1
|
Chen Y, Qi W, Peng W, Fang W, Song G, Hao Y, Wang Y. Cyanidin-3-glucoside improves cognitive impairment in naturally aging mice by modulating the gut microbiota and activating the ERK/CREB/BDNF pathway. Food Res Int 2025; 208:116086. [PMID: 40263878 DOI: 10.1016/j.foodres.2025.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 02/22/2025] [Indexed: 04/24/2025]
Abstract
Aging-related cognitive impairment has emerged as a major health-threatening factor among the elderly, and cyanidin-3-glucoside (C3G) is a prominent anthocyanin with biological activities, including antioxidant, anti-inflammatory, and alleviation of neurodegeneration. However, the role of C3G in alleviating natural aging-induced cognitive impairment and the underlying mechanisms thereof remain unclear. In this study, experimental methods mainly included biochemical analysis, pathological analysis, immunofluorescence staining, transmission electron microscopy analysis, western blot, as well as the determination of the gut microbiota composition and detection of metabolites. We found that C3G may exert neuroprotective effects and promote brain health by alleviating brain atrophy and neuroinflammation, enhancing brain antioxidant capacity, regulating neurotransmitter expression and hypothalamic-pituitary-adrenal axis activity, and attenuating blood-brain barrier and hippocampal synaptic damage. Furthermore, C3G also promotes gut health by decreasing inflammatory responses and intestinal tissue crypt damage, upregulating the expression of tight junction proteins, and attenuating intestinal damage. Notably, C3G regulated the microbiota composition in different intestinal segments and intestinal mucosa, as well as the metabolic homeostasis of gut microbiota metabolites, such as short-chain fatty acids (SCFAs), amino acids, and bile acids. Substantially increased levels of SCFAs could activate the extracellular signal-regulated kinase (ERK)/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway by acting on the G protein-coupled receptors. Correlation analysis indicated that increased gut microbiota, such as Faecalibaculum and Bifidobacterium, and elevated SCFAs were positively correlated with behavioral improvement and brain health. In conclusion, our findings reveal that C3G has the potential to improve natural aging-induced cognitive impairment by modulating the gut microbiota and its metabolite SCFAs, thereby activating the ERK/CREB/BDNF pathway.
Collapse
Affiliation(s)
- Yuyu Chen
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wentao Qi
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Wenting Peng
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Wei Fang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100093, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China.
| |
Collapse
|
2
|
Kadı A, Öner S, Yuca H, Arslan ME, Atila A, İncekara Ü, Karakaya S. Integrative Study of Plantago lanceolata L.: Phytochemical Properties and Therapeutic Effects on Cancer, Diabetes, and Alzheimer's Disease. Nat Prod Res 2025:1-11. [PMID: 39992729 DOI: 10.1080/14786419.2025.2469311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Alzheimer's disease is linked with diabetes and cancer, emphasising the need for effective treatments. Plantago lanceolata, recognised as safe by various pharmacopeias, was investigated in this study for therapeutic potential. We examined the effects of its leaf extracts and sub-extracts (methanol, hexane, dichloromethane, ethyl acetate, butanol, aqueous) on AChE, BChE, α-amylase, α-glucosidase enzymes, as well as their impact on HDF-a and U87-MG cancer cells. The phytochemical characterisation was performed using ICP-MS and LC-MS/MS. Cytotoxic effects were evaluated on HDF-a and U87-MG cell lines, along with assessments for nuclear abnormalities. Na and K were detected in extracts, with isoleucine and cyanidin-3-O-glucoside being the most concentrated compounds. Extracts at concentrations exceeding 25 µg/mL significantly increased cytotoxicity in HDF-a cell lines compared to the control group, without inducing nuclear abnormalities. Methanol extract demonstrated moderate inhibition against AChE and BChE at concentrations of 100 µg/mL and 500 µg/mL, respectively. These findings suggest that extracts exhibit potential therapeutic effects.
Collapse
Affiliation(s)
- Abdulrahim Kadı
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Sena Öner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Hafize Yuca
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Alptuğ Atila
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Ümit İncekara
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Songül Karakaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
3
|
Gao C, Wan Z, Liu Y, Meng Y, Chen X, Tang X, Hang L, Yuan H. Flavones in pomelo peel resist fibril formation of human islet amyloid polypeptide. CHINESE HERBAL MEDICINES 2025; 17:166-177. [PMID: 39949806 PMCID: PMC11814264 DOI: 10.1016/j.chmed.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2025] Open
Abstract
Objective Exploring the formation and aggregation of human islet amyloid polypeptide (hIAPP) (amylin) fibers is significant for promoting the prevention and treatment of type II diabetes mellitus (T2DM). Flavones in pomelo peel have visible biological activity in the anti-diabetes aspect. The present study aimed to investigate the effects of five flavones [naringin (NRG), narirutin (NRR), nobiletin (NOB), sinensetin (SIN), and neohesperidin (NHP)] in pomelo peel on peptide aggregation and explore its possible mechanisms. The cell viability of flavones against peptide aggregation was also evaluated. Methods The thioflavin T (ThT) assay and transmission electron microscopy (TEM) were used for evaluating the inhibition and disaggregation of flavones on peptide aggregation. The interaction mechanism was analyzed by endogenous fluorescence, molecular dynamics (MD) simulations, ultraviolet spectroscopy (UV) and isothermal titration calorimetry (ITC) experiments. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and immune assays were performed to characterize the cell viability of flavones against peptide aggregation. Results The five flavones showed a decrease in fluorescence intensity, fiber number and size under incubation with different molar ratios of hIAPP. The compounds can bind to the aromatic tyrosine (Tyr) residueTyr 37, resulting in the intrinsic fluorescence quenching of the peptides. Five flavones can form hydrogen bonds with hIAPP, which is likely to be based on their phenolic hydroxyl structure. They showed strong binding affinity with peptides. The reaction system of NRG and NRR observed an exothermic reaction, and the others were endothermic reactions. The absorption peaks of the compounds with hIAPP changed and showed hypochromic effects, indicating that there may be π-π stacking interaction. Flavones noticeably increased the cell viability in the presence of amyloid peptides and reduced the absorption intensity induced by peptide oligomers. Conclusion A total of five flavones in pomelo peel have inhibitory and depolymerization effects on amyloid fibrils, and can significantly protect cells from the toxic effect of hIAPP and reduce the production of toxic oligomers.
