1
|
Liu T, Wu Y, Wang H, Lu J, Luo Y. Defect-Engineered Z-Scheme Heterojunction of Fe-MOFs/Bi 2WO 6 for Solar-Driven CO 2 Conversion: Synergistic Surface Catalysis and Interfacial Charge Dynamics. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:618. [PMID: 40278483 PMCID: PMC12029626 DOI: 10.3390/nano15080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic CO2 reduction. Positron annihilation lifetime spectroscopy (PALS) was employed to confirm the existence of oxygen vacancies, while spherical aberration-corrected transmission electron microscope (STEM) characterization verified the successful construction of heterointerfaces. X-ray absorption fine structure (XAFS) spectra confirmed that the defect configuration and heterostructure changed the surface chemical valence state. The optimized 1.0FM/VO-BWO composite demonstrated exceptional photocatalytic performance, achieving CO and CH4 yields of 60.48 and 4.3 μmol/g, respectively, under visible-light 11.8- and 1.5-fold enhancements over pristine Bi2WO6. The enhanced performance is attributed to oxygen vacancy-induced active sites facilitating CO₂ adsorption/activation. In situ molecular spectroscopy confirmed the formation of critical CO2-derived intermediates (COOH* and CHO*) through surface interactions involving four-coordinated and two-coordinated hydrogen-bonded water molecules. Furthermore, the accelerated interfacial charge transfer efficiency mediated by the Z-scheme heterojunction has been conclusively demonstrated. This work establishes a paradigm for defect-mediated heterojunction design, offering a sustainable route for solar fuel production.
Collapse
Affiliation(s)
- Ting Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.L.); (Y.W.)
- Key Laboratory of Yunnan Province for Synthesizing Sulfur-Containing Fine Chemicals, Kunming 650500, China;
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, China
| | - Yun Wu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.L.); (Y.W.)
| | - Hao Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.L.); (Y.W.)
- Key Laboratory of Yunnan Province for Synthesizing Sulfur-Containing Fine Chemicals, Kunming 650500, China;
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, China
| | - Jichang Lu
- Key Laboratory of Yunnan Province for Synthesizing Sulfur-Containing Fine Chemicals, Kunming 650500, China;
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongming Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.L.); (Y.W.)
- Key Laboratory of Yunnan Province for Synthesizing Sulfur-Containing Fine Chemicals, Kunming 650500, China;
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Li S, Zhang M, Li P, Ma L, Peng K, Zhao J, Liu Y, Wang R. Boosting visible-light-driven photocatalytic performance by heterostructure of S-doped g-C3N4/ MIL-101(Fe). INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
3
|
Lopes JC, Moniz T, Sampaio MJ, Silva CG, Rangel M, Faria JL. Efficient synthesis of imines using carbon nitride as photocatalyst. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
4
|
He B, Cui Y, Lei Y, Li W, Sun J. Design and application of g-C 3N 4-based materials for fuels photosynthesis from CO 2 or H 2O based on reaction pathway insights. J Colloid Interface Sci 2023; 629:825-846. [PMID: 36202027 DOI: 10.1016/j.jcis.2022.09.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Photocatalytic CO2 reduction reaction (CRR) and hydrogen evolution reaction (HER) based on graphitic carbon nitride (g-C3N4) that is regarded as the metal-free "holy grail" photocatalyst, provide promising strategies for producing next-generation fuels, contributing to achieving carbon neutrality, alleviating energy and environment crisis. However, the activity of CRR and HER over g-C3N4 leaves much to be desired. Therefore, numerous studies have sprung up to enhance photoactivity. A comprehensive understanding of the CRR and HER reaction pathways is crucial for designing g-C3N4-based materials, further promoting efficient fuel production. Different from previous reviews that focus on g-C3N4 modification from the viewpoint of material science. In this review, we divided the multistep processes of CRR and HER into five reaction pathways and summarized the latest advances for improving each pathway of fuels synthesis through CRR or HER. Meanwhile, the existing bottleneck issues of each step were also discussed. Finally, comprehensive conclusions, including the remaining challenges, outlooks, etc., for CRR and HER over g-C3N4 were put forward. We are sure that this review will conduce to the understanding of the structure-activity relationship between CRR, HER processes, and g-C3N4 structure, which can provide the reference for developing high-powered photocatalysts, not confined to g-C3N4.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuandong Cui
