1
|
Jhaveri NS, Mastronardo MK, Collins J, Andersen EC. Development of a size-separation technique to isolate Caenorhabditis elegans embryos using mesh filters. PLoS One 2025; 20:e0318143. [PMID: 40273127 PMCID: PMC12021249 DOI: 10.1371/journal.pone.0318143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
The free-living nematode Caenorhabditis elegans has been routinely used to study gene functions, genetic interactions, and conserved signaling pathways. Most experiments require that the animals are synchronized to be at the same specific developmental stage. Bleach synchronization is traditionally used to obtain a population of staged embryos, but the method can have harmful effects on the embryos. The physical separation of differently sized animals is preferred but often difficult to perform because some developmental stages are the same sizes as others. Microfluidic device filters have been used as alternatives, but they are expensive and require customization to scale up the preparation of staged animals. Here, we present a protocol for the synchronization of embryos using mesh filters. Using filtration, we obtained a higher yield of embryos per plate than using the standard bleach synchronization protocol and at a scale beyond microfluidic devices. Importantly, filtration has no deleterious effects on downstream larval development assays. In conclusion, we have exploited the differences in the sizes of C. elegans developmental stages to isolate embryo cultures suitable for use in high-throughput assays.
Collapse
Affiliation(s)
- Nikita S. Jhaveri
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Maya K. Mastronardo
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - J.B. Collins
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Erik C. Andersen
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Shi Y, Cui C, Chen S, Chen S, Wang Y, Xu Q, Yang L, Ye J, Hong Z, Hu H. Worm-Based Diagnosis Combining Microfluidics toward Early Cancer Screening. MICROMACHINES 2024; 15:484. [PMID: 38675295 PMCID: PMC11052135 DOI: 10.3390/mi15040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Early cancer diagnosis increases therapy efficiency and saves huge medical costs. Traditional blood-based cancer markers and endoscopy procedures demonstrate limited capability in the diagnosis. Reliable, non-invasive, and cost-effective methods are in high demand across the world. Worm-based diagnosis, utilizing the chemosensory neuronal system of C. elegans, emerges as a non-invasive approach for early cancer diagnosis with high sensitivity. It facilitates effectiveness in large-scale cancer screening for the foreseeable future. Here, we review the progress of a unique route of early cancer diagnosis based on the chemosensory neuronal system of C. elegans. We first introduce the basic procedures of the chemotaxis assay of C. elegans: synchronization, behavior assay, immobilization, and counting. Then, we review the progress of each procedure and the various cancer types for which this method has achieved early diagnosis. For each procedure, we list examples of microfluidics technologies that have improved the automation, throughput, and efficiency of each step or module. Finally, we envision that microfluidics technologies combined with the chemotaxis assay of C. elegans can lead to an automated, cost-effective, non-invasive early cancer screening technology, with the development of more mature microfluidic modules as well as systematic integration of functional modules.
Collapse
Affiliation(s)
- Yutao Shi
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Chen Cui
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Shengzhi Chen
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Siyu Chen
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Yiheng Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Qingyang Xu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Lan Yang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Jiayi Ye
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining 314400, China
| | - Zhi Hong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Huan Hu
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining 314400, China
| |
Collapse
|
3
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Zhang J, Liu S, Yuan H, Yong R, Duan S, Li Y, Spencer J, Lim EG, Yu L, Song P. Deep Learning for Microfluidic-Assisted Caenorhabditis elegans Multi-Parameter Identification Using YOLOv7. MICROMACHINES 2023; 14:1339. [PMID: 37512650 PMCID: PMC10386376 DOI: 10.3390/mi14071339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The Caenorhabditis elegans (C. elegans) is an ideal model organism for studying human diseases and genetics due to its transparency and suitability for optical imaging. However, manually sorting a large population of C. elegans for experiments is tedious and inefficient. The microfluidic-assisted C. elegans sorting chip is considered a promising platform to address this issue due to its automation and ease of operation. Nevertheless, automated C. elegans sorting with multiple parameters requires efficient identification technology due to the different research demands for worm phenotypes. To improve the efficiency and accuracy of multi-parameter sorting, we developed a deep learning model using You Only Look Once (YOLO)v7 to detect and recognize C. elegans automatically. We used a dataset of 3931 annotated worms in microfluidic chips from various studies. Our model showed higher precision in automated C. elegans identification than YOLOv5 and Faster R-CNN, achieving a mean average precision (mAP) at a 0.5 intersection over a union (mAP@0.5) threshold of 99.56%. Additionally, our model demonstrated good generalization ability, achieving an mAP@0.5 of 94.21% on an external validation set. Our model can efficiently and accurately identify and calculate multiple phenotypes of worms, including size, movement speed, and fluorescence. The multi-parameter identification model can improve sorting efficiency and potentially promote the development of automated and integrated microfluidic platforms.