Collapse
Affiliation(s)
- Cuiyun Gao
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100000, China
| | - Zhiruo Wan
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100000, China
| | - Yan Liu
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100000, China
| | - Yuting Meng
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100000, China
| | - Xu Chen
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100000, China
| | - Xiaohan Tang
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100000, China
| | - Lingyu Hang
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100000, China
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100000, China
| |
Collapse
|
4
|
Jang BK, Shin SJ, Park HH, Kumar V, Park YH, Kim JY, Kang HY, Park S, Kwon Y, Shin SE, Moon M, Lee BJ. Investigation of Novel Aronia Bioactive Fraction-Alginic Acid Nanocomplex on the Enhanced Modulation of Neuroinflammation and Inhibition of Aβ Aggregation. Pharmaceutics 2024; 17:13. [PMID: 39861665 PMCID: PMC11769017 DOI: 10.3390/pharmaceutics17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP). We evaluated whether it is more stable and effective in cognitive disorder mice and neuroinflammation cell models. METHODS The physicochemical properties of the AANCP, such as nanoparticle size, structural stability, and release rate, were characterized. The AANCP was administered to scopolamine-injected Balb/c mice, and to BV2 microglia treated with lipopolysaccharide (LPS) and amyloid beta (Aβ). Inflammation responses were measured via qPCR and ELISA in vitro, and cognitive functions were measured via behavior tests in vivo. RESULTS The AANCP readily formed nanoparticles, 209.6 nm in size, with a negatively charged zeta potential. The AANCP exhibited better stability in four plasma samples (human, dog, rat, and mouse) and was slowly released in different pH conditions (pH 2.0, 7.4, and 8.0) compared with non-complexedABF. In vitro studies on microglial cells treated with AANCPs revealed a suppression of inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6) induced by LPS. The AANCP increased microglial Aβ phagocytosis through the activation of triggering receptor expressed on myeloid cell 2 (TREM2)-related microglial polarization. The AANCP inhibited aggregation of Aβ in vitro and alleviated cognitive impairment in a scopolamine-induced in vivo dementia mouse model. CONCLUSIONS Our data indicate that AANCPs are more stable than ABFs and effective for cognitive disorders and neuroinflammation via modulation of M2 microglial polarization.
Collapse
Affiliation(s)
- Bong-Keun Jang
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Jeom-Yong Kim
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
- JBKLAB, Inc., 464 Dunchon-daero, Jungwon-gu, Seongnam-si 13229, Republic of Korea
| | - Hye-Yeon Kang
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Sunyoung Park
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Youngsun Kwon
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Sang-Eun Shin
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
5
|
Gao W, Dong Q, Wu X, Wang Y, Li J, Zhang Q, Lu F, Liu F. Bifunctional Inhibitor Lentinan Inhibits Fibrillogenesis of Amyloid-β Protein and α-Synuclein and Alleviates Their Cytotoxicity: In Vitro and In Vivo Studies. ACS Chem Neurosci 2024; 15:3437-3448. [PMID: 39264814 DOI: 10.1021/acschemneuro.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the world. Misfolding of β-amyloid (Aβ) and α-synuclein (α-syn) and subsequent fibril formation are closely associated with the pathogenesis of AD and PD, respectively. Lentinan is a natural product commonly used in medicine and dietary supplements. It has potential antitumor, anti-inflammatory, and antiviral effects, but the underlying mechanism of its action on AD and PD remains unclear. In this study, lentinan inhibited the formation of Aβ and α-syn fibers in a dose-dependent manner and disrupted their mature fibers. Lentinan inhibited the conversion of Aβ and α-syn conformations to β-sheet-rich conformations. Additionally, lentinan protected Caenorhabditis elegans against damage caused by the accumulation of Aβ and α-syn aggregation and prolonged their lifespan. Notably, the beneficial effects of lentinan in AD and PD mice were also demonstrated, including ameliorating the cognitive and memory impairments in AD mice and behavioral deficits in PD mice. Finally, molecular interactions between lentinan and Aβ/α-syn pentamers were also explored using molecular docking.
Collapse
Affiliation(s)
- Wen Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qinchen Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinni Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yang Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jinbi Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qingfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
6
|
Dong Q, Cui Z, Wu X, Li L, Lu F, Liu F. Natural flavonoid hesperetin blocks amyloid β-protein fibrillogenesis, depolymerizes preformed fibrils and alleviates cytotoxicity caused by amyloids. Food Funct 2024; 15:4233-4245. [PMID: 38517352 DOI: 10.1039/d3fo05566c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The aggregation of β-amyloid (Aβ) peptides to form amyloid plaques is one of the primary hallmarks for Alzheimer's disease (AD). Dietary flavonoid supplements containing hesperetin have an ability to decline the risk of developing AD, but the molecular mechanism is still unclear. In this work, hesperetin, a flavanone abundant in citrus fruits, has been proven to prevent the formation of Aβ aggregates and depolymerized preformed fibrils in a concentration-dependent fashion. Hesperetin inhibited the conformational conversion from the natural structure to a β-sheet-rich conformation. It was found that hesperetin significantly reduced the cytotoxicity and relieved oxidative stress eventuated by Aβ aggregates in a concentration-dependent manner. Additionally, the beneficial effects of hesperetin were confirmed in Caenorhabditis elegans, including the inhibition of the formation and deposition of Aβ aggregates and extension of their lifespan. Finally, the results of molecular dynamics simulations showed that hesperetin directly interacted with an Aβ42 pentamer mainly through strong non-polar and electrostatic interactions, which destroyed the structural stability of the preformed pentamer. To summarize, hesperetin exhibits great potential as a prospective dietary supplement for preventing and improving AD.
