1
|
Sarkar M, Siddhartha Sairam Kalahasti VR, Ghosh PC. A metal-organic framework-derived α-MnS/MWCNT composite as a promising pseudocapacitive material for a flexible quasi-solid-state asymmetric supercapacitor device. NANOSCALE 2025; 17:12911-12928. [PMID: 40331314 DOI: 10.1039/d5nr01156f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The low conductivity of traditionally used pseudocapacitive materials like transition metal oxides has forced researchers to look for alternative materials. Transition metal sulfides are being investigated as viable alternative materials and have shown promising results. In this work, an α-MnS/MWCNT composite is selected as the active material for supercapacitor application. α-MnS has better conductivity than many transition metal oxides but has an extremely low specific surface area (10.5 m2 g-1), which reduces its specific capacitance. Metal-organic framework (MOF)-derived materials are known to possess higher specific surface area and favorable pore size distribution. Herein, α-MnS/MWCNT composites are synthesized via two routes: the conventional solvothermal technique and the MOF route, and their performance is compared. It is proved that the α-MnS/MWCNT composite synthesized through the MOF route shows a favorable porous structure and better performance than the composite synthesized through the conventional route. It shows a specific surface area of 47.6 m2 g-1 and a specific capacitance of 546.3 F g-1 at 1 A g-1 with a mass loading of 1.5 mg cm-2 in 3 M KOH under a 3-electrode configuration. A flexible quasi-solid-state asymmetric supercapacitor device is fabricated with MOF-derived α-MnS/MWCNT as the positive electrode material, and the device achieved a potential window of 1.4 V, a specific capacitance of 82.5 F g-1 at 1 A g-1 and a capacitance retention of 90.1% after 5000 cycles at 10 A g-1. The results clearly indicate that transition metal sulfides like MOF-derived α-MnS can be a viable alternative to traditional materials like transition metal oxides. The assembled device has the potential to power flexible, wearable electronics.
Collapse
Affiliation(s)
- Mithun Sarkar
- Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | | | - Prakash C Ghosh
- Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
2
|
Nakayama M, Yoshida W. Electrodeposited Manganese Dioxides and Their Composites as Electrocatalysts for Energy Conversion Reactions. CHEMSUSCHEM 2025; 18:e202401907. [PMID: 39412223 PMCID: PMC11874673 DOI: 10.1002/cssc.202401907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Enhancing the efficiencies of electrochemical reactions for converting renewable energy into clean chemical fuels as well as generating clean energy is critical to achieving carbon neutrality. However, this enhancement can be achieved using materials that are not constrained by resource limitations and those that can be converted into devices in a scalable manner, preferably for industrial applications. This review explores the applications of electrochemically deposited manganese dioxides (MnO2) and their composites as electrochemical catalysts for oxygen evolution (OER) and hydrogen evolution reactions for converting renewable energy into chemical fuels. It also explores their applications as electrochemical catalysts for oxygen reduction reaction (ORR) and bifunctional OER/ORR for the efficient operation of fuel cells and metal-air batteries, respectively. Manganese is the second most abundant transition metal in the Earth's crust, and electrodeposition represents a binder-free and scalable technique for fabricating devices (electrodes). To propose an improved catalyst design, the studies on the electrodeposition mechanism of MnO2 as well as the fabrication techniques for MnO2-based nanocomposites accumulated in the development of electrodes for supercapacitors are also included in this review.
Collapse
Affiliation(s)
- Masaharu Nakayama
- Department of Applied ChemistryGraduate School of Sciences and Technology for InnovationYamaguchi University2-16-1 TokiwadaiUbe755-8611Japan
- Blue Energy Center for SGE Technology (BEST)2-16-1 TokiwadaiUbe755-8611Japan
| | - Wataru Yoshida
- Department of Applied ChemistryGraduate School of Sciences and Technology for InnovationYamaguchi University2-16-1 TokiwadaiUbe755-8611Japan
- Blue Energy Center for SGE Technology (BEST)2-16-1 TokiwadaiUbe755-8611Japan
| |
Collapse
|
3
|
Soltani H, Bahiraei H, Ghasemi S, Hashempour M. Rate capability and electrolyte concentration: Tuning MnO 2 supercapacitor electrodes through electrodeposition parameters. Heliyon 2025; 11:e41427. [PMID: 39811347 PMCID: PMC11732550 DOI: 10.1016/j.heliyon.2024.e41427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Manganese dioxide (MnO2) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures. This study introduces a straightforward and cost-effective approach to tune and enhance the rate capability of MnO2 pseudocapacitor electrodes fabricated via the electrodeposition method. Among the electrodeposition parameters, the deposition time and electrolyte concentration, which influence the mass loading, electrode thickness, microstructure, and electrochemical properties, were the primary focus. Various electrodes were prepared potentiostatically in a two-electrode cathodic electrodeposition setup on a Ni foam substrate in a KMnO4 aqueous electrolyte, with bath concentrations (in terms of Mn ion) of 0.01 and 0.1 M, and electrodeposition times ranging from 1 to 15 min. Optimal rate capabilities were achieved at low bath concentrations and deposition times, primarily due to the structural properties of electrodes prepared under such circumstances. While electrodeposition at a 0.1 M electrolyte concentration resulted in the formation of electrolytic MnO2 with high supercapacitive rate sensitivity, reducing the bath concentration to 0.01 M primarily led to the formation of birnessite δ-MnO2, capable of maintaining a reasonable specific capacitance in the range of approximately 90-100 Fg-1 with almost no sensitivity to the charging/discharging rate, as confirmed by galvanostatic charge-discharge (1-10 Ag-1) and cyclic voltammetry (10-100 mVs-1) examinations. Along with the positive structural impacts of the layered birnessite with large interlayer spacing, the porous morphology (vertically aligned two-dimensional interconnected columns) and low thickness (≈2 μm) of the electrode prepared at the lowest bath concentration and electrodeposition time (0.01 M in 1 min electrode) contributed to its fast ionic diffusion kinetics for pseudocapacitive charge storage and the consequent high rate capability.