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yu Lei
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wenjin Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
5
|
Tripathy SP, Subudhi S, Ray A, Behera P, Panda J, Dash S, Parida K. Hydrolytically stable mixed ditopic linker based zirconium metal organic framework as a robust photocatalyst towards Tetracycline Hydrochloride degradation and hydrogen evolution. J Colloid Interface Sci 2023; 629:705-718. [PMID: 36183649 DOI: 10.1016/j.jcis.2022.09.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
In the existing eco-crisis, designing and engineering an efficient as well as water stable photocatalyst for energy conversion and pollutant abatement remains crucial. In this regard, a mixed linker type zirconium metal organic framework (Zr-MOF) with terepthalic acid based ditopic linkers were utilized to design a single component photocatalyst through single step solvothermal method to utilize photons from visible light illumination towards hydrogen energy (H2) production and Tetracycline Hydrochloride (TCH) degradation. The one pot synthesized mixed linker based Zr-MOF displays visible light absorption through band gap tuning, superior exciton segregation and oxygen vacancy that cumulatively supports the enhancement in the photocatalytic output with respect to their pristine counterparts. Additionally, the X-ray photoelectron spectroscopy, optical and electrochemical studies strongly reinforces the above claims. The prepared mixed linker Zr-MOF showed superior photocatalytic H2 evolution performance of 247.88 µmol h-1 (apparent conversion efficiency; ACE = 1.9%) that is twice than its pristine Zr-MOFs. Moreover, in TCH degradation, the mixed linker MOF displays an enhanced efficacy of 91.8 % and adopts pseudo-first order type kinetics with a rate constant value of 0.032. Typically, the active species participating for the TCH photo-degradation follows the order of hydroxyl (OH.) < superoxide (O2.-) radicals. Consequently, the mixed linker Zr-MOF could be effectively used as a robust photocatalyst exhibiting boosted TCH degradation and H2 production.
Collapse
Affiliation(s)
- Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Jayashree Panda
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Srabani Dash
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India.
| |
Collapse
|
6
|
Liu C, Liu Y, Shi Y, Wang Z, Guo W, Bi J, Wu L. Au nanoparticles-anchored defective metal–organic frameworks for photocatalytic transformation of amines to imines under visible light. J Colloid Interface Sci 2022; 631:154-163. [DOI: 10.1016/j.jcis.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
7
|
Jiang X, Zhao D, Chen J, Li W, Li K, Chen C. The Synergistic Photocatalytic Effect of H3PW12O40 and Pt Nanoparticles Comodified UiO-66-NH2 on the Reduction of Aqueous Cr(VI) under Original pH. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422050056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Khosroshahi N, Goudarzi MD, Gilvan ME, Safarifard V. Collocation of MnFe2O4 and UiO-66-NH2: An efficient and reusable nanocatalyst for achieving high-performance in hexavalent chromium reduction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Huang Z, Yu H, Wang L, Liu X, Ren S, Liu J. Ferrocene-modified Uio-66-NH 2 hybrids with g-C 3N 4 as enhanced photocatalysts for degradation of bisphenol A under visible light. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129052. [PMID: 35580498 DOI: 10.1016/j.jhazmat.2022.129052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Designing graphitic carbon nitride (CN) based heterostructured photocatalysts with high catalytic activity is highly desired for peroxymonosulfate (PMS) activation to degrade organic pollutants from water. Herein, a novel heterostructured composite (U-F@CN) consisting of ferrocene-modified Uio-66-NH2 (U-F) and CN was synthesized. The U-F@CN exhibited superior photocatalytic performance to degrade bisphenol A (BPA) in the presence of PMS under visible light. The experimental results indicated that BPA could be removed entirely by U-F@CN within 60 min under visible light irradiation. In addition, the outstanding photocatalytic activity could be maintained at high level in a wide pH range, appropriate temperature region and natural water condition. Benefiting from the good chemical stability, outstanding optical property and in-situ generation of interfacial heterojunction of U-F@CN, the interfacial transport of photogenerated charges could follow the Z-scheme mechanism, which can accelerate the charge separation and transport to yield abundant reactive active species (ROS) to efficiently active PMS and under visible light. This work provides a novel approach to design CN-based heterostructured photocatalysts with high stability and superior photocatalytic activity for environmental remediation.