Collapse
Affiliation(s)
- Qinchen Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Zhan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Li Li
- College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
7
|
Niu C, Dong M, Niu Y. Natural polyphenol: Their pathogenesis-targeting therapeutic potential in Alzheimer's disease. Eur J Med Chem 2024; 269:116359. [PMID: 38537514 DOI: 10.1016/j.ejmech.2024.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease affecting the elderly. Clinically, it is characterized by progressive memory decline and subsequent loss of broader cognitive functions. Current drugs provide only symptomatic relief but do not have profound disease-modifying effects. There is an unmet need to identify novel pharmacological agents for AD therapy. Neuropathologically, the characteristic hallmarks of the disease are extracellular senile plaques containing amyloid β-peptides and intracellular neurofibrillary tangles containing hyperphosphorylated microtubule-associated protein tau. Simultaneously, oxidative stress, neuroinflammation and mitochondrial dysfunction in specific brain regions are early events during the process of AD pathologic changes and are associated with Aβ/tau toxicity. Here, we first summarized probable pathogenic mechanisms leading to neurodegeneration and hopefully identify pathways that serve as specific targets to improve therapy for AD. We then reviewed the mechanisms that underlie disease-modifying effects of natural polyphenols, with a focus on nuclear factor erythroid 2-related factor 2 activators for AD treatment. Lastly, we discussed challenges in the preclinical to clinical translation of natural polyphenols. In conclusion, there is evidence that natural polyphenols can be therapeutically useful in AD through their multifaceted mechanism of action. However, more clinical studies are needed to confirm these effects.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
8
|
Zhang D, Zhang J, Ma Z, Wu Q, Liu M, Fan T, Ding L, Ren D, Wen A, Wang J. Luteoloside inhibits Aβ1-42 fibrillogenesis, disintegrates preformed fibrils, and alleviates amyloid-induced cytotoxicity. Biophys Chem 2024; 306:107171. [PMID: 38194817 DOI: 10.1016/j.bpc.2023.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aβ aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aβ1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-β-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aβ1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aβ1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aβ1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aβ, and promote further exploration of the therapeutic strategy against AD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qianwen Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Danjun Ren
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Chen Y, Zhan C, Li X, Pan T, Yao Y, Tan Y, Wei G. Five similar anthocyanidin molecules display distinct disruptive effects and mechanisms of action on Aβ 1-42 protofibril: A molecular dynamic simulation study. Int J Biol Macromol 2024; 256:128467. [PMID: 38035959 DOI: 10.1016/j.ijbiomac.2023.128467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Alzheimer's disease (AD) is associated with the deposition of amyloid-β (Aβ) fibrillary aggregates. Disaggregation of Aβ fibrils is considered as one of the promising AD treatments. Recent experimental studies showed that anthocyanidins, one type of flavonoids abundant in fruits/vegetables, can disaggregate Aβ fibrillary aggregates. However, their relative disruptive capacities and underlying mechanisms are largely unknown. Herein, we investigated the detailed interactions between five most common anthocyanidins (cyanidin, aurantinidin, peonidin, delphinidin, and pelargonidin) and Aβ protofibril (an intermediate of Aβ fibrillization) by performing microsecond molecular dynamic simulations. We found that all five anthocyanidins can destroy F4-L34-V36 hydrophobic core and K28-A42 salt bridge, leading to Aβ protofibril destabilization. Aurantinidin exhibits the strongest damage to Aβ protofibril (with the most severe disruption on K28-A42 salt bridges), followed by cyanidin (with the most destructive effect on F4-L34-V36 core). Detailed analyses reveal that the protofibril-destruction capacities of anthocyanidins are subtly modulated by the interplay of anthocyanidin-protofibril hydrogen bonding, hydrophobic, aromatic stacking interactions, which are dictated by the number or location of hydroxyl/methyl groups of anthocyanidins. These findings provide important mechanistic insights into Aβ protofibril disaggregation by anthocyanidins, and suggest that aurantinidin/cyanidin may serve as promising starting-points for the development of new drug candidates against AD.
Collapse
Affiliation(s)
- Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chendi Zhan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tong Pan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yifei Yao
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yuan Tan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
10
|
Nie RZ, Zhang SS, Yan XK, Feng K, Lao YJ, Bao YR. Molecular insights into the structure destabilization effects of ECG and EC on the Aβ protofilament: An all-atom molecular dynamics simulation study. Int J Biol Macromol 2023; 253:127002. [PMID: 37729983 DOI: 10.1016/j.ijbiomac.2023.127002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The formation of Aβ into amyloid fibrils was closely connected to AD, therefore, the Aβ aggregates were the primary therapeutic targets against AD. Previous studies demonstrated that epicatechin-3-gallate (ECG), which possessed a gallate moiety, exhibited a greater ability to disrupt the preformed Aβ amyloid fibrils than epicatechin (EC), indicating that the gallate moiety was crucial. In the present study, the molecular mechanisms were investigated. Our results demonstrated that ECG had more potent disruptive impacts on the β-sheet structure and K28-A42 salt bridges than EC. We found that ECG significantly interfered the interactions between Peptide-4 and Peptide-5. However, EC could not. The disruption of K28-A42 salt bridges by ECG was mainly due to the interactions between ECG and the hydrophobic residues located at C-terminus. Interestingly, EC disrupted the K28-A42 salt bridges by the interactions with C-terminal hydrophobic residues and the cation-π interactions with K28. Moreover, our results indicated that hydrophobic interactions, H-bonds, π-π interactions and cation-π interactions between ECG and the bend of L-shaped region caused the disaggregation of interactions between Peptide-4 and Peptide-5. Significantly, gallate moiety in ECG had contributed tremendously to the disaggregation. We believed that our findings could be useful for designing prospective drug candidates targeting AD.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shan-Shuo Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xiao-Ke Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yan-Jing Lao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ya-Ru Bao
- Science and Technology Division, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
11
|
Jerom JP, Madhukumar S, Nair RH, Narayanan SP. Anti-amyloid potential of some phytochemicals against Aβ-peptide and α-synuclein, tau, prion, and Huntingtin protein. Drug Discov Today 2023; 28:103802. [PMID: 37858630 DOI: 10.1016/j.drudis.2023.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Some molecules self-assemble to create complex structures through molecular self-assembly. Hydrogel preparation, tissue repair, and therapeutic drug delivery are a few applications of molecular self-assembly. However, the self-assembly of amino acids, peptides, and proteins forms amyloid fibrils, resulting in various disorders, most notably neurodegenerative ailments. Examples include the self-assembly of phenylalanine, which causes phenylketonuria; Aβ, which causes Alzheimer's disease; the tau protein, which causes both Alzheimer's and Parkinson's diseases; and α-synuclein, which causes Parkinson's illness. This review provides information related to phytochemicals of great significance that can prevent the formation of, or destabilize, amino acid, peptide, and protein self-assemblies.
