1
|
Wei F, Liu Y. Magnetic-plasmonic nanoparticle-based surface-enhanced Raman scattering for biomedical detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126177. [PMID: 40220683 DOI: 10.1016/j.saa.2025.126177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that enables rapid, non-destructive, and susceptible detection of biological samples. The magnetic-plasmonic composite materials composed of magnetic and plasmonic nanoparticles have attracted extensive attention as SERS substrates in the biomedical field because of their ability to enrich, separate, and selectively identify biomolecules. In this review, the state-of-art progress of magnetic-plasmonic nanoparticle (MPNP)-based SERS substrates for biomedical detection is highlighted, covering the design and construction of MPNPs with different morphologies, organic and inorganic surface functionalization strategies adopted to improve the adaptability and applicability in biological systems for MPNPs, application development of MPNPs in biomedical detection, as well as the future challenges and issues to be addressed. It is highly expected that this review will help to fully understand the research status of MPNP-based SERS substrates and facilitate their further development and wider application in biological systems.
Collapse
Affiliation(s)
- Fengxue Wei
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaling Liu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Liu Z, Yang R, Chen H, Zhang X. Recent Advances in Food Safety: Nanostructure-Sensitized Surface-Enhanced Raman Sensing. Foods 2025; 14:1115. [PMID: 40238249 PMCID: PMC11989198 DOI: 10.3390/foods14071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Food safety is directly related to human health and has attracted intense attention all over the world. Surface-enhanced Raman scattering (SERS), as a rapid and selective technique, has been widely applied in monitoring food safety. SERS substrates, as an essential factor for sensing design, greatly influence the analytical performance. Currently, nanostructure-based SERS substrates have garnered significant interest due to their excellent merits in improving the sensitivity, specificity, and stability, holding great potential for the rapid and accurate sensing of food contaminants in complex matrices. This review summarizes the fundamentals of Raman spectroscopy and the used nanostructures for designing the SERS platform, including precious metal nanoparticles, metal-organic frameworks, polymers, and semiconductors. Moreover, it introduces the mechanisms and applications of nanostructures for enhancing SERS signals for monitoring hazardous substances, such as foodborne bacteria, pesticide and veterinary drug residues, food additives, illegal adulterants, and packaging material contamination. Finally, with the continuous progress of nanostructure technology and the continuous improvement of SERS technology, its application prospect in food safety testing will be broader.
Collapse
Affiliation(s)
| | | | | | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.L.); (R.Y.); (H.C.)
| |
Collapse
|
3
|
Muñeton Arboleda D, Coviello V, Palumbo A, Pilot R, Amendola V. Rhodium nanospheres for ultraviolet and visible plasmonics. NANOSCALE HORIZONS 2025; 10:336-348. [PMID: 39560118 DOI: 10.1039/d4nh00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The development and understanding of alternative plasmonic materials are crucial steps for leveraging new plasmonic technologies. Although gold and silver nanostructures have been intensively studied, the promising plasmonic, chemical and physical attributes of rhodium remain poorly investigated. Here, we report the synthesis and plasmonic response of spherical Rh nanoparticles (NPs) with sizes in the 20-40 nm range. Due to the high cohesive energy of this metal, synthesis and experimental investigations of Rh nanospheres in this size range have not been reported; yet, it becomes possible here using a green and one-step laser ablation in liquid method. The localized surface plasmon (LSP) of Rh NPs falls in the ultraviolet spectral range (195-255 nm), but the absorption tail in the visible region increases significantly upon clustering of the nanospheres. The surface binding ability of Rh NPs towards thiolated molecules is equivalent to that of Au and Ag NPs, while their chemical and physical stability at high temperatures and in the presence of strong acids such as aqua regia is superior to those of Au and Ag NPs. The plasmonic features are well described by classical electrodynamics, and the results are comparable to Au and Ag NPs in terms of extinction cross-section and local field enhancement, although blue shifted. This allowed, for instance, their use as an optical nanosensor for the detection of ions of toxic metals in aqueous solution and for the surface enhanced Raman scattering of various compounds under blue light excitation. This study explores the prospects of Rh NPs in the realms of UV and visible plasmonics, while also envisaging a multitude of opportunities for other underexplored applications related to plasmon-enhanced catalysis and chiroplasmonics.