Collapse
Affiliation(s)
- Zhikun Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xiaowei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jinyi Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
10
|
Jaryal R, Kumar R, Khullar S. Mixed metal-metal organic frameworks (MM-MOFs) and their use as efficient photocatalysts for hydrogen evolution from water splitting reactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Amini A, Karimi M, Rabbani M, Safarifard V. Cobalt-doped g-C3N4/MOF heterojunction composite with tunable band structures for photocatalysis aerobic oxidation of benzyl alcohol. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Hosseini MS, Abbasi A, Masteri-Farahani M. Improving the photocatalytic activity of NH 2-UiO-66 by facile modification with Fe(acac) 3 complex for photocatalytic water remediation under visible light illumination. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127975. [PMID: 34896719 DOI: 10.1016/j.jhazmat.2021.127975] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
A new and cost-effective photocatalyst was prepared via a facile modification of NH2-UiO-66 with an iron (III) complex i.e. Fe(acac)3, in order to enhance the optical properties and charge separation efficiency of pristine MOF. According to the results of UV-Vis DRS and Tauc plot calculations, the band gap value decreased from 2.7 eV to 2.46 eV for final Fe-UiO-66 photocatalyst, showing the improvement of light absorption in the visible region. Moreover, the photoluminescence (PL) and electrochemical impedance spectroscopies (EIS) confirmed the efficient separation of electron-hole carriers after introduction of Fe(acac)3 into the MOF structure. The photo-Fenton reaction was carried out in the presence of photocatalyst and hydrogen peroxide under white LED illumination for degradation of organic dyes (methyl violet 2B, rhodamine B, malachite green, and methylene blue) and tetracycline (TC) as the examples of water pollutants. A significant dye and TC removal up to 92% and 85% were obtained in photo-Fenton system containing Fe-UiO-66 photocatalyst, respectively. The trap experiment using isopropyl alcohol (IPA) and Na2EDTA demonstrated that the major active species for pollutants degradation are hydroxyl radicals (•OH) and photo-generated holes (h+), respectively. Besides, the transfer of photo-generated electron (e-) to Fe(acac)3 complex resulted in the reduction of Fe3+ to Fe2+ and acceleration of the photo-Fenton reaction. Also, the photocatalyst was found to be very stable during the photo-Fenton reaction according to physicochemical analyses, and it can be reused four times without remarkable decrease in activity.
Collapse
Affiliation(s)
- Mahdiyeh-Sadat Hosseini
- School of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran
| | - Alireza Abbasi
- School of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran.
| | - Majid Masteri-Farahani
- Faculty of Chemistry, Kharazmi University, Tehran, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran.
| |
Collapse
|
13
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Fiaz M, Carl N, Kashif M, Farid MA, Riaz NN, Athar M. Development of efficient bi-functional g-C 3N 4@MOF heterojunctions for water splitting. RSC Adv 2022; 12:32110-32118. [DOI: 10.1039/d2ra05594e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
Highly efficient heterojunctions by combining n-type g-C3N4 and MOFs as bi-functional photoelectrocatalysts towards the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER).