Collapse
Affiliation(s)
| | - Sooryalekshmi Madhukumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| |
Collapse
|
12
|
Channuwong P, Salae K, Chongruchiroj S, Cheng H, Suantawee T, Thilavech T, Adisakwattana S. Dietary anthocyanins inhibit insulin fibril formation and cytotoxicity in 3T3-L1 preadipocytes. Int J Biol Macromol 2022; 223:1578-1585. [PMID: 36375667 DOI: 10.1016/j.ijbiomac.2022.11.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Insulin fibril formation decreases the effectiveness of insulin therapy and causes amyloidosis in diabetes. Studies suggest that phytochemicals are capable of inhibiting fibril formation. Herein, we investigated the inhibitory effects of anthocyanins, including cyanidin, cyanidin-3-glucoside (C3G), cyanidin-3-rutinoside (C3R), malvidin, and malvidin-3-glucoside (M3G) on fibril formation. Our results revealed that anthocyanins (50-200 μM) significantly reduced the formation of insulin fibrils by increasing lag times and decreasing ThT fluorescence at the plateau phase. These findings were confirmed by TEM images, which showed reduced fibril length and number. Furthermore, FTIR analysis indicated that anthocyanins reduced the secondary structure transition of insulin from α-helix to β-sheet. Anthocyanins interacted with monomeric insulin (residues B8-B30) via H-bonds, van der Waals, and hydrophobic interactions, covering the fibril-prone segments of insulin (residues B12-B17). Based on the structure-activity analysis, the presence of glycosides and hydroxyl groups on phenyl rings increased intermolecular interaction, mediating the inhibitory effect of anthocyanins on fibril formation in the order of malvidin < cyanidin < M3G < C3G < C3R. Moreover, anthocyanins formed H-bonds with preformed insulin fibrils, except for malvidin. In preadipocytes, C3R, C3G, and cyanidin attenuated insulin fibril-induced cytotoxicity. In conclusion, anthocyanins are effective inhibitors of insulin fibril formation and cytotoxicity.
Collapse
Affiliation(s)
- Pilailak Channuwong
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunthira Salae
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10440, Thailand
| | - Henrique Cheng
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tanyawan Suantawee
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10440, Thailand
| | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
13
|
Molecular Mechanism of Cyanidin-3- O-Glucoside Disassembling Aβ Fibril In Silico. Nutrients 2022; 15:nu15010109. [PMID: 36615767 PMCID: PMC9824066 DOI: 10.3390/nu15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The deposition of β-amyloid (Aβ) in the brain leads to neurotoxic effects and subsequent Alzheimer's disease (AD). While AD is becoming more and more prevalent in modern society, therapeutic efforts targeting Aβ could be a promising solution. Currently, two natural products are reported to disintegrate preformed Aβ fibril in vitro. Meanwhile, the chemical driving force behind this phenomenon remains unknown. Taking cyanidin-3-O-glucoside (Cy-3G) as an example, here we studied its interaction with different Aβ polymorphs in silico. Negative charges on different Aβ polymorphs draw the interaction with the flavylium cation on Cy-3G. Our results show that Aβ in a single peptide form in solution exposed more hydrophobic solvent accessible surface area than its fibril structure (per protomer), and Cy-3G interacts more intensively with the single peptide form than fibril as indicated by more hydrogen bonding formed and more amino acid residues involved in their hydrophobic interactions. Thus, the single Aβ peptide aggregation into fibril and fibril dissociation into single peptide equilibrium could be disturbed by the preferential binding of Cy-3G to the monomeric Aβ peptide, which leads to the disassembly of the pathogenic Aβ fibril. This study offers a novel perspective of Cy-3G alleviated AD syndrome beyond its dogmatic antioxidant activity.
Collapse
|
14
|
Phenolic Profile and the Antioxidant, Anti-Inflammatory, and Antimicrobial Properties of Açaí ( Euterpe oleracea) Meal: A Prospective Study. Foods 2022; 12:foods12010086. [PMID: 36613302 PMCID: PMC9818655 DOI: 10.3390/foods12010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The mechanical extraction of oils from Brazilian açaí (Euterpe oleracea Mart) produces significant amounts of a byproduct known as "meal", which is frequently discarded in the environment as waste material. Nevertheless, plant byproducts, especially those from oil extraction, may contain residual polyphenols in their composition and be a rich source of natural bioactive compounds. In this study, the phenolic composition and in vitro biological properties of a hydroethanolic açaí meal extract were elucidated. The major compounds tentatively identified in the extract by high-resolution mass spectrometry were anthocyanins, flavones, and flavonoids. Furthermore, rhamnocitrin is reported in an açaí byproduct for the first time. The extract showed reducing power and was effective in scavenging the ABTS radical cation (820.0 µmol Trolox equivalent∙g-1) and peroxyl radical (975.7 µmol Trolox equivalent∙g-1). NF-κB activation was inhibited at 10 or 100 µg∙mL-1 and TNF-α levels were reduced at 100 µg∙mL-1. However, the antibacterial effects against ESKAPE pathogens was not promising due to the high concentration needed (1250 or 2500 µg∙mL-1). These findings can be related to the diverse polyphenol-rich extract composition. To conclude, the polyphenol-rich extract obtained from açaí meal showed relevant biological activities that may have great applicability in the food and nutraceutical industries.