Collapse
Affiliation(s)
- Hamed Soltani
- Department of Physics, Faculty of Science, Malayer University, Malayer, Iran
| | - Hamed Bahiraei
- Department of Physics, Faculty of Science, Malayer University, Malayer, Iran
| | - Shahnaz Ghasemi
- Sharif Institute of Energy, Water and Environment, Sharif University of Technology, Azadi Avenue, P.O.Box11365-9465, Tehran, Iran
| | - Mazdak Hashempour
- Sharif Institute of Energy, Water and Environment, Sharif University of Technology, Azadi Avenue, P.O.Box11365-9465, Tehran, Iran
| |
Collapse
|
4
|
Li Z, Wang J, Deng R, Azuan L, Chen M, He X, Yue Z. Mechanisms of manganese-tolerant Bacillus brevis MM2 mediated oxytetracycline biodegradation process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125060. [PMID: 39362620 DOI: 10.1016/j.envpol.2024.125060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Addressing the environmental threat of oxytetracycline (OTC) contamination, this study harnesses the bioremediation capabilities of Bacillus brevis MM2, a manganese-oxidizing bacterium from acid mine drainage. We demonstrate the strain's exceptional efficiency in degrading OTC under high manganese conditions, with complete removal achieved within 24 h. The degradation is facilitated by the production of Bio-MnOx, utilizing their high redox potential and large specific surface area, which significantly enhance the adsorption and oxidation of OTC. Advanced characterization techniques, including X-ray diffraction, scanning electron microscopy, High Resolution-Transmission Electronic Microscope and X-ray photoelectron spectroscopy, provide a detailed analysis of the structural and functional properties of Bio-MnOx. The study also reveals the crucial role of Mn(III) intermediates and reactive oxygen species in the OTC degradation process, with quenching experiments validating their substantial impact on efficiency. Laccase activity, a key manganese-oxidizing enzyme, is assessed spectrophotometrically, further highlighting the enzymatic contribution to Mn(II) oxidation and OTC breakdown. This research contributes valuable insights and approaches for the targeted bioremediation of OTC-contaminated aquatic environments, offering a promising strategy for combating pollution from antibiotics and analogous compounds.
Collapse
Affiliation(s)
- Zhiyan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Liu Azuan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Mingzhu Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiao He
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan, Anhui, 243000, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
5
|
Zhang D, Dai J, Zhang J, Zhang Y, Liu H, Xu Y, Wu J, Li P. Preparation of Spherical δ-MnO 2 Nanoflowers by One-Step Coprecipitation Method as Electrode Material for Supercapacitor. ACS OMEGA 2024; 9:18032-18045. [PMID: 38680313 PMCID: PMC11044212 DOI: 10.1021/acsomega.3c09725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Spherical δ-MnO2 nanoflower materials were synthesized via a facile one-step coprecipitation method through adjusting the molar ratio of KMnO4 to MnSO4. The influence of the molar ratio of the reactants on the crystal structure, morphology, and electrochemical performances was investigated. At a molar ratio of 3.3 for KMnO4 to MnSO4, the spherical δ-MnO2 nanoflowers composed of nanosheets with the highest specific surface area (228.0 m2 g-1) were obtained as electrode materials. In the conventional three-electrode system using 1 M Na2SO4 as an electrolyte, the specific capacitance of the spherical δ-MnO2 nanoflowers reached 172.3 F g-1 at a current density of 1 A g-1. Moreover, even after 5000 cycles at a current density of 5 A g-1, the GCD curves remained essentially unchanged, and the specific capacitance still retained 86.50% of the maximum value. The kinetics of the electrode reaction were preliminarily studied through the linear potential sweep technique to observe diffusion-controlled contribution toward total capacitance. For the spherical δ-MnO2 nanoflower electrode material, diffusion-controlled contribution accounted for 65.1% at low scan rates and still remained significant at high scan rates (100 mV s-1), indicating excellent utilization efficiency of the bulk phase. The as-fabricated asymmetric supercapacitor HFC-7//MnO2-3.3-ASC presented a prominent specific energy of 16.5 Wh kg-1 at the specific power of 450 W kg-1. Even when the specific power reached 9.0 kW kg-1, the energy density still retained 9.5 Wh kg-1.
Collapse
Affiliation(s)
- Dazhi Zhang
- School
of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P. R. China
- Xuzhou
College of Industrial Technology, Xuzhou 221114, Jiangsu, P. R. China
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
- College
of Materials and Chemical Engineering, West
Anhui University, Luan 237012, Anhui, P. R. China
| | - Jiamian Dai
- College
of Materials and Chemical Engineering, West
Anhui University, Luan 237012, Anhui, P. R. China
| | - Jiajia Zhang
- College
of Materials and Chemical Engineering, West
Anhui University, Luan 237012, Anhui, P. R. China
| | - Yixin Zhang
- School
of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P. R. China
| | - Honglai Liu
- School
of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yunhui Xu
- Xuzhou
College of Industrial Technology, Xuzhou 221114, Jiangsu, P. R. China
| | - Jianjun Wu
- School
of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P. R. China
| | - Peipei Li
- College
of Materials and Chemical Engineering, West
Anhui University, Luan 237012, Anhui, P. R. China
| |
Collapse
|
6
|
Shi C, Shen X. Spontaneous Multi-scale Supramolecular Assembly Driven by Noncovalent Interactions Coupled with the Continuous Marangoni Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6980-6989. [PMID: 38513349 DOI: 10.1021/acs.langmuir.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Reported herein is the multi-scale supramolecular assembly (MSSA) process along with redox reactions driven by supramolecular interactions coupled with the spontaneous Marangoni effect in ionic liquid (IL)-based extraction systems. The black powder, the single sphere with a black exterior, and the single colorless sphere were formed step by step at the interface when an aqueous solution of KMnO4 was mixed with the IL phase 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (C2OHmimNTf2) bearing octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO). The mechanism of the whole process was studied systematically. The phenomena were related closely to the change in the valence state of Mn. The MnO4- ion could be reduced quickly to δ-MnO2 and further to Mn2+ slowly by the hydroxyl-functionalized IL C2OHmimNTf2. Based on Mn2+, Mn(CMPO)32+, elementary building blocks (EBBs), and [EBB]n clusters were generated step by step. The [EBB]n clusters with the large enough size that were transferred to the interface, together with the remaining δ-MnO2, assembled into the single sphere with a black exterior, driven by supramolecular interactions coupled with the spontaneous Marangoni effect. When the remaining δ-MnO2 was used up, the mixed single sphere turned completely colorless. It was found that the reaction site of C2OHmim+ with Mn(VII) and Mn(IV) was distributed mainly at the side chain with a hydroxyl group. The MSSA process presents unique spontaneous phase changes. This work paves the way for the practical application of the MSSA-based separation method developed recently. The process also provides a convenient way to observe in situ and characterize directly the continuous Marangoni effect.