Collapse
Affiliation(s)
- David Muñeton Arboleda
- Department of Chemical Sciences, University of Padova, Padova, Italy.
- Centro de Investigaciones Ópticas CIOp (CONICET-CIC-UNLP) and Facultad de Ingeniería UNLP, La Plata, Argentina
| | - Vito Coviello
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| | - Arianna Palumbo
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| | - Roberto Pilot
- Department of Chemical Sciences, University of Padova, Padova, Italy.
- Consorzio INSTM, UdR Padova, Padova, Italy
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
4
|
Tiryaki E, Zorlu T, Alvarez-Puebla RA. Magnetic-Plasmonic Nanocomposites as Versatile Substrates for Surface-enhanced Raman Scattering (SERS) Spectroscopy. Chemistry 2024; 30:e202303987. [PMID: 38294096 DOI: 10.1002/chem.202303987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy, a highly sensitive technique for detecting trace-level analytes, relies on plasmonic substrates. The choice of substrate, its morphology, and the excitation wavelength are crucial in SERS applications. To address advanced SERS requirements, the design and use of efficient nanocomposite substrates have become increasingly important. Notably, magnetic-plasmonic (MP) nanocomposites, which combine magnetic and plasmonic properties within a single particle system, stand out as promising nanoarchitectures with versatile applications in nanomedicine and SERS spectroscopy. In this review, we present an overview of MP nanocomposite fabrication methods, explore surface functionalization strategies, and evaluate their use in SERS. Our focus is on how different nanocomposite designs, magnetic and plasmonic properties, and surface modifications can significantly influence their SERS-related characteristics, thereby affecting their performance in specific applications such as separation, environmental monitoring, and biological applications. Reviewing recent studies highlights the multifaceted nature of these materials, which have great potential to transform SERS applications across a range of fields, from medical diagnostics to environmental monitoring. Finally, we discuss the prospects of MP nanocomposites, anticipating favorable developments that will make substantial contributions to various scientific and technological areas.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications. Italian Institute of Technology (IIT), Geneva, 16163, Geneve, Italy
| | - Tolga Zorlu
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, A-1090, Vienna, Austria
| | - Ramon A Alvarez-Puebla
- Department of Inorganic and Physical Chemistry, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
- ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
5
|
Lin CW, Chen LY, Huang YC, Kumar P, Guo YZ, Wu CH, Wang LM, Chen KL. Improving Sensitivity and Reproducibility of Surface-Enhanced Raman Scattering Biochips Utilizing Magnetoplasmonic Nanoparticles and Statistical Methods. ACS Sens 2024; 9:305-314. [PMID: 38221769 DOI: 10.1021/acssensors.3c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Surface-enhanced Raman scattering (SERS) technology has been widely recognized for its remarkable sensitivity in biochip development. This study presents a novel sandwich immunoassay that synergizes SERS with magnetoplasmonic nanoparticles (MPNs) to improve sensitivity. By taking advantage of the unique magnetism of these nanoparticles, we further enhance the detection sensitivity of SERS biochips through the applied magnetic field. Despite the high sensitivity, practical applications of SERS biochips are often limited by the issues of stability and reproducibility. In this study, we introduced a straightforward statistical method known as "Gaussian binning", which involves initially binning the two-dimensional Raman mapping data and subsequently applying Gaussian fitting. This approach enables a more consistent and reliable interpretation of data by reducing the variability inherent in Raman signal measurements. Based on our method, the biochip, targeting for C-reactive protein (CRP), achieves an impressive detection limit of 5.96 fg/mL, and with the application of a 3700 G magnetic field, it further enhances the detection limit by 5.7 times, reaching 1.05 fg/mL. Furthermore, this highly sensitive and magnetically tunable SERS biochip is easily designed for versatile adaptability, enabling the detection of other proteins. We believe that this innovation holds promise in enhancing the clinical applicability of SERS biochips.