Collapse
|
15
|
Wang Y, Wang D, Lv H, Dong Q, Li J, Geng W, Wang J, Liu F, Jia L, Wang Y. Modulation of the gut microbiota and glycometabolism by a probiotic to alleviate amyloid accumulation and cognitive impairments in AD rats. Mol Nutr Food Res 2022; 66:e2200265. [PMID: 35975737 DOI: 10.1002/mnfr.202200265] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Indexed: 11/05/2022]
Abstract
SCOPE Regulating the gut microecology by probiotics is an efficient strategy to rational prevention and treatment of Alzheimer's disease (AD). However, there is currently a lack of well-known probiotic species in the protection against AD, and the involved mechanism has not been clearly interpreted. METHODS AND RESULTS Herein, Lactobacillus plantarum MA2 (MA2), a functional probiotic isolated from traditional Chinese Tibetan kefir grains, was demonstrated to improve the cognitive deficits and anxiety-like behaviors in the D-galactose/AlCl3 induced AD rats, and attenuate the neuronal degeneration and Aβ accumulation in the brain. Moreover, we found MA2 could alleviate the intestinal mucosal impairments, and impede the activation of microglia and neuroinflammation through TLR4/MYD88/NLRP3 signaling pathway. 16S rRNA sequencing and metabolomic analysis indicated that MA2 reshaped the gut microbiota structure and composition, and remarkably modulated the glycometabolism. In that case, the EPS (exopolysaccharides) that derived from MA2 was furtherly proved with inhibitory effects on the Aβ42 aggregation and amyloid-induced cytotoxicity. CONCLUSION MA2 or MA2 EPS may be used as functional food and nutritional supplement for regulating the gut microbiota and metabolism disorders in AD. This study is of great significance to develop new intervention and therapeutic strategy on AD using probiotics and their metabolites. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuanwang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Dehua Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Houjiao Lv
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qinchen Dong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jiajia Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Weitao Geng
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jinju Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yanping Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
16
|
Peniche-Pavía HA, Guzmán TJ, Magaña-Cerino JM, Gurrola-Díaz CM, Tiessen A. Maize Flavonoid Biosynthesis, Regulation, and Human Health Relevance: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165166. [PMID: 36014406 PMCID: PMC9413827 DOI: 10.3390/molecules27165166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Maize is one of the most important crops for human and animal consumption and contains a chemical arsenal essential for survival: flavonoids. Moreover, flavonoids are well known for their beneficial effects on human health. In this review, we decided to organize the information about maize flavonoids into three sections. In the first section, we include updated information about the enzymatic pathway of maize flavonoids. We describe a total of twenty-one genes for the flavonoid pathway of maize. The first three genes participate in the general phenylpropanoid pathway. Four genes are common biosynthetic early genes for flavonoids, and fourteen are specific genes for the flavonoid subgroups, the anthocyanins, and flavone C-glycosides. The second section explains the tissue accumulation and regulation of flavonoids by environmental factors affecting the expression of the MYB-bHLH-WD40 (MBW) transcriptional complex. The study of transcription factors of the MBW complex is fundamental for understanding how the flavonoid profiles generate a palette of colors in the plant tissues. Finally, we also include an update of the biological activities of C3G, the major maize anthocyanin, including anticancer, antidiabetic, and antioxidant effects, among others. This review intends to disclose and integrate the existing knowledge regarding maize flavonoid pigmentation and its relevance in the human health sector.
Collapse
Affiliation(s)
- Héctor A. Peniche-Pavía
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| | - Tereso J. Guzmán
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jesús M. Magaña-Cerino
- División Académica de Ciencias de la Salud, Centro de Investigación y Posgrado, Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez Magaña 2838-A, Col. Tamulté de las Barrancas, Villahermosa 86150, Tabasco, Mexico
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Enfermedades Crónico Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Universidad de Guadalajara, C. Sierra Mojada 950. Col. Independencia, Guadalajara 44340, Jalisco, Mexico
- Correspondence: ; Tel.: +52-33-10585200 (ext. 33930)
| | - Axel Tiessen
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
17
|
Sanjay, Shin JH, Park M, Lee HJ. Cyanidin-3-O-Glucoside Regulates the M1/M2 Polarization of Microglia via PPARγ and Aβ42 Phagocytosis Through TREM2 in an Alzheimer's Disease Model. Mol Neurobiol 2022; 59:5135-5148. [PMID: 35670898 PMCID: PMC9363298 DOI: 10.1007/s12035-022-02873-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
Abstract
Microglial polarization plays an essential role in the progression and regression of neurodegenerative disorders. Cyanidin-3-O-glucoside (C3G), a dietary anthocyanin found in many fruits and vegetables, has been reported as an antioxidant, anti-inflammatory, and antitumor agent. However, there have been no reports on whether C3G can regulate the M1/M2 shift in an Alzheimer's disease model. We attempted to investigate the effects of C3G on M1/M2 polarization and the mechanism to regulate anti-inflammation and phagocytosis, both in vitro and in vivo. HMC3 cells were treated with β-amyloid (Aβ42) in the presence or absence of 50 μM C3G for different time intervals, and APPswe/PS1ΔE9 mice were orally administered 30 mg/kg/day of C3G for 38 weeks. The in vitro data revealed that C3G could shift the M1 phenotype of microglia to M2 by reducing the expression of M1-specific markers (CD86 and CD80), inflammatory cytokines (IL-Iβ, IL-6, TNF-α), reactive oxygen species, and enhancing the expression of M2-specific markers (CD206 and CD163). The APPswe/PS1ΔE9 mice results were consistent with the in vitro data, indicating a significant reduction in inflammatory cytokines and higher expression of M2-specific markers such as CD206 and Arg1 in C3G-treated Alzheimer's disease model mice. Additionally, C3G was found to upregulate PPARγ expression levels both in vitro and in vivo, whereas a PPARγ antagonist (GW9662) was found to block C3G-mediated effects in vitro. In this study, we confirmed that C3G could regulate microglial polarization by activating PPARγ and eliminating accumulated β-amyloid by enhancing Aβ42 phagocytosis through the upregulation of TREM2.
