via increased mRNA expressions of IGF-1 and its receptor and subsequent phosphorylation of ERK2 and Akt.
Collapse
Affiliation(s)
- Kazuki Kurihara
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Hajime Moteki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Hideshi Natsume
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Josai University
| | - Masahiko Ogihara
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Mitsutoshi Kimura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
12
|
Song R, Jia Z, Xu Y, Zhang X, Wei R, Sun J. Saponification to improve the antioxidant activity of astaxanthin extracts from Penaeus sinensis (Solenocera crassicornis) by-products and intervention effect on Paracetamol-induced acute hepatic injury in rat. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
13
|
Zhang C, Jin H, Wang Y, Li C, Zhao X, Li Y, Shi W, Tian Y, Xu H, Tian D, Liu K, Jia J, Sun G, Zhang D. Critical role of OX40 in drug-induced acute liver injury. Br J Pharmacol 2020; 177:3183-3196. [PMID: 32133635 DOI: 10.1111/bph.15041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The innate and adaptive immune systems both play important roles in drug-induced liver injury (DILI). However, the crosstalk between the innate and adaptive immunity in DILI is largely unknown. Extensive crosstalk is likely mandated by co-stimulatory interactions between these immune systems. OX40 is a co-stimulatory molecule, but whether it regulates the intrahepatic immune response in DILI remains unknown. EXPERIMENTAL APPROACH Acute liver injury was induced by paracetamol (acetaminophen), carbon tetrachloride (CCl4 ), and d-galactosamine/LPS (GalN/LPS) in wild-type (WT) and Ox40 knockout (KO) mice, and disease progress was compared. KEY RESULTS Plasma OX40 levels were significantly increased and were augmented in intrahepatic CD4+ T cells after paracetamol, CCl4 , or GalN/LPS administration. Liver injury in Ox40-deficient mice was attenuated compared with that in WT mice. Compared with WT mice, hepatic infiltration of Th1 and Th17 cells and macrophages in Ox40 KO mice was reduced. Furthermore, adoptive transfer of Ox40 KO-CD4+ T cells to Rag1-/- mice resulted in alleviated liver injury compared with WT-CD4+ T-cell transfer, with reduced liver infiltration of macrophages and pro-inflammatory cytokine secretion. Moreover, OX40/Fc stimulation in vitro revealed that soluble OX40 enhanced the biological function of murine macrophages, including up-regulation of genes associated with inflammation and tissue infiltration. Finally, soluble OX40 levels were significantly elevated in DILI patients compared with healthy controls. CONCLUSION AND IMPLICATIONS OX40 is a key molecule that promotes both pro-inflammatory macrophage and CD4+ T-cell function, exacerbating paracetamol-induced liver injury. OX40 could serve as a diagnostic index and therapeutic target of DILI.
Collapse
Affiliation(s)
- Chunpan Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hua Jin
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center, Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing, China
| | - Yan Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Changying Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center, Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Shi
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center, Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing, China
| | - Yue Tian
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center, Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing, China
| | - Hufeng Xu
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center, Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing, China
| | - Dan Tian
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center, Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing, China
| | - Kai Liu
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center, Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China
| | - Guangyong Sun
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center, Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing, China
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center, Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Oral andrographolide nanocrystals protect liver from paracetamol induced injury in mice. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Helal MG, Samra YA. Irbesartan mitigates acute liver injury, oxidative stress, and apoptosis induced by acetaminophen in mice. J Biochem Mol Toxicol 2020; 34:e22447. [DOI: 10.1002/jbt.22447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/20/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Manar G. Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Yara A. Samra
- Department of Biochemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| |
Collapse
|
16
|
Wang J, Tian S, Wang J, Zhu W. Early galactooligosaccharide intervention alters the metabolic profile, improves the antioxidant capacity of mitochondria and activates the AMPK/Nrf2 signaling pathway in suckling piglet liver. Food Funct 2020; 11:7280-7292. [DOI: 10.1039/d0fo01486a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The early GOS intervention altered the composition of the hepatic metabolic profile by promoting lipid catabolism and regulating amino acid metabolism in the suckling piglets.
Collapse
Affiliation(s)
- Jue Wang
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| | - Shiyi Tian
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| |
Collapse
|