1
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Ozaki T, Minami A, Oikawa H. Biosynthesis of indole diterpenes: a reconstitution approach in a heterologous host. Nat Prod Rep 2023; 40:202-213. [PMID: 36321441 DOI: 10.1039/d2np00031h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 2013 to 2022In this review, we provide an overview elucidating the biosynthetic pathway and heterologous production of fungal indole diterpenes (IDTs). Based on the studies of six IDT biosynthesis, we extracted nature's strategy: (1) two-stage synthesis for the core scaffold and platform intermediates, and (2) late-stage modifications for installing an additional cyclic system on the indole ring. Herein, we describe reconstitution studies applying this strategy to the synthesis of highly elaborated IDTs. We also discuss its potential for future biosynthetic engineering.
Collapse
Affiliation(s)
- Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan. .,Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China.
| |
Collapse
|
3
|
Liu Y, Ozaki T, Minami A, Oikawa H. Oxidative bicyclic ring system formation involving indole diterpene biosynthesis: Remarkable substrate tolerance of a prenyltransferase and flavoprotein oxidase. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Richardson AT, Cameron RC, Stevenson LJ, Singh AJ, Lukito Y, Berry D, Nicholson MJ, Parker EJ. Biosynthesis of Nodulisporic Acids: A Multifunctional Monooxygenase Delivers a Complex and Highly Branched Array. Angew Chem Int Ed Engl 2022; 61:e202213364. [PMID: 36199176 PMCID: PMC10098816 DOI: 10.1002/anie.202213364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/11/2022]
Abstract
Nodulisporic acids (NAs) are structurally complex potent antiinsectan indole diterpenes. We previously reported the biosynthetic gene cluster for these metabolites in Hypoxylon pulicicidum and functionally characterised the first five steps of the biosynthetic pathway. Here we reveal a highly complex biosynthetic array, furnishing multiple end products through expression of cluster components in Penicillium paxilli. We show that seven additional cluster-encoded gene products comprise the biosynthetic machinery that elaborate precursor NAF in this highly branched pathway. The combined action of these enzymes delivers 37 NA congeners including four major end products, NAA, NAA1 , NAA2 and NAA4 . The plethora of intermediates arises due to modification of the carboxylated prenyl tail by a single promiscuous P450 monooxygenase, NodJ, a pivotal branchpoint enzyme which produces four distinct biosynthetic products giving rise to the complex metabolic grid that characterises NA biosynthesis.
Collapse
Affiliation(s)
- Alistair T. Richardson
- Ferrier Research Institute Victoria University of Wellington Wellington 6012 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery New Zealand
- Centre for Biodiscovery School of Biological Sciences Victoria University of Wellington Wellington 6012 New Zealand
| | - Rosannah C. Cameron
- Ferrier Research Institute Victoria University of Wellington Wellington 6012 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery New Zealand
- Centre for Biodiscovery School of Biological Sciences Victoria University of Wellington Wellington 6012 New Zealand
| | - Luke J. Stevenson
- Ferrier Research Institute Victoria University of Wellington Wellington 6012 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery New Zealand
- Centre for Biodiscovery School of Biological Sciences Victoria University of Wellington Wellington 6012 New Zealand
| | - A. Jonathan Singh
- Ferrier Research Institute Victoria University of Wellington Wellington 6012 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery New Zealand
- Centre for Biodiscovery School of Biological Sciences Victoria University of Wellington Wellington 6012 New Zealand
| | - Yonathan Lukito
- Ferrier Research Institute Victoria University of Wellington Wellington 6012 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery New Zealand
- Centre for Biodiscovery School of Biological Sciences Victoria University of Wellington Wellington 6012 New Zealand
| | - Daniel Berry
- Ferrier Research Institute Victoria University of Wellington Wellington 6012 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery New Zealand
- Centre for Biodiscovery School of Biological Sciences Victoria University of Wellington Wellington 6012 New Zealand
| | - Matthew J. Nicholson
- Wellington Univentures Victoria University of Wellington Wellington 6012 New Zealand
| | - Emily J. Parker
- Ferrier Research Institute Victoria University of Wellington Wellington 6012 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery New Zealand
- Centre for Biodiscovery School of Biological Sciences Victoria University of Wellington Wellington 6012 New Zealand
| |
Collapse
|
5
|
Hou Y, Chen M, Sun Z, Ma G, Chen D, Wu H, Yang J, Li Y, Xu X. The Biosynthesis Related Enzyme, Structure Diversity and Bioactivity Abundance of Indole-Diterpenes: A Review. Molecules 2022; 27:6870. [PMID: 36296463 PMCID: PMC9611320 DOI: 10.3390/molecules27206870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Indole diterpenes are a large class of secondary metabolites produced by fungi, possessing a cyclic diterpenoid backbone and an indole moiety. Novel structures and important biological activity have made indole diterpenes one of the focuses of synthetic chemists. Although the discovery, identification, structural diversity, biological activity and especially structure-activity relationship of indole diterpenes have been reported in some papers in recent years, they are absent of a systematic and comprehensive analysis, and there is no elucidation of enzymes related to this kind of natural product. Therefore, it is necessary to summarize the relevant reports to provide new perspectives for the following research. In this review, for the first time, the function of related synthases and the structure-activity relationship of indole diterpenes are expounded, and the recent research advances of them are emphasized.
Collapse
Affiliation(s)
- Yong Hou
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Meiying Chen
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhaocui Sun
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Deli Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Junshan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yihang Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Enzymatic formation of a prenyl β-carboline by a fungal indole prenyltransferase. J Nat Med 2022; 76:873-879. [PMID: 35767141 DOI: 10.1007/s11418-022-01635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
CdpNPT from Aspergillus fumigatus is a fungal indole prenyltransferase (IPT) with remarkable substrate promiscuity to generate prenylated compounds. Our first investigation of the catalytic potential of CdpNPT against a β-carboline, harmol (1), revealed that the enzyme also accepts 1 as the prenyl acceptor with dimethylallyl diphosphate (DMAPP) as the prenyl donor and selectively prenylates the C-6 position of 1 by the "regular-type" dimethylallylation to produce 6-(3-dimethylallyl)harmol (2). Furthermore, our X-ray crystal structure analysis of the C-His6-tagged CdpNPT (38-440) truncated mutant complexed with 1 and docking studies of DMAPP to the crystal structure of the CdpNPT (38-440) mutant suggested that CdpNPT could employ the two-step prenylation system to produce 2.
Collapse
|
7
|
Tanifuji R, Minami A, Oguri H, Oikawa H. Total synthesis of alkaloids using both chemical and biochemical methods. Nat Prod Rep 2020; 37:1098-1121. [DOI: 10.1039/c9np00073a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemoenzymatic approach to synthesize structurally complex natural alkaloids (tetrahydroisoquinoline antibiotics, indole diterpenes, and monoterpene indole alkaloids) has been reviewed.
Collapse
Affiliation(s)
- Ryo Tanifuji
- Department of Applied Chemistry
- Graduate School of Engineering
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Atsushi Minami
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| | - Hiroki Oguri
- Department of Applied Chemistry
- Graduate School of Engineering
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Hideaki Oikawa
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|