Collapse
Affiliation(s)
- Sanjay
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do 461-713, Seongnam-si, Republic of Korea
| | - Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Korea.
| |
Collapse
|
18
|
Li L, Zhou P, Wang Y, Pan Y, Chen M, Tian Y, Zhou H, Yang B, Meng H, Zheng J. Antimicrobial activity of cyanidin-3-O-glucoside-lauric acid ester against Staphylococcus aureus and Escherichia coli. Food Chem 2022; 383:132410. [PMID: 35182879 DOI: 10.1016/j.foodchem.2022.132410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic acylation of anthocyanin with fatty acid improves its lipophilic solubility and application potential. Nevertheless, evaluation of functional properties of product is premise for application. This study investigated the antimicrobial potential and the underlying mechanisms of an acylated anthocyanin, namely, cyanidin-3-O-glucoside-lauric acid ester (C3G-LA), to provide guidelines for its application. C3G-LA exhibited outstanding antibacterial activity against Staphylococcus aureus [minimum inhibitory concentration (MIC) = 0.3125 mg/mL] and modest activity against Escherichia coli (MIC = 5 mg/mL). Moreover, C3G-LA manifested bactericide ability against S. aureus at 0.625 mg/mL. Decreases in membrane integrity (by 96% and 92% at MIC in S. aureus and E. coli, respectively), intracellular ATP concentration (by 96% and 92%) and intracellular pH (by 11% and 9%) and changes in cellular morphology altogether indicated the dysfunction of cell membrane under C3G-LA treatment. These findings demonstrated that C3G-LA could be adopted as an alternative food preservative against foodborne pathogens.
Collapse
Affiliation(s)
- Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ping Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; InnoStar Bio-Tech Nantong Site, Nantong 226133, Jiangsu, China
| | - Yidi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Ying Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Min Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ye Tian
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; Zhongshan Hongli Health Food Industry Research Institute Co., Ltd, Zhongshan 528400, Guangdong, China.
| |
Collapse
|
19
|
Comparative Transcriptome Analysis of the Expression of Antioxidant and Immunity Genes in the Spleen of a Cyanidin 3-O-Glucoside-Treated Alzheimer's Mouse Model. Antioxidants (Basel) 2021; 10:antiox10091435. [PMID: 34573067 PMCID: PMC8472539 DOI: 10.3390/antiox10091435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Cyanidin 3-O-glucoside (C3G) is a well-known antioxidant found as a dietary anthocyanin in different fruits and vegetables. It has protective and therapeutic effects on various diseases. It can reduce neuronal death from amyloid-beta (Aβ)-induced toxicity and promote the inhibition of Aβ fibrillization. Antioxidant and immune modulation might play a critical role in the properties of C3G against Alzheimer's disease (AD) and other diseases. However, limited studies have been performed on the mechanism involved in the effect of C3G through transcriptome analysis. Thus, the objective of this study was to perform comparative transcriptome analysis of the spleen to determine gene expression profiles of wild-type mice (C57BL/6J Jms), an Alzheimer's mouse model (APPswe/PS1dE9 mice), and a C3G-treated Alzheimer's mouse model. Differentially expressed antioxidant, immune-related, and AD pathways genes were identified in the treated group. The validation of gene expression data via RT-PCR studies further supported the current findings. Six important antioxidant genes (S100a8, S100a9, Prdx2, Hp, Mpst, and Prxl2a) and a high number of immune-related genes were found to be upregulated in the treatment groups, suggesting the possible antioxidant and immunomodulatory mechanisms of C3G, respectively. Further studies are strongly recommended to elucidate the precise role of these essential genes and optimize the therapeutic function of C3G in AD and other disease conditions.
Collapse
|
20
|
Dong J, Li S, Zhang J, Liu A, Ren J. Thermal degradation of cyanidin-3-O-glucoside: Mechanism and toxicity of products. Food Chem 2021; 370:131018. [PMID: 34507210 DOI: 10.1016/j.foodchem.2021.131018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/06/2021] [Accepted: 08/28/2021] [Indexed: 01/15/2023]
Abstract
The thermal degradation behavior of cyanidin-3-O-gluoside (Cy3G) in nitrogen and air was studied using thermogravimetric analysis (TGA), thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR) and pyrolysis-gas chromatography/mass spectrometry (Py-GCMS). The results show that the thermal degradation of Cy3G in nitrogen and in air can be divided into three steps. The total degradation rate was 63.09% in nitrogen and 99.42% in air, and the total activation energy (Ea) was 65.85 and 80.98 kJ·mol-1, respectively. The TG-FTIR analysis showed that Cy3G is significantly decomposed at 200-300 °C. The Py-GCMS analysis shows that the first step in the thermal degradation of Cy3G in nitrogen is the cleavage of glycosidic bonds to give cyanidin and glucoside. The glucoside and cyanidin then degrade further to give mainly low molecular weight compounds, together with furan derivatives, pyran derivatives and aromatic compounds. The phenols and furans found in the pyrolysis products are known to have a degree of toxicity.