Collapse
Affiliation(s)
- Ce Shi
- Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xinghai Shen
- Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
7
|
Peng L, Li D, Song H, Kuang X, Zeng Q, Ao H. The dissolution characteristics of cadmium containing birnessite produced from paddy crusts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169811. [PMID: 38211864 DOI: 10.1016/j.scitotenv.2023.169811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
The cadmium (Cd) accumulates in birnessite as it forms on the surface of paddy crusts (PC). The stability of Cd-containing birnessite is influenced by environmental factors, and destabilized birnessite releases dissolved Cd. We report the effects of pH, oxalic acid, and light on the dissolution of Cd-containing birnessite. We found that at pH 4.0, with light and 0.20 mol/L oxalic acid, the ratio of dissolved Cd and manganese (Mn) peaked after 24 h at 2978.0 μg/g and 326.8 mg/g, respectively. The three environmental factors affected the dissolution of Cd-containing birnessite in the following order: pH > oxalic acid > light. During dissolution process, Cd and Mn did not dissolve simultaneously, and the dissolved Cd/Mn ratio in the solution was significantly lower than that of the pristine mineral (33.5 × 10-3). Compared with Mn, Cd dissolution was inhibited by strong acidity (pH 4.0-5.0), and the dissolved Cd/Mn ratio was 5-10 × 10-3. Mild acidity (pH 6.0) was weakly inhibitory, with a Cd/Mn ratio of 6-15 × 10-3. In an alkaline (pH 8.0) oxalate environment, light illumination inhibited Cd dissolution, and the Cd/Mn ratio decreased over time due to the stability of the products formed by oxalate and carbonate, with Cd being more stable than those formed by Mn. Our findings would provide insights into the migration and transformation of PC-associated Cd in paddy fields.
Collapse
Affiliation(s)
- Liang Peng
- College of Environmental & Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Dan Li
- College of Environmental & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Huijuan Song
- College of Environmental & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaolin Kuang
- College of Environmental & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Qingru Zeng
- College of Environmental & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
8
|
Zhang S, Li L, Liu Y, Li Q. Nanocellulose/carbon nanotube/manganese dioxide composite electrodes with high mass loadings for flexible supercapacitors. Carbohydr Polym 2024; 326:121661. [PMID: 38142085 DOI: 10.1016/j.carbpol.2023.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023]
Abstract
The increasing commercialization of flexible electronic products has sparked a rising interest in flexible wearable energy storage devices. Supercapacitors are positioned as one of the systems with the most potential due to their distinctive advantages: high power density, rapid charge and discharge rates, and long cycle life. However, electrode materials face challenges in providing excellent mechanical strength while ensuring sufficient energy density. This study presents a method for constructing a flexible composite electrode material with high capacitance and mechanical performance by electrochemically depositing high-quality manganese dioxide (MnO2) onto the surface of a nanocellulose (CNF) and carbon nanotube (CNT) conductive film. In this electrode material, the CNF/CNT composite film serves as a flexible conductive substrate, offering excellent mechanical properties (modulus of 3.3 GPa), conductivity (55 S/cm), and numerous active sites. Furthermore, at the interface between MnO2 and the CNF/CNT substrate, C-O-Mn bonds are formed, promoting a tight connection between the composite materials. The assembled symmetric flexible supercapacitor (FSC) demonstrates impressive performance, with an areal specific capacitance of 934 mF/cm2, an energy density of 43.10 Wh/kg, a power density of 166.67 W/kg and a long cycle life (85 % Capacitance retention after 10,000 cycles), suggesting that they hold promise for FSC applications.
Collapse
Affiliation(s)
- Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China.