Collapse
Affiliation(s)
- Chin-Wei Lin
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Li-Yu Chen
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Ching Huang
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Pradeep Kumar
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Zhi Guo
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chiu-Hsien Wu
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Nanoscience, National Chung Hsing University, Taichung 402, Taiwan
| | - Li-Min Wang
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Lin Chen
- Department of Physics, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Nanoscience, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Kollbek K, Jabłoński P, Perzanowski M, Święch D, Sikora M, Słowik G, Marzec M, Gajewska M, Paluszkiewicz C, Przybylski M. Inert gas condensation made bimetallic FeCu nanoparticles – plasmonic response and magnetic ordering. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:2593-2605. [DOI: 10.1039/d3tc02630b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Bimetallic FeCu nanoparticles of narrow size distribution produced by inert gas condensation (IGC) technique exhibit functional plasmonic and magnetic properties and can be considered as a promising system for the development of biosensors.
Collapse
Affiliation(s)
- Kamila Kollbek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Piotr Jabłoński
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Marcin Perzanowski
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Dominika Święch
- Faculty of Foundry Engineering, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Marcin Sikora
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Grzegorz Słowik
- Department of Chemical Technology, Faculty of Chemistry, Maria Curie-Skłodowska University, 3. Maria-Curie-Skłodowska Sq., 20-031, Lublin, Poland
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Czesława Paluszkiewicz
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Marek Przybylski
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
7
|
Pham TTH, Vu XH, Dien ND, Trang TT, Van Hao N, Toan ND, Thi Ha Lien N, Tien TS, Chi TTK, Hien NT, Tan PM, Linh DT. Synthesis of cuprous oxide/silver (Cu 2O/Ag) hybrid as surface-enhanced Raman scattering probe for trace determination of methyl orange. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221623. [PMID: 37234497 PMCID: PMC10206471 DOI: 10.1098/rsos.221623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Recently, there have been publications on preparing hybrid materials between noble metal and semiconductor for applications in surface-enhanced Raman scattering (SERS) substrates to detect some toxic organic dyes. However, the use of cuprous oxide/silver (Cu2O/Ag) to measure the trace amounts of methyl orange (MO) has not been reported. Therefore, in this study, the trace level of MO in water solvent was determined using a SERS substrate based on Cu2O microcubes combined with silver nanoparticles (Ag NPs). Herein, a series of Cu2O/Agx (x= 1-5) hybrids with various Ag amounts was synthesized via a solvothermal method followed by a reduction process, and their SERS performance was studied in detail. X-ray diffraction (XRD) and scanning electron microscopy results confirmed that 10 nm Ag NPs were well dispersed on 200-500 nm Cu2O microcubes to form Cu2O/Ag heterojunctions. Using the as-prepared Cu2O and Cu2O/Agx as MO probe, the Cu2O/Ag5 nanocomposite showed the highest SERS activity of all samples with the limit of detection as low to 1 nM and the enhancement factor as high as 4 × 108. The logarithm of the SERS peak intensity at 1389 cm-1 increased linearly with the logarithm of the concentration of MO in the range from 1 nM to 0.1 mM.