Collapse
Affiliation(s)
- Jingjing Dong
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Sidong Li
- School of International Education, Guangzhou College of Technology and Business, Guangzhou 510850, China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhangjiang 524023, China.
| | - Jie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| |
Collapse
|
21
|
Noi K, Ikenaka K, Mochizuki H, Goto Y, Ogi H. Disaggregation Behavior of Amyloid β Fibrils by Anthocyanins Studied by Total-Internal-Reflection-Fluorescence Microscopy Coupled with a Wireless Quartz-Crystal Microbalance Biosensor. Anal Chem 2021; 93:11176-11183. [PMID: 34351734 DOI: 10.1021/acs.analchem.1c01720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid fibrils are formed from various proteins, some of which cause the corresponding neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. It has been reported that many compounds inhibit the formation of amyloid fibrils. Anthocyanins are flavonoid pigments present in fruits and vegetables, which are known to suppress symptoms related with Alzheimer's disease. However, the influence of anthocyanins on the amyloid fibril remains unclear. Here, we succeeded in the direct monitoring of the disaggregation reaction of single amyloid β (Aβ) fibrils by anthocyanins using total-internal-reflection-fluorescence microscopy with a quartz-crystal microbalance (TIRFM-QCM). It is found that the disassembly activity to the Aβ fibrils depends on the number of hydroxyl groups in six-membered ring B of anthocyanin, and only delphinidin-3-galactoside, possessing three hydroxyl groups there, shows high disassembly activity. Our results show the importance of the number of hydroxyl groups and demonstrate the usefulness of TIRFM-QCM as a powerful tool in studying interactions between amyloid fibrils and compounds.
Collapse
Affiliation(s)
- Kentaro Noi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Xu J, Zheng T, Huang X, Wang Y, Yin G, Du W. Procyanidine resists the fibril formation of human islet amyloid polypeptide. Int J Biol Macromol 2021; 183:1067-1078. [PMID: 33965498 DOI: 10.1016/j.ijbiomac.2021.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is widely studied due to its close correlation with the pathogenic mechanism of type II diabetes mellitus (T2DM). Bioflavonoids have been used in the neurodegeneration and diabetes studies. However, the structure-activity relationship remains unclear in many of these compounds. In this work, we performed diverse biophysical and biochemical methods to explore the inhibition of procyanidine on hIAPP and compared with that on amyloid-β (Aβ) protein which is linked to Alzheimer's disease (AD). The procyanidine effectively inhibited the aggregation of hIAPP and Aβ through hydrophobic and hydrogen bonding interactions, it dissolved the aged fibrils into nanoscale particles. The compound also ameliorated the cytotoxicity and the membrane leakage by reducing the peptide oligomerization. The procyanidine showed better binding affinity and inhibitory effects on peptide aggregation and upregulated the cell viability to hIAPP than to Aβ, which could be a prospective inhibitor against hIAPP. This work also offered a possible strategy for T2DM and AD treatments.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiangyi Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Guowei Yin
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
23
|
Gaudreault R, Hervé V, van de Ven TGM, Mousseau N, Ramassamy C. Polyphenol-Peptide Interactions in Mitigation of Alzheimer's Disease: Role of Biosurface-Induced Aggregation. J Alzheimers Dis 2021; 81:33-55. [PMID: 33749653 DOI: 10.3233/jad-201549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, responsible for nearly two-thirds of all dementia cases. In this review, we report the potential AD treatment strategies focusing on natural polyphenol molecules (green chemistry) and more specifically on the inhibition of polyphenol-induced amyloid aggregation/disaggregation pathways: in bulk and on biosurfaces. We discuss how these pathways can potentially alter the structure at the early stages of AD, hence delaying the aggregation of amyloid-β (Aβ) and tau. We also discuss multidisciplinary approaches, combining experimental and modelling methods, that can better characterize the biochemical and biophysical interactions between proteins and phenolic ligands. In addition to the surface-induced aggregation, which can occur on surfaces where protein can interact with other proteins and polyphenols, we suggest a new concept referred as "confinement stability". Here, on the contrary, the adsorption of Aβ and tau on biosurfaces other than Aβ- and tau-fibrils, e.g., red blood cells, can lead to confinement stability that minimizes the aggregation of Aβ and tau. Overall, these mechanisms may participate directly or indirectly in mitigating neurodegenerative diseases, by preventing protein self-association, slowing down the aggregation processes, and delaying the progression of AD.
Collapse
Affiliation(s)
- Roger Gaudreault
- Department of Physics, Université de Montréal, Montreal, QC, Canada
| | - Vincent Hervé
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | | | - Normand Mousseau
- Department of Physics, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
24
|
Li SL, Yang QQ, Liu XY, Jiang FL, Xiong J, Jiang P, Liu Y. Zn-doped Cu 2S quantum dots as new high-efficiency inhibitors against human insulin fibrillation based on specific electrostatic interaction with oligomers. Int J Biol Macromol 2021; 179:161-169. [PMID: 33675825 DOI: 10.1016/j.ijbiomac.2021.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 03/02/2021] [Indexed: 11/27/2022]
Abstract
Inhibition of protein fibrillation process with nanomaterials is a promising strategy to combat neurodegenerative diseases. Copper-based nanomaterials have been seldom utilized in fibrillation inhibiting research due to Copper ions are generally considered as accelerators of fibrosis. Here, we proposed ultra-small Zn doped Cu2S (Zn:Cu2S) QDs as inhibitors of human insulin (HI) fibrosis. ThT, DLS, CD and TEM confirm that Zn:Cu2S QDs effectively inhibited insulin fibrosis in a dose-dependent manner with lag phase time extended (beyond 13-time by Zn:Cu2S QDs of 1 mg·mL-1), final fibril formation and the conversion from α-helix to β-sheet reduced. Additionally, thermodynamics analyzed results reveal that the HI fluorescence quenching process is static quenching dominated, and the Zn:Cu2S QDs inhibit HI fibrosis mainly through specific electrostatic interaction with oligomers. The positively charged amino acid residues of oligomers bind to the negatively charged Zn:Cu2S QDs, which prevents the self-assembly of the oligomers from growing into mature fibers to enhance the stability of the protein. Unlike free Copper ions, the as-prepared QDs show an excellent inhibition in HI fibrillation, breaking through the bottleneck of copper-based materials in inhibiting protein fibrosis and providing a potential strategy to inhibit protein fibrosis in-situ by biosynthesizing copper-based fibrosis inhibitors.