| | - Lei Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China
| | - Yali Liu
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Qinglu Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China
| |
Collapse
|
9
|
Wang Y, Lu Z, Wen P, Gong Y, Li C, Niu L, Xu S. Engineering the crystal facets of α-MnO 2 nanorods for electrochemical energy storage: experiments and theory. NANOSCALE 2023; 15:17850-17860. [PMID: 37882702 DOI: 10.1039/d3nr04274j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Crystal facet engineering is an effective strategy for precisely regulating the orientations and electrochemical properties of metal oxides. However, the contribution of each crystal facet to pseudocapacitance is still puzzling, which is a bottleneck that restricts the specific capacitance of metal oxides. Herein, α-MnO2 nanorods with different exposed facets were synthesized through a hydrothermal route and applied to pseudocapacitors. XRD and TEM results verified that the exposure ratio of active crystal facets was significantly increased with the assistance of the structure-directing agents. XPS analysis showed that there was more adsorbed oxygen and Mn3+ on the active crystal facets, which can provide strong kinetics for the electrochemical reaction. Consequently, the α-MnO2 nanorods with {110} and {310} facets exhibited much higher pseudocapacitances of 120.0 F g-1 and 133.0 F g-1 than their α-MnO2-200 counterparts (67.5 F g-1). The theoretical calculations proved that the {310} and {110} facets have stronger adsorption capacity and lower diffusion barriers for sodium ions, which is responsible for the enhanced pseudocapacitance of MnO2. This study provides a strategy to enhance the electrochemical performance of metal oxide, based on facet engineering.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Zhengwei Lu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Peipei Wen
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Yinyan Gong
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Can Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Lengyuan Niu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| |
Collapse
|
10
|
Rettenmaier K, Zickler GA, Berger T. Conformal Coverage of ZnO Nanowire Arrays by ZnMnO 3 : Room-temperature Photodeposition from Aqueous Solution. Chemphyschem 2023; 24:e202300250. [PMID: 37534548 PMCID: PMC10962551 DOI: 10.1002/cphc.202300250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Compositionally and structurally complex semiconductor oxide nanostructures gain importance in many energy-related applications. Simple and robust synthesis routes ideally complying with the principles of modern green chemistry are therefore urgently needed. Here we report on the one-step, room-temperature synthesis of a crystalline-amorphous biphasic ternary metal oxide at the ZnO surface using aqueous precursor solutions. More specifically, conformal and porous ZnMnO3 shells are photodeposited from KMnO4 solution onto immobilized ZnO nanowires acting not only as the substrate but also as the Zn precursor. This water-based, low temperature process yields ZnMnO3 /ZnO composite electrodes featuring in 1 M Na2 SO4 aqueous solution capacitance values of 80-160 F g-1 (as referred to the total mass of the porous film i. e. the electroactive ZnMnO3 phase and the ZnO nanowire array). Our results highlight the suitability of photodeposition as a simple and green route towards complex functional materials.
Collapse
Affiliation(s)
- Karin Rettenmaier
- Department of Chemistry and Physics of MaterialsUniversity of SalzburgJakob-Haringer-Straße 2a5020SalzburgAustria
| | - Gregor A. Zickler
- Department of Chemistry and Physics of MaterialsUniversity of SalzburgJakob-Haringer-Straße 2a5020SalzburgAustria
| | - Thomas Berger
- Department of Chemistry and Physics of MaterialsUniversity of SalzburgJakob-Haringer-Straße 2a5020SalzburgAustria
| |
Collapse
|
11
|
Li S, Chen Z, Yang F, Yue W. Self-template sacrifice and in situ oxidation of a constructed hollow MnO 2 nanozymes for smartphone-assisted colorimetric detection of liver function biomarkers. Anal Chim Acta 2023; 1278:341744. [PMID: 37709473 DOI: 10.1016/j.aca.2023.341744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
Liver function tests play a vital role in accurately diagnosing liver diseases, monitoring treatment outcomes, and assessing liver damage severity. Here, we introduce a novel approach to develop a smartphone-assisted portable colorimetric sensor for rapid detection of three liver function biomarkers: aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). This sensor is based on the inherent enzyme-like activities of hollow MnO2 (H-MnO2). The H-MnO2 is synthesized via a self-template sacrifice and in situ oxidation strategy, utilizing a manganese-based Prussian blue analogue (Mn-PBA) as a sacrificial template. The resulting H-MnO2 exhibits a polycrystalline structure with a large specific surface area. By encapsulating the H-MnO2 in sodium alginate, we construct a portable sensing platform facilitating specific and rapid colorimetric detection of the three liver function biomarkers with the assistance of a smartphone. The developed sensor demonstrates outstanding sensitivity and stability, achieving detection limits of 4.9 U L-1, 3.6 U L-1, and 0.99 U L-1 for AST, ALT, and ALP, respectively. Importantly, this work introduces an innovative in situ oxidation method for fabricating hollow nanozymes, offering a cost-effective and convenient assay for liver function biomarkers detection.
Collapse
Affiliation(s)
- Shuaiwen Li
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Zihui Chen
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Feng Yang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, PR China.
| |
Collapse
|
12
|
Zhang H, Bai Y, Lu X, Wang L, Zou Y, Tang Y, Zhu D. Ni-Doped MnO 2 Nanosheet Arrays for Efficient Urea Oxidation. Inorg Chem 2023; 62:5023-5031. [PMID: 36898358 DOI: 10.1021/acs.inorgchem.3c00234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Urea oxidation reaction (UOR), with a low thermodynamic potential, offers great promise for replacing anodic oxygen evolution reaction of electrolysis systems such as water splitting, carbon dioxide reduction, etc., thus reducing the overall energy consumption. To promote the sluggish kinetics of UOR, highly efficient electrocatalysts are required, and Ni-based materials have been widely investigated. However, most of these reported Ni-based catalysts suffer from large overpotentials, as they generally undergo self-oxidation to form NiOOH species at high potentials, which act as catalytically active sites for UOR. Herein, Ni-doped MnO2 (Ni-MnO2) nanosheet arrays were successfully prepared on nickel foam. The as-fabricated Ni-MnO2 shows distinct UOR behavior with most of the previously reported Ni-based catalysts, as urea oxidation on Ni-MnO2 proceeds before the formation of NiOOH. Notably, a low potential of 1.388 V vs reversible hydrogen electrode was required to achieve a high current density of 100 mA cm-2 on Ni-MnO2. It is suggested that both Ni doping and nanosheet array configuration are responsible for the high UOR activities on Ni-MnO2. The introduction of Ni modifies the electronic structure of Mn atoms, and more Mn3+ species are generated in Ni-MnO2, contributing to its outstanding UOR performance.