Collapse
Affiliation(s)
- Thi Thu Ha Pham
- Faculty of Chemistry, TNU-University of Sciences, Tan Thinh ward, Thai Nguyen city 24000, Vietnam
| | - Xuan Hoa Vu
- Institute of Science and Technology, TNU-University of Sciences, Tan Thinh ward, Thai Nguyen city 24000, Vietnam
| | - Nguyen Dac Dien
- Faculty of Occupational Safety and Health, Vietnam Trade Union University, 169 Tay Son street, Dong Da district, Ha Noi city 100000, Vietnam
| | - Tran Thu Trang
- Institute of Science and Technology, TNU-University of Sciences, Tan Thinh ward, Thai Nguyen city 24000, Vietnam
| | - Nguyen Van Hao
- Institute of Science and Technology, TNU-University of Sciences, Tan Thinh ward, Thai Nguyen city 24000, Vietnam
| | - Nguyen Duc Toan
- Centre for Quantum Electronics, Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, Ha Noi city 100000, Vietnam
| | - Nghiem Thi Ha Lien
- Centre for Quantum Electronics, Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, Ha Noi city 100000, Vietnam
| | - Tong Sy Tien
- University of Fire Prevention and Fighting, 243 Khuat Duy Tien road, Thanh Xuan district, Ha Noi city 100000, Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, Ha Noi city 100000, Vietnam
| | - Nguyen Thi Hien
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, Ha Noi city 100000, Vietnam
| | - Pham Minh Tan
- Faculty of Fundamental Sciences, Thai Nguyen University of Technology, 666 3/2 road, Thai Nguyen city 24000, Vietnam
| | - Dong Thi Linh
- Faculty of Fundamental Sciences, Thai Nguyen University of Technology, 666 3/2 road, Thai Nguyen city 24000, Vietnam
| |
Collapse
|
8
|
Torres-Mendieta R, Nguyen NHA, Guadagnini A, Semerad J, Łukowiec D, Parma P, Yang J, Agnoli S, Sevcu A, Cajthaml T, Cernik M, Amendola V. Growth suppression of bacteria by biofilm deterioration using silver nanoparticles with magnetic doping. NANOSCALE 2022; 14:18143-18156. [PMID: 36449011 DOI: 10.1039/d2nr03902h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Decades of antibiotic use and misuse have generated selective pressure toward the rise of antibiotic-resistant bacteria, which now contaminate our environment and pose a major threat to humanity. According to the evolutionary "Red queen theory", developing new antimicrobial technologies is both urgent and mandatory. While new antibiotics and antibacterial technologies have been developed, most fail to penetrate the biofilm that protects bacteria against external antimicrobial attacks. Hence, new antimicrobial formulations should combine toxicity for bacteria, biofilm permeation ability, biofilm deterioration capability, and tolerability by the organism without renouncing compatibility with a sustainable, low-cost, and scalable production route as well as an acceptable ecological impact after the ineluctable release of the antibacterial compound in the environment. Here, we report on the use of silver nanoparticles (NPs) doped with magnetic elements (Co and Fe) that allow standard silver antibacterial agents to perforate bacterial biofilms through magnetophoretic migration upon the application of an external magnetic field. The method has been proved to be effective in opening micrometric channels and reducing the thicknesses of models of biofilms containing bacteria such as Enterococcus faecalis, Enterobacter cloacae, and Bacillus subtilis. Besides, the NPs increase the membrane lipid peroxidation biomarkers through the formation of reactive oxygen species in E. faecalis, E. cloacae, B. subtilis, and Pseudomonas putida colonies. The NPs are produced using a one-step, scalable, and environmentally low-cost procedure based on laser ablation in a liquid, allowing easy transfer to real-world applications. The antibacterial effectiveness of these magnetic silver NPs may be further optimized by engineering the external magnetic fields and surface conjugation with specific functionalities for biofilm disruption or bactericidal effectiveness.
Collapse
Affiliation(s)
- Rafael Torres-Mendieta
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.
| | - Nhung H A Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.
| | - Andrea Guadagnini
- Department of Chemical Sciences, University of Padova, Padova, I-35131 Italy.
| | - Jaroslav Semerad
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Dariusz Łukowiec
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A St., 44-100, Gliwice, Poland
| | - Petr Parma
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Jijin Yang
- Department of Chemical Sciences, University of Padova, Padova, I-35131 Italy.
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Padova, I-35131 Italy.
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Miroslav Cernik
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova, I-35131 Italy.
| |
Collapse
|
9
|
Coviello V, Forrer D, Amendola V. Recent Developments in Plasmonic Alloy Nanoparticles: Synthesis, Modelling, Properties and Applications. Chemphyschem 2022; 23:e202200136. [PMID: 35502819 DOI: 10.1002/cphc.202200136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Indexed: 01/07/2023]
Abstract
Despite the traditional plasmonic materials are counted on one hand, there are a lot of possible combinations leading to alloys with other elements of the periodic table, in particular those renowned for magnetic or catalytic properties. It is not a surprise, therefore, that nanoalloys are considered for their ability to open new perspectives in the panorama of plasmonics, representing a leading research sector nowadays. This is demonstrated by a long list of studies describing multiple applications of nanoalloys in photonics, photocatalysis, sensing and magneto-optics, where plasmons are combined with other physical and chemical phenomena. In some remarkable cases, the amplification of the conventional properties and even new effects emerged. However, this field is still in its infancy and several challenges must be overcome, starting with the synthesis (control of composition, crystalline order, size, processability, achievement of metastable phases and disordered compounds) as well as the modelling of the structure and properties (accuracy of results, reliability of structural predictions, description of disordered phases, evolution over time) of nanoalloys. To foster the research on plasmonic nanoalloys, here we provide an overview of the most recent results and developments in the field, organized according to synthetic strategies, modelling approaches, dominant properties and reported applications. Considering the several plasmonic nanoalloys under development as well as the large number of those still awaiting synthesis, modelling, properties assessment and technological exploitation, we expect a great impact on the forthcoming solutions for sustainability, ultrasensitive and accurate detection, information processing and many other fields.