Collapse
Affiliation(s)
- Muhammad Fiaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Nkenku Carl
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Muhammad Kashif
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Asim Farid
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Nagina Naveed Riaz
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Athar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
15
|
Tan M, Yu C, Li J, Li Y, Tao C, Liu C, Meng H, Su Y, Qiao L, Bai Y. Engineering of g-C 3N 4-based photocatalysts to enhance hydrogen evolution. Adv Colloid Interface Sci 2021; 295:102488. [PMID: 34332277 DOI: 10.1016/j.cis.2021.102488] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023]
Abstract
The technology of photocatalytic hydrogen production that converts abundant yet intermittent solar energy into an environmentally friendly alternative energy source is an attractive strategy to mitigate the energy crisis and environmental pollution. Graphitic carbon nitride (g-C3N4), as a promising photocatalyst, has gradually received focus in the field of artificial photosynthesis due to its appealing optical property, high chemical stability and easy synthesis. However, the limited light absorption and massive recombination of photoinduced carriers have hindered the photocatalytic activity of bare g-C3N4. Therefore, from the perspective of theoretical calculations and experiments, many valid approaches have been applied to rationally design the photocatalyst and ameliorate the hydrogen production performance, such as element doping, defect engineering, morphology tuning, and semiconductor coupling. This review summarized the latest progress of g-C3N4-based photocatalysts from two perspectives, modification of pristine g-C3N4 and interfacial engineering design. It is expected to offer feasible suggestions for the fabrication of low-cost and high-efficiency photocatalysts and the photocatalytic mechanism analyses assisted by calculation in the near future. Finally, the prospects and challenges of this exciting research field are discussed.
Collapse
Affiliation(s)
- Mengxi Tan
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengye Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Junjie Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengdong Tao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanbao Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huimin Meng
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjing Su
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lijie Qiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Bai
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
16
|
Tang J, Fu H, Jiang X, Cheng Z, Liao Y, Pu Q, Duan M. Conjugated Cationic Pp- x Formed on g-C 3N 4 for Photocatalyzed Water Splitting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7668-7680. [PMID: 34126011 DOI: 10.1021/acs.langmuir.1c00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polycationic Pp-x@g-C3N4 composite was synthesized through an in situ polymerization process of N-alkylpyridinium acetylenic alcohol bromide (p-x) above the surface of g-C3N4. The structure of p-0 and the Pp-x@g-C3N4 properties were checked by modern technologies. Photocatalytic tests of Pp-x@g-C3N4 in water splitting unveiled much better Pp-x@g-C3N4 hydrogen evolution activities by comparison with both g-C3N4 and Pp-0. The hydrogen production by Pp-0@g-C3N4 was 1654.5 μmol h-1 g-1, which is ∼26- and 22-fold greater in relation to what g-C3N4 and Pp-0 produced (62.7 and 75.0 μmol h-1 g-1, respectively), suggesting strong bilateral and synergistic interactions of g-C3N4 with Pp-0. Although the lengthening methylene chain in the polymers weakened the hydrogen generation ability of Pp-x@g-C3N4, the conjugated double bonds, solubilization, and dispersion of Pp-x polycationic surfactants made Pp-x@g-C3N4 superior to g-C3N4 in water splitting. Due to the readily available raw materials, a simple way of preparation (starting chemicals to p-0 to Pp-0@g-C3N4), high photocatalysis efficiency, light irritation stability, recyclable ability, and low toxicity, Pp-0@g-C3N4 is a good candidate for water splitting.
Collapse
Affiliation(s)
- Jing Tang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637009, P. R. China
| | - Hongquan Fu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637009, P. R. China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637009, P. R. China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637009, P. R. China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637009, P. R. China
| | - Qiang Pu
- China Petroleum Engineering Company, Limited Southwest Company, Chengdu, Sichuan 610213, P. R. China
| | - Ming Duan
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|
17
|
Wang H, Zhang Q, Liu Q, Zhang N, Zhang JY, Fang YZ. Bi 2S 3@NH 2-UiO-66-S composites modulated by covalent interfacial reactions boost photodegradation and the oxidative coupling of primary amines. NEW J CHEM 2021. [DOI: 10.1039/d1nj01427g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Bi2S3@NH2-UiO-66-S heterostructures have been synthesized via covalent interfacial reactions, exhibiting excellent performance in the photodegradation of methylene and the oxidative coupling of primary amines compared to reported photocatalysts.