Collapse
Affiliation(s)
- Huaiyu Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Yu Bai
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Xue Lu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Liang Wang
- Centre for Catalysis and Clean Energy, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| | - Yan Zou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Yujia Tang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| |
Collapse
|
13
|
Liu X, Zhou J, Xia Q, Li B, Gao Q, Zhao S, Khan A, Xu A, Li X. Modified birnessite MnO 2 as efficient Fenton-like catalysts through electron transfer process between the simultaneously surface-activated peroxymonosulfate and pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130178. [PMID: 36252404 DOI: 10.1016/j.jhazmat.2022.130178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The development of efficient and eco-friendly Mn-based hybrids for the degradation of biorefractory organic pollutants via peroxymonosulfate (PMS) activation is highly desired. In this study, a novel graphite nanosheet (GNs)-based Fe-Mn bimetallic oxide (Fe doped birnessite MnO2, FeMn/GNs) was synthesized under mild conditions. Compared with monometallic Fe or Mn oxide on GNs, FeMn/GNs exhibited a higher surface area, decreased Mn oxidation states, stronger interaction with GNs, and more active sites for PMS adsorption. Among different Fe/Mn ratios, Fe2Mn1/GNs showed the optimum performance for bisphenol A (BPA) degradation with the first-order rate constant of 0.22 min-1, which was about 8.5 and 12.9 times higher than that of Mn/GNs and Fe/GNs, respectively. Different from the pollutant-catalyst-PMS electron transfer mechanism for Mn/GNs, the direct two-electron transfer in FeMn/GNs+PMS system, was mainly processed between the simultaneously activated BPA and PMS. This was probably based on the double adsorption sites of Fe and Mn species on the same catalyst: PMS was adsorbed by Fe species through hydroxyl groups, while BPA was mainly coordinated with Mn species due to the layered structure and hydrophobicity of the Mn oxide. This study is expected to provide the rational design of efficient Mn-based hybrids for PMS activation.
Collapse
Affiliation(s)
- Xiuying Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Jiao Zhou
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Qianna Xia
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Bowen Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Qiaohui Gao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Shuaiqi Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Aimal Khan
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Aihua Xu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China; Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
14
|
Fan K, Chen Q, Zhao J, Liu Y. Preparation of MnO 2-Carbon Materials and Their Applications in Photocatalytic Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:541. [PMID: 36770501 PMCID: PMC9921467 DOI: 10.3390/nano13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Water pollution is one of the most important problems in the field of environmental protection in the whole world, and organic pollution is a critical one for wastewater pollution problems. How to solve the problem effectively has triggered a common concern in the area of environmental protection nowadays. Around this problem, scientists have carried out a lot of research; due to the advantages of high efficiency, a lack of secondary pollution, and low cost, photocatalytic technology has attracted more and more attention. In the past, MnO2 was seldom used in the field of water pollution treatment due to its easy agglomeration and low catalytic activity at low temperatures. With the development of carbon materials, it was found that the composite of carbon materials and MnO2 could overcome the above defects, and the composite had good photocatalytic performance, and the research on the photocatalytic performance of MnO2-carbon materials has gradually become a research hotspot in recent years. This review covers recent progress on MnO2-carbon materials for photocatalytic water treatment. We focus on the preparation methods of MnO2 and different kinds of carbon material composites and the application of composite materials in the removal of phenolic compounds, antibiotics, organic dyes, and heavy metal ions in water. Finally, we present our perspective on the challenges and future research directions of MnO2-carbon materials in the field of environmental applications.
Collapse
Affiliation(s)
- Kun Fan
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Qing Chen
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Ecological and Environmental Protection Company, China South-to-North Water Diversion Corporation Limited, Beijing 100036, China
| | - Jian Zhao
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yue Liu
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| |
Collapse
|
15
|
Rettenmaier K, Zickler GA, Redhammer GJ, Berger T. Substrate-Enabled Room-Temperature Electrochemical Deposition of Crystalline ZnMnO 3. Chemphyschem 2023; 24:e202200586. [PMID: 36070988 PMCID: PMC10092203 DOI: 10.1002/cphc.202200586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Indexed: 01/04/2023]
Abstract
Mixed transition metal oxides have emerged as promising electrode materials for electrochemical energy storage and conversion. To optimize the functional electrode properties, synthesis approaches allowing for a systematic tailoring of the materials' composition, crystal structure and morphology are urgently needed. Here we report on the room-temperature electrodeposition of a ternary oxide based on earth-abundant metals, specifically, the defective cubic spinel ZnMnO3 . In this unprecedented approach, ZnO surfaces act as (i) electron source for the interfacial reduction of MnO4 - in aqueous solution, (ii) as substrate for epitaxial growth of the deposit and (iii) as Zn precursor for the formation of ZnMnO3 . Epitaxial growth of ZnMnO3 on the lateral facets of ZnO nanowires assures effective electronic communication between the electroactive material and the conducting scaffold and gives rise to a pronounced 2-dimensional morphology of the electrodeposit forming - after partial delamination from the substrate - twisted nanosheets. The synthesis strategy shows promise for the direct growth of different mixed transition metal oxides as electroactive phase onto conductive substrates and thus for the fabrication of binder-free nanocomposite electrodes.
Collapse
Affiliation(s)
- Karin Rettenmaier
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Straße 2a, A-5020, Salzburg, Austria
| | - Gregor A Zickler
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Straße 2a, A-5020, Salzburg, Austria
| | - Günther J Redhammer
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Straße 2a, A-5020, Salzburg, Austria
| | - Thomas Berger
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Straße 2a, A-5020, Salzburg, Austria
| |
Collapse
|
16
|
Zhao J, Liu X, Liu P, Deng K, Lv X, Tian W, Wang C, Tan S, Ji J. Oxygen vacancies refilling and potassium ions intercalation of δ-manganese dioxide with high structural stability toward 2.3 V high voltage asymmetric supercapacitors. J Colloid Interface Sci 2023; 629:1039-1048. [PMID: 36209567 DOI: 10.1016/j.jcis.2022.09.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022]
Abstract
Oxygen vacancies occupation and coordination environment modulation of the transition-metal based electrodes are effective strategies to improve the structural stability and electrochemical performance. In this work, the 2-methylimidazole (2-MI) doped manganese dioxide (MnO2) anchored on carbon cloth (CC) is fabricated via a simple method (MI-MnO2-x/CC), where the oxygen defects on/inside the K+ doped δ-MnO2 nanosheets are in-situ created by reductive ethanol/Mn2+ and occupied by 2-MI ligands. With the pre-embedded K+ ions and abundant ligand-refilled defects, the electronic coordination structure, structural stability and electron/ion diffusion efficiency can be effectively enhanced. Therefore, the MI-MnO2-x/CC reveals a remarkable specific capacitance of 721.2 mF cm-2 with excellent cycle durability (capacitance retention of 93.4% after 10,000 cycles) under 1.3 V operation potential window. In addition, an asymmetric supercapacitor assembled by MI-MnO2-x/CC and activated mechanical exfoliated graphene oxide yields a maximum energy density of 57.0 Wh kg-1 and a highest power density of 23.0 kW kg-1 under 2.3 V. This effective oxygen defect stabilization strategy by ligands refilling can be extended to various metal oxide-based electrodes for energy storage and conversion.