Collapse
Affiliation(s)
- Vito Coviello
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Daniel Forrer
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
- CNR - ICMATE, I-35131, Padova, Italy
| | - Vincenzo Amendola
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| |
Collapse
|
10
|
Fernandes T, Nogueira HIS, Amorim CO, Amaral JS, Daniel‐da‐Silva AL, Trindade T. Chemical Strategies for Dendritic Magneto-plasmonic Nanostructures Applied to Surface-Enhanced Raman Spectroscopy. Chemistry 2022; 28:e202202382. [PMID: 36083195 PMCID: PMC9828551 DOI: 10.1002/chem.202202382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 01/12/2023]
Abstract
Chemical analyses in the field using surface-enhanced Raman scattering (SERS) protocols are expected to be part of several analytical procedures applied to water quality monitoring. To date, these endeavors have been supported by developments in SERS substrate nanofabrication, instrumentation portability, and the internet of things. Here, we report distinct chemical strategies for preparing magneto-plasmonic (Fe3 O4 : Au) colloids, which are relevant in the context of trace-level detection of water contaminants due to their inherent multifunctionality. The main objective of this research is to investigate the role of poly(amidoamine) dendrimers (PAMAMs) in the preparation of SERS substrates integrating both functionalities into single nanostructures. Three chemical routes were investigated to design magneto-plasmonic nanostructures that translate into different ways for assessing SERS detection by using distinct interfaces. Hence, a series of magneto-plasmonic colloids have been characterized and then assessed for their SERS activity by using a model pesticide (thiram) dissolved in aqueous samples.
Collapse
Affiliation(s)
- Tiago Fernandes
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Helena I. S. Nogueira
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Carlos O. Amorim
- Department of PhysicsCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - João S. Amaral
- Department of PhysicsCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Ana L. Daniel‐da‐Silva
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Tito Trindade
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| |
Collapse
|
11
|
Estrada AC, Daniel-da-Silva AL, Leal C, Monteiro C, Lopes CB, Nogueira HIS, Lopes I, Martins MJ, Martins NCT, Gonçalves NPF, Fateixa S, Trindade T. Colloidal nanomaterials for water quality improvement and monitoring. Front Chem 2022; 10:1011186. [PMID: 36238095 PMCID: PMC9551176 DOI: 10.3389/fchem.2022.1011186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
Water is the most important resource for all kind forms of live. It is a vital resource distributed unequally across different regions of the globe, with populations already living with water scarcity, a situation that is spreading due to the impact of climate change. The reversal of this tendency and the mitigation of its disastrous consequences is a global challenge posed to Humanity, with the scientific community assuming a major obligation for providing solutions based on scientific knowledge. This article reviews literature concerning the development of nanomaterials for water purification technologies, including collaborative scientific research carried out in our laboratory (nanoLAB@UA) framed by the general activities carried out at the CICECO-Aveiro Institute of Materials. Our research carried out in this specific context has been mainly focused on the synthesis and surface chemical modification of nanomaterials, typically of a colloidal nature, as well as on the evaluation of the relevant properties that arise from the envisaged applications of the materials. As such, the research reviewed here has been guided along three thematic lines: 1) magnetic nanosorbents for water treatment technologies, namely by using biocomposites and graphite-like nanoplatelets; 2) nanocomposites for photocatalysis (e.g., TiO2/Fe3O4 and POM supported graphene oxide photocatalysts; photoactive membranes) and 3) nanostructured substrates for contaminant detection using surface enhanced Raman scattering (SERS), namely polymers loaded with Ag/Au colloids and magneto-plasmonic nanostructures. This research is motivated by the firm believe that these nanomaterials have potential for contributing to the solution of environmental problems and, conversely, will not be part of the problem. Therefore, assessment of the impact of nanoengineered materials on eco-systems is important and research in this area has also been developed by collaborative projects involving experts in nanotoxicity. The above topics are reviewed here by presenting a brief conceptual framework together with illustrative case studies, in some cases with original research results, mainly focusing on the chemistry of the nanomaterials investigated for target applications. Finally, near-future developments in this research area are put in perspective, forecasting realistic solutions for the application of colloidal nanoparticles in water cleaning technologies.