Collapse
Affiliation(s)
- Shu-Lan Li
- Department of Chemistry, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qi-Qi Yang
- Department of Chemistry, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xing-Yu Liu
- Department of Chemistry, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- Department of Chemistry, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Peng Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P. R. China.
| | - Yi Liu
- Department of Chemistry, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China; State Key Laboratory of Membrane Separation and Membrane Process, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China; Institute of Advanced Materials and Nanotechnology, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
25
|
Wang F, Wang Y, Jiang L, Wang W, Sang J, Wang X, Lu F, Liu F. The food additive fast green FCF inhibits α-synuclein aggregation, disassembles mature fibrils and protects against amyloid-induced neurotoxicity. Food Funct 2021; 12:5465-5477. [PMID: 33997868 DOI: 10.1039/d0fo03301d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-syn) aggregates into cytotoxic amyloid fibrils, which are recognized as the defining neuropathological feature of Parkinson's disease (PD). Therefore, inhibiting α-syn fibrillogenesis and disrupting the preformed fibrils are both considered attractive strategies to cure PD. We discovered that a safe food additive, fast green FCF, is capable of inhibiting α-synuclein fibrillogenesis and reducing the related cytotoxicity. Thioflavin T fluorescence assays demonstrated that fast green FCF could inhibit the fibrillogenesis α-synuclein. In the presence of 100 μM fast green FCF, amorphous aggregates were formed and observed by atomic force microscopy. Toxicity assays in cell cultures revealed that fast green FCF significantly reduced the cytotoxicity of α-syn. Molecular dynamics simulations revealed the potential mechanism of the interactions between fast green FCF and α-synuclein. Fast green FCF greatly disrupted the α-synuclein pentamer and reduced the β-sheet content by reducing both nonpolar and polar interactions. Furthermore, two binding sites were identified, named region I (Y39-K45) and region II (H50-Q62). Our data reveal that electrostatic interactions, hydrogen bonds, and π-π interactions synergistically contribute to the binding of fast green FCF to the α-synuclein pentamer. These results indicate that fast green FCF is a candidate prototype for the development of drugs against the aggregation of amyloid fibrils in PD.
Collapse
Affiliation(s)
- Fenghua Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Ying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Luying Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Wenqian Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Jingcheng Sang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Xinyu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
26
|
Liu F, Wang W, Xuan Z, Jiang L, Chen B, Dong Q, Zhao F, Cui W, Li L, Lu F. Fast green FCF inhibits Aβ fibrillogenesis, disintegrates mature fibrils, reduces the cytotoxicity, and attenuates Aβ-induced cognitive impairment in mice. Int J Biol Macromol 2020; 170:33-41. [PMID: 33352157 DOI: 10.1016/j.ijbiomac.2020.12.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Fast green FCF (FGF) is often used in foods, pharmaceuticals, and cosmetics. However, little is known about the interactions of FGF with amyloid-β protein (Aβ) associated with Alzheimer's disease. In this study, the inhibitory effects of FGF on Aβ fibrillogenesis, the disruption of preformed Aβ fibrils, the reduction of Aβ-induced cytotoxicity, and the attenuation of Aβ-induced learning and memory impairments in mice were investigated. FGF significantly inhibited Aβ fibrillogenesis and disintegrated the mature fibrils as evidenced by thioflavin T fluorescence and atomic force microscopy studies. Co-incubation of Aβ with FGF greatly reduced Aβ-induced cytotoxicity in vitro. Moreover, FGF showed a protective effect against cognitive impairment in Aβ-treated mice. Molecular dynamics simulations further showed that FGF could synergistically interact with the Aβ17-42 pentamer via electrostatic interactions, hydrogen bonds and π-π interactions, which reduced the β-sheet content, and disordered random coils and bend structures of the Aβ17-42 pentamer. This study offers a comprehensive understanding of the inhibitory effects of FGF against Aβ neurotoxicity, which is critical for the search of effective food additives that can combat amyloid-associated disease.
Collapse
Affiliation(s)
- Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenjuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhenquan Xuan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Luying Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Beibei Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qinchen Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Li Li
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
27
|
Khalifa I, Sobhy R, Nawaz A, Xiaoou W, Li Z, Zou X. Cyanidin 3-rutinoside defibrillated bovine serum albumin under the glycation-promoting conditions: A study with multispectral, microstructural, and computational analysis. Int J Biol Macromol 2020; 162:1195-1203. [DOI: 10.1016/j.ijbiomac.2020.06.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/16/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
|
28
|
Phytosterols disaggregate bovine serum albumin under the glycation conditions through interacting with its glycation sites and altering its secondary structure elements. Bioorg Chem 2020; 101:104047. [DOI: 10.1016/j.bioorg.2020.104047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022]
|
29
|
Zhang H, Sang J, Li L, Jiang L, Lu F, He S, Cui W, Zhang X, Liu F. Molecular basis for the inhibitory effects of 5-hydroxycyclopenicillone on the conformational transition of Aβ 40 monomer. J Biomol Struct Dyn 2020; 39:6440-6451. [PMID: 32723218 DOI: 10.1080/07391102.2020.1799863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies have indicated that 5-hydroxycyclopenicillone (HCP), an active compound derived from marine sponge, could inhibit oligomerization of amyloid β-protein (Aβ). However, the molecular basis for the interaction between HCP and Aβ remains unclear. Herein, all-atom molecular dynamics (MD) simulations were used to explore the conformational conversion of an Aβ40 monomer at different concentrations (0-40 mM) of HCP at the atomic level. It is confirmed that the conformational transition of the Aβ40 monomer is prevented by HCP in a concentration-dependent manner in silico. In 40 mM HCP solution, the initial α-helix-rich conformation of Aβ40 monomer is kept under the action of HCP. The intra-peptide hydrophobic collapse and D23-K28 salt bridge are prevented by HCP. Moreover, it is indicated that the non-polar binding energy dominates the binding between HCP and Aβ40 monomer as evaluated by molecular mechanics Poisson-Boltzmann surface area method. And, the residues of F4, Y10, V12, L17 and L34 in Aβ40 might contribute to the binding energy in HCP-Aβ40 complex. All these results elucidate the molecular mechanism underlying the inhibitory effects of HCP against the conformational transformation of Aβ40, providing a support that HCP may be developed as a potential anti-Aβ compound for the treatment of Aβ-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huitu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Jingcheng Sang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Luying Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaoqing Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|