Collapse
Affiliation(s)
- Jingli Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xuesong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Peng Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Kuan Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Sichuan 610041, PR China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
17
|
Wu T, Liu K, Liu S, Feng X, Wang X, Wang L, Qin Y, Wang ZL. Highly Efficient Flexocatalysis of Two-Dimensional Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208121. [PMID: 36333880 DOI: 10.1002/adma.202208121] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Catalysis is vitally important for chemical engineering, energy, and environment. It is critical to discover new mechanisms for efficient catalysis. For piezoelectric/pyroelectric/ferroelectric materials that have a non-centrosymmetric structure, interfacial polarization-induced redox reactions at surfaces leads to advanced mechanocatalysis. Here, the first flexocatalysis for 2D centrosymmetric semiconductors, such as MnO2 nanosheets, is demonstrated largely expanding the polarization-based-mechanocatalysis to 2D centrosymmetric materials. Under ultrasonic excitation, the reactive species are created due to the strain-gradient-induced flexoelectric polarization in MnO2 nanosheets composed nanoflowers. The organic pollutants (Methylene Blue et al.) can be effectively degraded within 5 min; the performance of the flexocatalysis is comparable to that of state-of-the-art piezocatalysis, with excellent stability and reproducibility. Moreover, the factors related to flexocatalysis such as material morphology, adsorption, mechanical vibration intensity, and temperature are explored, which give deep insights into the mechanocatalysis. This study opens the field of flexoelectric effect-based mechanochemistry in 2D centrosymmetric semiconductors.
Collapse
Affiliation(s)
- Tong Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Shuhai Liu
- Institute of Nanoscience and Nanotechnology, School of School of Materials and Energy, Lanzhou University, Gansu, 730000, China
| | - Xiaolong Feng
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, D-01187, Dresden, Germany
| | - Xuefeng Wang
- Laboratory for Advanced Materials and Electron Microscopy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Longfei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Qin
- Institute of Nanoscience and Nanotechnology, School of School of Materials and Energy, Lanzhou University, Gansu, 730000, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
18
|
Pugolovkin LV, Tsirlina GA. Birnessite for supercapacitors: alkaline versus neutral electrolytes. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Invernizzi R, Lemoine A, Madec L, Weill F, Dourges MA, Tang C, Giaume D, Baraille I, Taberna PL, Flahaut D, Olchowka J, Guerlou-Demourgues L. Composite Mn-Co electrode materials for supercapacitors: why the precursor's morphology matters! NANOSCALE ADVANCES 2022; 4:5089-5101. [PMID: 36504748 PMCID: PMC9680945 DOI: 10.1039/d2na00616b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
In the energy storage field, an electrode material must possess both good ionic and electronic conductivities to perform well, especially when high power is needed. In this context, the development of composite electrode materials combining an electrochemically active and good ionic conductor phase with an electronic conductor appears as a perfectly adapted approach to generate a synergetic effect and optimize the energy storage performance. In this work, three layered MnO2 phases with various morphologies (veils, nanoplatelets and microplatelets) were combined with electronic conductor cobalt oxyhydroxides with different platelet sizes (∼20 nm vs. 70 nm wide), to synthesize 6 different composites by exfoliation and restacking processes. The influence of precursors' morphology on the distribution of the Mn and Co objects within the composites was carefully investigated and correlated with the electrochemical performance of the final restacked material. Overall, the best performing restacked composite was obtained by combining MnO2 possessing a veil morphology with the smallest cobalt oxyhydroxide nanoplatelets, leading to the most homogeneous distribution of the Mn and Co objects at the nanoscale. More generally, the aim of this work is to understand how the size and morphology of the precursor building blocks influence their distribution homogeneity within the final composite and to find the most compatible building blocks to reach a homogeneous distribution at the nanoscale.