Collapse
Affiliation(s)
- Jie Zhang
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693BX, UK
| | - Shuhe Liu
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Hang Yuan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Ruiqi Yong
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Sixuan Duan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693BX, UK
| | - Yifan Li
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693BX, UK
| | - Joseph Spencer
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693BX, UK
| | - Eng Gee Lim
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693BX, UK
| | - Limin Yu
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693BX, UK
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693BX, UK
| |
Collapse
|
5
|
Yuan H, Yuan W, Duan S, Jiao K, Zhang Q, Lim EG, Chen M, Zhao C, Pan P, Liu X, Song P. Microfluidic-Assisted Caenorhabditis elegans Sorting: Current Status and Future Prospects. CYBORG AND BIONIC SYSTEMS 2023; 4:0011. [PMID: 37287459 PMCID: PMC10243201 DOI: 10.34133/cbsystems.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/15/2023] [Indexed: 07/30/2023] Open
Abstract
Caenorhabditis elegans (C. elegans) has been a popular model organism for several decades since its first discovery of the huge research potential for modeling human diseases and genetics. Sorting is an important means of providing stage- or age-synchronized worm populations for many worm-based bioassays. However, conventional manual techniques for C. elegans sorting are tedious and inefficient, and commercial complex object parametric analyzer and sorter is too expensive and bulky for most laboratories. Recently, the development of lab-on-a-chip (microfluidics) technology has greatly facilitated C. elegans studies where large numbers of synchronized worm populations are required and advances of new designs, mechanisms, and automation algorithms. Most previous reviews have focused on the development of microfluidic devices but lacked the summaries and discussion of the biological research demands of C. elegans, and are hard to read for worm researchers. We aim to comprehensively review the up-to-date microfluidic-assisted C. elegans sorting developments from several angles to suit different background researchers, i.e., biologists and engineers. First, we highlighted the microfluidic C. elegans sorting devices' advantages and limitations compared to the conventional commercialized worm sorting tools. Second, to benefit the engineers, we reviewed the current devices from the perspectives of active or passive sorting, sorting strategies, target populations, and sorting criteria. Third, to benefit the biologists, we reviewed the contributions of sorting to biological research. We expect, by providing this comprehensive review, that each researcher from this multidisciplinary community can effectively find the needed information and, in turn, facilitate future research.
Collapse
Affiliation(s)
- Hang Yuan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
| | - Wenwen Yuan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Sixuan Duan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Keran Jiao
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Chemistry,
Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Quan Zhang
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
| | - Eng Gee Lim
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Min Chen
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Chun Zhao
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Peng Pan
- Department of Mechanical & Industrial Engineering,
University of Toronto, Toronto, Canada
| | - Xinyu Liu
- Department of Mechanical & Industrial Engineering,
University of Toronto, Toronto, Canada
| | - Pengfei Song
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Pan P, Qin Z, Sun W, Zhou Y, Wang S, Song P, Wang Y, Ru C, Wang X, Calarco J, Liu X. A spiral microfluidic device for rapid sorting, trapping, and long-term live imaging of Caenorhabditis elegans embryos. MICROSYSTEMS & NANOENGINEERING 2023; 9:17. [PMID: 36844938 PMCID: PMC9943735 DOI: 10.1038/s41378-023-00485-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
Caenorhabditis elegans embryos have been widely used to study cellular processes and developmental regulation at early stages. However, most existing microfluidic devices focus on the studies of larval or adult worms rather than embryos. To accurately study the real-time dynamics of embryonic development under different conditions, many technical barriers must be overcome; these can include single-embryo sorting and immobilization, precise control of the experimental environment, and long-term live imaging of embryos. This paper reports a spiral microfluidic device for effective sorting, trapping, and long-term live imaging of single C. elegans embryos under precisely controlled experimental conditions. The device successfully sorts embryos from a mixed population of C. elegans at different developmental stages via Dean vortices generated inside a spiral microchannel and traps the sorted embryos at single-cell resolution through hydrodynamic traps on the sidewall of the spiral channel for long-term imaging. Through the well-controlled microenvironment inside the microfluidic device, the response of the trapped C. elegans embryos to mechanical and chemical stimulation can be quantitatively measured. The experimental results show that a gentle hydrodynamic force would induce faster growth of embryos, and embryos developmentally arrested in the high-salinity solution could be rescued by the M9 buffer. The microfluidic device provides new avenues for easy, rapid, high-content screening of C. elegans embryos.