Collapse
Affiliation(s)
- Ana C. Estrada
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Ana L. Daniel-da-Silva
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Cátia Leal
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Cátia Monteiro
- Department of Biology and CESAM-Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Cláudia B. Lopes
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Helena I. S. Nogueira
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology and CESAM-Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Maria J. Martins
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Natércia C. T. Martins
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Nuno P. F. Gonçalves
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Tito Trindade,
| |
Collapse
|
12
|
Yin B, Ho WKH, Zhang Q, Li C, Huang Y, Yan J, Yang H, Hao J, Wong SHD, Yang M. Magnetic-Responsive Surface-Enhanced Raman Scattering Platform with Tunable Hot Spot for Ultrasensitive Virus Nucleic Acid Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4714-4724. [PMID: 35081679 DOI: 10.1021/acsami.1c21173] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS)-based biosensors are promising tools for virus nucleic acid detection. However, it remains challenging for SERS-based biosensors using a sandwiching strategy to detect long-chain nucleic acids such as nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because the extension of the coupling distance (CD) between the two tethered metallic nanostructures weakens electric field and SERS signals. Herein, we report a magnetic-responsive substrate consisting of heteoronanostructures that controls the CD for ultrasensitive and highly selective detection of the N gene of SARS-CoV-2. Significantly, our findings show that this platform reversibly shortens the CD and enhances SERS signals with a 10-fold increase in the detection limit from 1 fM to 100 aM, compared to those without magnetic modulation. The optical simulation that emulates the CD shortening process confirms the CD-dependent electric field strength and further supports the experimental results. Our study provides new insights into designing a stimuli-responsive SERS-based platform with tunable hot spots for long-chain nucleic acid detection.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Willis Kwun Hei Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Hongrong Yang
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
13
|
Guadagnini A, Agnoli S, Badocco D, Pastore P, Pilot R, Ravelle-Chapuis R, van Raap MBF, Amendola V. Kinetically Stable Nonequilibrium Gold-Cobalt Alloy Nanoparticles with Magnetic and Plasmonic Properties Obtained by Laser Ablation in Liquid. Chemphyschem 2021; 22:657-664. [PMID: 33559943 DOI: 10.1002/cphc.202100021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Indexed: 12/21/2022]
Abstract
Nonequilibrium nanoalloys are metastable solids obtained at the nanoscale under nonequilibrium conditions that allow the study of kinetically frozen atoms and the discovery of new physical and chemical properties. However, the stabilization of metastable phases in the nanometric size regime is challenging and the synthetic route should be easy and sustainable, for the nonequilibrium nanoalloys to be practically available. Here we report on the one-step laser ablation synthesis in solution (LASiS) of nonequilibrium Au-Co alloy nanoparticles (NPs) and their characterization on ensembles and at the single nanoparticle level. The NPs are obtained as a polycrystalline solid solution stable in air and water, although surface cobalt atoms undergo oxidation to Co(II). Since gold is a renowned plasmonic material and metallic cobalt is ferromagnetic at room temperature, these properties are both found in the NPs. Besides, surface conjugation with thiolated molecules is possible and it was exploited to obtain colloidally stable solutions in water. Taking advantage of these features, an array of magnetic-plasmonic dots was obtained and used for surface-enhanced Raman scattering experiments. Overall, this study confirms that LASiS is an effective method for the formation of kinetically stable nonequilibrium nanoalloys and shows that Au-Co alloy NPs are appealing magnetically responsive plasmonic building blocks for several nanotechnological applications.