Collapse
Affiliation(s)
- Ronan Invernizzi
- Université Bordeaux, CNRS, Bordeaux INP, ICMCB UMR 5026 F-33600 Pessac France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie FR CNRS #3459 F-80039 Amiens Cedex 1 France
| | - Alexia Lemoine
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - UMR 5254 64000 Pau France
| | - Lénaïc Madec
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie FR CNRS #3459 F-80039 Amiens Cedex 1 France
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - UMR 5254 64000 Pau France
| | - François Weill
- Université Bordeaux, CNRS, Bordeaux INP, ICMCB UMR 5026 F-33600 Pessac France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie FR CNRS #3459 F-80039 Amiens Cedex 1 France
| | - Marie-Anne Dourges
- Institut des Sciences Molaires, Univ. Bordeaux, UMR 5255 F-33405 Talence France
| | - Céline Tang
- Université Bordeaux, CNRS, Bordeaux INP, ICMCB UMR 5026 F-33600 Pessac France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie FR CNRS #3459 F-80039 Amiens Cedex 1 France
- Chimie-ParisTech, PSL Research University, CNRS Institut de Recherche de Chimie-Paris (IRCP) 75005 Paris France
| | - Domitille Giaume
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie FR CNRS #3459 F-80039 Amiens Cedex 1 France
- Chimie-ParisTech, PSL Research University, CNRS Institut de Recherche de Chimie-Paris (IRCP) 75005 Paris France
| | - Isabelle Baraille
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie FR CNRS #3459 F-80039 Amiens Cedex 1 France
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - UMR 5254 64000 Pau France
| | - Pierre Louis Taberna
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie FR CNRS #3459 F-80039 Amiens Cedex 1 France
- ALISTORE-ERI European Research Institute FR CNRS #3104 Amiens F-80039 Cedex 1 France
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Delphine Flahaut
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie FR CNRS #3459 F-80039 Amiens Cedex 1 France
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - UMR 5254 64000 Pau France
| | - Jacob Olchowka
- Université Bordeaux, CNRS, Bordeaux INP, ICMCB UMR 5026 F-33600 Pessac France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie FR CNRS #3459 F-80039 Amiens Cedex 1 France
- ALISTORE-ERI European Research Institute FR CNRS #3104 Amiens F-80039 Cedex 1 France
| | - Liliane Guerlou-Demourgues
- Université Bordeaux, CNRS, Bordeaux INP, ICMCB UMR 5026 F-33600 Pessac France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie FR CNRS #3459 F-80039 Amiens Cedex 1 France
- ALISTORE-ERI European Research Institute FR CNRS #3104 Amiens F-80039 Cedex 1 France
| |
Collapse
|
20
|
Yang N, Yu S, Zhang W, Cheng HM, Simon P, Jiang X. Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202380. [PMID: 35413141 DOI: 10.1002/adma.202202380] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical capacitors (ECs), including electrical-double-layer capacitors and pseudocapacitors, feature high power densities but low energy densities. To improve the energy densities of ECs, redox electrolyte-enhanced ECs (R-ECs) or supercapbatteries are designed through employing confined soluble redox electrolytes and porous electrodes. In R-ECs the energy storage is based on diffusion-controlled faradaic processes of confined redox electrolytes at the surface of a porous electrode, which thus take the merits of high power densities of ECs and high energy densities of batteries. In the past few years, there has been great progress in the development of this energy storage technology, particularly in the design and synthesis of novel redox electrolytes and porous electrodes, as well as the configurations of new devices. Herein, a full-screen picture of the fundamentals and the state-of-art progress of R-ECs are given together with a discussion and outlines about the challenges and future perspectives of R-ECs. The strategies to improve the performance of R-ECs are highlighted from the aspects of their capacitances and capacitance retention, power densities, and energy densities. The insight into the philosophies behind these strategies will be favorable to promote the R-EC technology toward practical applications of supercapacitors in different fields.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| | - Siyu Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films, Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Patrice Simon
- CIRIMAT, UMR CNRS 5085, Université Toulouse III - Paul Sabatier, Toulouse, 31062, France
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Science), Qingdao, 266001, China
| |
Collapse
|
21
|
Wang H, Liang M, Gao J, Ma C, He Z, Zhao Y, Miao Z. Robust structural stability of flower-like δ-MnO2 as cathode for aqueous zinc ion battery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Zhu S, Li T, Bandari VK, Schmidt OG, Gruschwitz M, Tegenkamp C, Sommer M, Choudhury S. High Mass Loading Asymmetric Micro-supercapacitors with Ultrahigh Areal Energy and Power Density. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58486-58497. [PMID: 34866388 DOI: 10.1021/acsami.1c16248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High mass loading asymmetric micro-supercapacitors (MSCs) are key components for the development of high-performance energy and power supply systems. Here, a concept for achieving high mass loading electrodes is presented and applied to high mass loading micro-supercapacitors with ultrahigh areal energy and power density. The positive electrode is made from porous carbon with birnessite coverage and multiwalled carbon nanotubes (CNTs) as conducting additives (PIC-CNTs-MnO2). The negative electrode is prepared from hierarchically porous active carbon mixed with CNTs (PICK-CNTs). Both positive and negative electrode materials are tailored to ensure a high content of macro- and mesopores. MSCs with an optimized mass loading of 13.9 mg·cm-2 (maximum: 23.6 mg·cm-2) provide an ultrahigh areal capacitance of 1.13 F·cm-2 (volumetric capacitance: 22.6 F·cm-3), an outstanding energy of 627.8 μWh·cm-2, and a maximum power density of 64 mW·cm-2. About 85% of the initial capacitance remained after 5000 cycles. Moreover, shunt and tandem device testing confirmed a high uniformity of these MSCs, meeting the requirements of adjustable output currents and voltages in microchips.
Collapse
Affiliation(s)
- Shijin Zhu
- Polymer Chemistry, Chemnitz University of Technology, Chemnitz 09107, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | - Tianming Li
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden 01069, Germany
| | - Vineeth K Bandari
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden 01069, Germany
| | - Oliver G Schmidt
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden 01069, Germany
| | - Markus Gruschwitz
- Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christoph Tegenkamp
- Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Michael Sommer
- Polymer Chemistry, Chemnitz University of Technology, Chemnitz 09107, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | - Soumyadip Choudhury
- Polymer Chemistry, Chemnitz University of Technology, Chemnitz 09107, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
23
|
Siriwardane IW, Rathuwadu NPW, Dahanayake D, Sandaruwan C, de Silva RM, de Silva KMN. Nano-manganese oxide and reduced graphene oxide-incorporated polyacrylonitrile fiber mats as an electrode material for capacitive deionization (CDI) technology. NANOSCALE ADVANCES 2021; 3:2585-2597. [PMID: 36134151 PMCID: PMC9417949 DOI: 10.1039/d0na01075h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/11/2021] [Indexed: 06/13/2023]
Abstract
Capacitive deionization (CDI) is a trending water desalination method during which the impurity ions in water can be removed by electrosorption. In this study, nano-manganese dioxide (MnO2) and reduced graphene oxide (rGO)-doped polyacrylonitrile (PAN) composite fibers are fabricated using an electrospinning technique. The incorporation of both MnO2 and rGO nanomaterials in the synthesized fibers was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The electrochemical characteristics of electrode materials were examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and constant current charge-discharge cycles (CCCDs). The specific capacitance of the PAN electrode increased with increasing MnO2 and rGO contents as well as when thermally treated at 280 °C. Thermally treated composite fibers with 17% (w/w) MnO2 and 1% (w/w) rGO (C-rGOMnPAN) were observed to have the best electrochemical performance, with a specific capacitance of 244 F g-1 at a 10 mV s-1 scan rate. The electrode system was used to study the removal of sodium chloride (NaCl), cadmium (Cd2+) and lead (Pb2+) ions. Results indicated that NaCl showed the highest electrosorption (20 472 C g-1) compared to two heavy metal salts (14 260 C g-1 for Pb2+ and 6265 C g-1 for Cd2+), which is most likely to be due to the ease of mass transfer of lighter Na+ and Cl- ions; When compared, Pb2+ ions tend to show more electrosorption on these fibers than Cd2+ ions. Also, the C-rGOMnPAN electrode system is shown to work with 95% regeneration efficiency when 100 ppm NaCl is used as the electrolyte. Hence, it is clear that the novel binder-free, electrospun C-rGOMnPAN electrodes have the potential to be used in salt removal and also for the heavy metal removal applications of water purification.