Collapse
Affiliation(s)
- Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
| | - Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
| | - William Sun
- Upper Canada College, 200 Lonsdale Road, Toronto, Ontario M4V 1W6 Canada
| | - Yuxiao Zhou
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
| | - Shaojia Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
| | - Pengfei Song
- School of Advanced Technology, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou, 215000 China
| | - Yong Wang
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009 China
| | - Changhai Ru
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009 China
| | - Xin Wang
- Department of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130012 China
| | - John Calarco
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario M5S 3G5 Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9 Canada
| |
Collapse
|
7
|
Lanier VJ, White AM, Faumont S, Lockery SR. Theory and practice of using cell strainers to sort Caenorhabditis elegans by size. PLoS One 2023; 18:e0280999. [PMID: 36757993 PMCID: PMC9910635 DOI: 10.1371/journal.pone.0280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
The nematode Caenorhabditis elegans is a model organism widely used in basic, translational, and industrial research. C. elegans development is characterized by five morphologically distinct stages, including four larval stages and the adult stage. Stages differ in a variety of aspects including size, gene expression, physiology, and behavior. Enrichment for a particular developmental stage is often the first step in experimental design. When many hundreds of worms are required, the standard methods of enrichment are to grow a synchronized population of hatchlings for a fixed time, or to sort a mixed population of worms according to size. Current size-sorting methods have higher throughput than synchronization and avoid its use of harsh chemicals. However, these size-sorting methods currently require expensive instrumentation or custom microfluidic devices, both of which are unavailable to the majority C. elegans laboratories. Accordingly, there is a need for inexpensive, accessible sorting strategies. We investigated the use of low-cost, commercially available cell strainers to filter C. elegans by size. We found that the probability of recovery after filtration as a function of body size for cell strainers of three different mesh sizes is well described by logistic functions. Application of these functions to predict filtration outcomes revealed non-ideal properties of filtration of worms by cell strainers that nevertheless enhanced filtration outcomes. Further, we found that serial filtration using a pair of strainers that have different mesh sizes can be used to enrich for particular larval stages with a purity close to that of synchronization, the most widely used enrichment method. Throughput of the cell strainer method, up to 14,000 worms per minute, greatly exceeds that of other enrichment methods. We conclude that size sorting by cell strainers is a useful addition to the array of existing methods for enrichment of particular developmental stages in C. elegans.
Collapse
Affiliation(s)
- Vincent J. Lanier
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Amanda M. White
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Shawn R. Lockery
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
8
|
Lockery SR, Pop S, Jussila B. Microinjection in C. elegans by direct penetration of elastomeric membranes. BIOMICROFLUIDICS 2023; 17:014103. [PMID: 36647539 PMCID: PMC9840533 DOI: 10.1063/5.0130806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The nematode worm C. elegans is widely used in basic and translational research. The creation of transgenic strains by injecting DNA constructs into the worm's gonad is an essential step in many C. elegans research projects. This paper describes the fabrication and use of a minimalist microfluidic chip for performing microinjections. The worm is immobilized in a tight-fitting microchannel, one sidewall of which is a thin elastomeric membrane through which the injection pipet penetrates to reach the worm. The pipet is neither broken nor clogged by passing through the membrane, and the membrane reseals when the pipet is withdrawn. Rates of survival and transgenesis are similar to those in the conventional method. Novice users found injections using the device easier to learn than the conventional method. The principle of direct penetration of elastomeric membranes is adaptable to microinjections in a wide range of organisms including cells, embryos, and other small animal models. It could, therefore, lead to a new generation of microinjection systems for basic, translational, and industrial applications.