Collapse
Affiliation(s)
- Hang Wang
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Qing Zhang
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Qing Liu
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Na Zhang
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | | | | |
Collapse
|
18
|
Fakhri H, Esrafili A, Farzadkia M, Boukherroub R, Srivastava V, Sillanpää M. Preparation of tungstophosphoric acid/cerium-doped NH 2-UiO-66 Z-scheme photocatalyst: a new candidate for green photo-oxidation of dibenzothiophene and quinoline using molecular oxygen as the oxidant. NEW J CHEM 2021. [DOI: 10.1039/d1nj00328c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The goal of this study was to introduce an effective visible-light induced photocatalytic system with a good ability for photocatalytic oxidative desulfurization (PODS) and denitrogenation (PODN) using molecular oxygen (O2) as an oxidant.
Collapse
Affiliation(s)
- Hanieh Fakhri
- Research Center for Environmental Health Technology
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Environmental Health Engineering
| | - Ali Esrafili
- Research Center for Environmental Health Technology
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Environmental Health Engineering
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Environmental Health Engineering
| | - Rabah Boukherroub
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Polytechnique Hauts-de-France
- UMR 8520 – IEMN
| | - Varsha Srivastava
- Department of Chemistry
- University of Jyvaskyla
- FI-40014 Jyvaskyla
- Finland
| | - Mika Sillanpää
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
- Faculty of Environment and Chemical Engineering
| |
Collapse
|
19
|
Nagarjun N, Jacob M, Varalakshmi P, Dhakshinamoorthy A. UiO-66(Ce) metal-organic framework as a highly active and selective catalyst for the aerobic oxidation of benzyl amines. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Karimia M, Sadeghia S, Gavinehroudi RG, Mohebali H, Mahjoub A, Heydari A. g-C 3N 4@Ce-MOF Z-scheme heterojunction photocatalyzed cascade aerobic oxidative functionalization of styrene. NEW J CHEM 2021. [DOI: 10.1039/d1nj00120e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A unique composite of the cerium-based metal–organic framework (Ce-UiO-66) modified with graphitic carbon nitride nanosheets (g-C3N4) has been synthesized. The g-C3N4@Ce-MOF as a photocatalyst was employed in photocatalytic aerobic oxidative Hantzsch pyridine synthesis of styrene.
Collapse
Affiliation(s)
- Meghdad Karimia
- Chemistry Department
- Tarbiat Modare University
- Iran P.O. Box 14155-4838 Tehran
- Iran
| | - Samira Sadeghia
- Chemistry Department
- Tarbiat Modare University
- Iran P.O. Box 14155-4838 Tehran
- Iran
| | | | - Haleh Mohebali
- Chemistry Department
- Tarbiat Modare University
- Iran P.O. Box 14155-4838 Tehran
- Iran
| | - Alireza Mahjoub
- Chemistry Department
- Tarbiat Modare University
- Iran P.O. Box 14155-4838 Tehran
- Iran
| | - Akbar Heydari
- Chemistry Department
- Tarbiat Modare University
- Iran P.O. Box 14155-4838 Tehran
- Iran
| |
Collapse
|
21
|
Zhang X, Zhou H, Cao W, Chen C, Jiang C, Wang Y. Preparation and mechanism investigation of Bi2WO6/UiO-66-NH2 Z-scheme heterojunction with enhanced visible light catalytic activity. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Xiao J, Liu X, Pan L, Shi C, Zhang X, Zou JJ. Heterogeneous Photocatalytic Organic Transformation Reactions Using Conjugated Polymers-Based Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03480] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xianlong Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|