Collapse
Affiliation(s)
- I W Siriwardane
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo Colombo 00300 Sri Lanka
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park Mahenwatte, Pitipana, Homagama Sri Lanka
| | - N P W Rathuwadu
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park Mahenwatte, Pitipana, Homagama Sri Lanka
| | - D Dahanayake
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park Mahenwatte, Pitipana, Homagama Sri Lanka
| | - Chanaka Sandaruwan
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park Mahenwatte, Pitipana, Homagama Sri Lanka
| | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo Colombo 00300 Sri Lanka
| | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo Colombo 00300 Sri Lanka
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park Mahenwatte, Pitipana, Homagama Sri Lanka
| |
Collapse
|
24
|
Fiber-in-tube and particle-in-tube hierarchical nanostructures enable high energy density of MnO2-based asymmetric supercapacitors. J Colloid Interface Sci 2021; 582:543-551. [DOI: 10.1016/j.jcis.2020.08.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
|
25
|
Shen M, Wang Y, Zhang YX. Neatly arranged mesoporous MnO 2 nanotubes with oxygen vacancies for electrochemical energy storage. Dalton Trans 2020; 49:17552-17558. [PMID: 33021607 DOI: 10.1039/d0dt02733b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intrinsically poor conductivity, sluggish ion transfer kinetics, and limited specific area are the three main obstacles that confine the electrochemical performance of manganese dioxide in supercapacitors. Herein, one-dimensional mesoporous MnO2 nanotubes were prepared using a polycarbonate film as a template and a large number of oxygen vacancies were introduced by calcination under a N2 atmosphere. The effects of calcination temperature on the crystal structure, micro-morphology and electrochemical performance of MnO2 nanotubes were studied. The presence of oxygen vacancies increases the redox capacity of ov-MnO2-300 nanotubes, and the unique one-dimensional mesoporous structure also provides an effective channel for ion transport. Therefore, the ov-MnO2-300 nanotube has an excellent specific capacitance of 459.0 F g-1 at a current density of 1 A g-1 and also has outstanding rate performance and cycle performance. An asymmetric supercapacitor assembled with ov-MnO2-300 nanotubes as the positive electrode and graphene@MoS2 as the negative electrode delivered an energy density of 40.2 W h kg-1 at a power density of 1024 W kg-1. The excellent capacitance performance is mostly attributed to the introduction of oxygen vacancies to increase the intrinsic conductivity of MnO2, and the unique one-dimensional mesoporous nanotube structure increases the active sites of redox reactions.
Collapse
Affiliation(s)
- Man Shen
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | | | | |
Collapse
|
26
|
Atmatzidis K, Alimohammadi F, Aich N, Tehrani R. Nano-enhanced Dialytic Fluid Purification: CFD Modeling of Pb(II) Removal by Manganese Oxide. ACS OMEGA 2020; 5:32697-32705. [PMID: 33376907 PMCID: PMC7758969 DOI: 10.1021/acsomega.0c05069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Nano-enhanced dialytic fluid purification is an evolution of biomedical dialysis that has been proposed as a novel method for applying nanomaterials in water treatment. Using nanosized hexagonal birnessite (δ-MnO2) in a simplified dialytic system, we demonstrate herein an almost complete removal (98%) of Pb(II) within 3 h of treatment while monitoring environmental variables pH and Eh (redox potential). A mathematical model of the purification process is constructed in COMSOL Multiphysics to demonstrate how nanoadsorption using free-flowing nanoparticles in a dialytic system can be studied theoretically using computational fluid dynamics (CFD). The CFD model closely agrees with experimental results, estimating a 95% removal over 3 h of treatment and suggesting an 18% consumption of available adsorbent capacity. Additional insights into the progress and mechanisms of the adsorption process are also revealed. Finally, the nanoenhanced model is compared against standard dialysis absent of nanomaterials using COMSOL, and key differences in removal efficiency are highlighted. Results indicate that nanoenhanced dialysis can attain almost complete removal in 3 h of treatment or reach the same removal goal as standard dialysis in less than two-third of the treatment time.
Collapse
Affiliation(s)
- Kyriakos Atmatzidis
- Department
of Civil and Environmental Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Farbod Alimohammadi
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Nirupam Aich
- Department
of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Rouzbeh Tehrani
- Department
of Civil and Environmental Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
27
|
Pugolovkin LV, Levin EE, Arkharova NA, Orekhov AS, Presnov DE, Tsirlina GA. Cathodic deposition of birnessite from alkaline permanganate solutions: Tools to control the current efficiency, morphology and adhesion. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Natarajan K, Saraf M, Gupta AK, Mobin SM. Nanostructured δ-MnO2/Cd(OH)2 Heterojunction Constructed under Ambient Conditions as a Sustainable Cathode for Photocatalytic Hydrogen Production. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|