Collapse
Affiliation(s)
| | - Stelian Pop
- InVivo Biosystems, Inc., Eugene, Oregon 97402, USA
| | | |
Collapse
|
9
|
Bates K, Le KN, Lu H. Deep learning for robust and flexible tracking in behavioral studies for C. elegans. PLoS Comput Biol 2022; 18:e1009942. [PMID: 35395006 PMCID: PMC9020731 DOI: 10.1371/journal.pcbi.1009942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 04/20/2022] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Robust and accurate behavioral tracking is essential for ethological studies. Common methods for tracking and extracting behavior rely on user adjusted heuristics that can significantly vary across different individuals, environments, and experimental conditions. As a result, they are difficult to implement in large-scale behavioral studies with complex, heterogenous environmental conditions. Recently developed deep-learning methods for object recognition such as Faster R-CNN have advantages in their speed, accuracy, and robustness. Here, we show that Faster R-CNN can be employed for identification and detection of Caenorhabditis elegans in a variety of life stages in complex environments. We applied the algorithm to track animal speeds during development, fecundity rates and spatial distribution in reproductive adults, and behavioral decline in aging populations. By doing so, we demonstrate the flexibility, speed, and scalability of Faster R-CNN across a variety of experimental conditions, illustrating its generalized use for future large-scale behavioral studies.
Collapse
Affiliation(s)
- Kathleen Bates
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kim N. Le
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
10
|
Zhang B, Zhuang L, Sun D, Li Y, Chen Z. An integrated microfluidics for assessing the anti-aging effect of caffeic acid phenethylester in Caenorhabditis elegans. Electrophoresis 2020; 42:742-748. [PMID: 33184875 DOI: 10.1002/elps.202000251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
Aging is a fundamental and fascinating process. Anti-aging research tried to find the mysteries about the human lifespan. To investigate the longevity-extending role of caffeic acid phenethylester (CAPE) and reveal the possible regulation mechanism, the long-term cultivation under well-defined environments, real-time monitoring, and live imaging is highly desired. In this paper, a well-designed microfluidic device was proposed to analyze the anti-aging effect of CAPE in Caenorhabditis elegans. With the combined use of multiple functional units, including micro-pillar, worm responder, a branching network of distribution channels, and microchambers, the longitudinal measurements of the exact number of worms throughout the whole lifespans is possible. Meanwhile, the brief cooling function of temperature-controllable system can achieve temporary and repeated immobilization of nematodes for fluorescence imaging. Our research data showed that CAPE can increase the survival of worms under normal and stress condition, including heat stress and paraquat-induced oxidative stress. The further studies revealed the anti-aging mechanism of CAPE. This proposed strategy and device would be a useful platform to facilitate future anti-aging studies and the finding of new lead compounds.
Collapse
Affiliation(s)
- Beibei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,College of Biological Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Liping Zhuang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Duanping Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Yinbao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, P. R. China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
11
|
Wan J, Lu H. Enabling high-throughput single-animal gene-expression studies with molecular and micro-scale technologies. LAB ON A CHIP 2020; 20:4528-4538. [PMID: 33237042 PMCID: PMC7769683 DOI: 10.1039/d0lc00881h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gene expression and regulation play diverse and important roles across all living systems. By quantifying the expression, whether in a sample of single cells, a specific tissue, or in a whole animal, one can gain insights into the underlying biology. Many biological questions now require single-animal and tissue-specific resolution, such as why individuals, even within an isogenic population, have variations in development and aging across different tissues and organs. The popular techniques that quantify the transcriptome (e.g. RNA-sequencing) process populations of animals and cells together and thus, have limitations in both individual and spatial resolution. There are single-animal assays available (e.g. fluorescent reporters); however, they suffer other technical bottlenecks, such as a lack of robust sample-handling methods. Microfluidic technologies have demonstrated various improvements throughout the years, and it is likely they can enhance the impact of these single-animal gene-expression assays. In this perspective, we aim to highlight how the engineering/method-development field have unique opportunities to create new tools that can enable us to robustly answer the next set of important questions in biology that require high-density, high-quality gene expression data.
Collapse
Affiliation(s)
- Jason Wan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA.