Collapse
Affiliation(s)
- Andrea Guadagnini
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Roberto Pilot
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy.,Consorzio INSTM, UdR Padova, Italy
| | | | - Marcela B Fernández van Raap
- Physics Institute of La Plata (IFLP-CONICET), Physics Department Faculty of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Vincenzo Amendola
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| |
Collapse
|
14
|
Amendola V, Guadagnini A, Agnoli S, Badocco D, Pastore P, Fracasso G, Gerosa M, Vurro F, Busato A, Marzola P. Polymer-coated silver-iron nanoparticles as efficient and biodegradable MRI contrast agents. J Colloid Interface Sci 2021; 596:332-341. [PMID: 33839358 DOI: 10.1016/j.jcis.2021.03.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
Bimetallic nanoparticles allow new and synergistic properties compared to the monometallic equivalents, often leading to unexpected results. Here we present on silver-iron nanoparticles coated with polyethylene glycol, which exhibit a high transverse relaxivity (316 ± 13 mM-1s-1, > 3 times that of the most common clinical benchmark based on iron oxide), excellent colloidal stability and biocompatibility in vivo. Ag-Fe nanoparticles are obtained through a one-step, low-cost laser-assisted synthesis, which makes surface functionalization with the desired biomolecules very easy. Besides, Ag-Fe nanoparticles show biodegradation over a few months, as indicated by incubation in the physiological environment. This is crucial for nanomaterials removal from the living organism and, in fact, in vivo biodistribution studies evidenced that Ag-Fe nanoparticles tend to be cleared from liver over a period in which the benchmark iron oxide contrast agent persisted. Therefore, the Ag-Fe NPs offer positive prospects for solving the problems of biopersistence, contrast efficiency, difficulties of synthesis and surface functionalization usually encountered in nanoparticulate contrast agents.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy.
| | - Andrea Guadagnini
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | | | - Marco Gerosa
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Federica Vurro
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Alice Busato
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Verona 37134, Italy.
| |
Collapse
|
15
|
Abstract
Vincenzo Amendola is Professor of Physical Chemistry at Padova University, where he established and directs the Laser-Assisted Synthesis and Plasmonics (LASP) lab. He obtained a PhD in Materials Science and Engineering in 2008 and the Italian qualification as Full Professor in 2017, after research experience at Massachusetts Institute of Technology and Cambridge University. He is part of the Program Committee of the ANGEL conference series and he is a current member of the ChemPhysChem Editorial Advisory Board.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| |
Collapse
|
16
|
Facile synthesis by laser ablation in liquid of nonequilibrium cobalt-silver nanoparticles with magnetic and plasmonic properties. J Colloid Interface Sci 2021; 585:267-275. [DOI: 10.1016/j.jcis.2020.11.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
|
17
|
Fu Q, Li Z, Fu F, Chen X, Song J, Yang H. Stimuli-Responsive Plasmonic Assemblies and Their Biomedical Applications. NANO TODAY 2021; 36:101014. [PMID: 33250931 PMCID: PMC7687854 DOI: 10.1016/j.nantod.2020.101014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Among the diverse development of stimuli-responsive assemblies, plasmonic nanoparticle (NP) assemblies functionalized with responsive molecules are of a major interest. In this review, we outline a comprehensive and up-to-date overview of recently reported studies on in vitro and in vivo assembly/disassembly and biomedical applications of plasmonic NPs, wherein stimuli such as enzymes, light, pH, redox potential, temperature, metal ions, magnetic or electric field, and/or multi-stimuli were involved. Stimuli-responsive assemblies have been applied in various biomedical fields including biosensors, surfaced-enhanced Raman scattering (SERS), photoacoustic (PA) imaging, multimodal imaging, photo-activated therapy, enhanced X-ray therapy, drug release, stimuli-responsive aggregation-induced cancer therapy, and so on. The perspectives on the use of stimuli-responsive plasmonic assemblies are discussed by addressing future scientific challenges involving assembly/disassembly strategies and applications.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhi Li
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Fengfu Fu
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Jibin Song
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|