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA. and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
12
|
Harito C, Lledo RC, Bavykin DV, Moshrefi‐Torbati M, Islam A, Yuliarto B, Walsh FC. Patterning of worm‐like soft polydimethylsiloxane structures using a
TiO
2
nanotubular array. J Appl Polym Sci 2020. [DOI: 10.1002/app.49795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Christian Harito
- Department for Management of Science and Technology DevelopmentTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied SciencesTon Duc Thang University Ho Chi Minh City Vietnam
| | - Rosa C. Lledo
- Mechatronics Research GroupUniversity of Southampton Southampton UK
- Department for Mechanical EngineeringTechnical University of Denmark Kongens Lyngby Denmark
| | | | | | - Aminul Islam
- Department for Mechanical EngineeringTechnical University of Denmark Kongens Lyngby Denmark
| | - Brian Yuliarto
- Advanced Functional Materials Laboratory, Engineering PhysicsInstitut Teknologi Bandung Bandung Indonesia
- Research Center for Nanosciences and NanotechnologyInstitut Teknologi Bandung Bandung Indonesia
| | - Frank C. Walsh
- Energy Technology GroupUniversity of Southampton Southampton UK
| |
Collapse
|
13
|
Noiphung J, Prasanth MI, Tencomnao T, Laiwattanapaisal W. Paper-Based Analytical Device for Real-Time Monitoring of Egg Hatching in the Model Nematode Caenorhabditis elegans. ACS Sens 2020; 5:1750-1757. [PMID: 32452668 DOI: 10.1021/acssensors.0c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Caenorhabditis elegans is an in vivo model known for its easy handling and maintenance and lack of associated ethical issues. The release of chitinase can be used to monitor the egg-laying stage in C. elegans. The aim of this study was to develop a simple and cost-effective device to monitor the activity of chitinase in embryos of C. elegans. Colloid chitin azure (CCA), a substrate for chitinase, was preimmobilized on the detection area of paper, forming a purple region, to generate a CCA paper-based analytical device (CCA-PAD). The degradation of CCA by chitinase could be observed as the purple color became faint and the filter paper eventually became colorless. Under the optimum conditions, the proposed device quantified the chitinase enzyme in the range of 15.625-125 mU/mL within 48 h (R2 = 0.993). In this work, 10 young adult-staged wild-type C. elegans (Bristol N2) worms were analyzed on the CCA-PAD, which was supplemented with the laboratory food source E. coli OP50 on a gauze layer. The same strain treated with 5-fluoro-2'-deoxyuridine was used to prevent egg production in C. elegans. A significant difference in the color intensity was observed between these two groups at the end of the experiment (P = <0.001, independent t-test, n = 3). We successfully developed a simple and effective method for monitoring chitinase activity. The device may have potential applications in drug-screening studies as it efficiently distinguishes drugs that can impact egg laying.
Collapse
Affiliation(s)
- Julaluk Noiphung
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Atakan HB, Hof KS, Cornaglia M, Auwerx J, Gijs MAM. The Detection of Early Epigenetic Inheritance of Mitochondrial Stress in C. Elegans with a Microfluidic Phenotyping Platform. Sci Rep 2019; 9:19315. [PMID: 31848454 PMCID: PMC6917781 DOI: 10.1038/s41598-019-55979-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
Fluctuations and deterioration in environmental conditions potentially have a phenotypic impact that extends over generations. Transgenerational epigenetics is the defined term for such intergenerational transient inheritance without an alteration in the DNA sequence. The model organism Caenorhabditis elegans is exceptionally valuable to address transgenerational epigenetics due to its short lifespan, well-mapped genome and hermaphrodite behavior. While the majority of the transgenerational epigenetics on the nematodes focuses on generations-wide heritage, short-term and in-depth analysis of this phenomenon in a well-controlled manner has been lacking. Here, we present a novel microfluidic platform to observe mother-to-progeny heritable transmission in C. elegans at high imaging resolution, under significant automation, and enabling parallelized studies. After approximately 24 hours of culture of L4 larvae under various concentrations and application periods of doxycycline, we investigated if mitochondrial stress was transferred from the mother nematodes to the early progenies. Automated and custom phenotyping algorithms revealed that a minimum doxycycline concentration of 30 µg/mL and a drug exposure time of 15 hours applied to the mothers could induce mitochondrial stress in first embryo progenies indeed, while this inheritance was not clearly observed later in L1 progenies. We believe that our new device could find further usage in transgenerational epigenetic studies modeled on C. elegans.
Collapse
Affiliation(s)
- H B Atakan
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - K S Hof
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - M Cornaglia
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - J Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - M A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|