1
|
Jung J, Choi H, Lee Y, Kim Y, Taniguchi T, Watanabe K, Choi M, Jang JH, Chung H, Kim D, Kim Y, Cho C. Defect Passivation of 2D Semiconductors by Fixating Chemisorbed Oxygen Molecules via h-BN Encapsulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310197. [PMID: 38493313 PMCID: PMC11165525 DOI: 10.1002/advs.202310197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Hexagonal boron nitride (h-BN) is a key ingredient for various 2D van der Waals heterostructure devices, but the exact role of h-BN encapsulation in relation to the internal defects of 2D semiconductors remains unclear. Here, it is reported that h-BN encapsulation greatly removes the defect-related gap states by stabilizing the chemisorbed oxygen molecules onto the defects of monolayer WS2 crystals. Electron energy loss spectroscopy (EELS) combined with theoretical analysis clearly confirms that the oxygen molecules are chemisorbed onto the defects of WS2 crystals and are fixated by h-BN encapsulation, with excluding a possibility of oxygen molecules trapped in bubbles or wrinkles formed at the interface between WS2 and h-BN. Optical spectroscopic studies show that h-BN encapsulation prevents the desorption of oxygen molecules over various excitation and ambient conditions, resulting in a greatly lowered and stabilized free electron density in monolayer WS2 crystals. This suppresses the exciton annihilation processes by two orders of magnitude compared to that of bare WS2. Furthermore, the valley polarization becomes robust against the various excitation and ambient conditions in the h-BN encapsulated WS2 crystals.
Collapse
Affiliation(s)
- Jin‐Woo Jung
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| | - Hyeon‐Seo Choi
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| | - Young‐Jun Lee
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| | - Youngjae Kim
- School of PhysicsKorea Institute for Advanced Study (KIAS)Seoul02455South Korea
| | - Takashi Taniguchi
- International Center for Materials NanoarchitectonicsNational Institute for Materials ScienceTsukuba305‐0044Japan
| | - Kenji Watanabe
- Research Center for Functional MaterialsNational Institute for Materials ScienceTsukuba305‐0044Japan
| | - Min‐Yeong Choi
- Electron Microscopy and Spectroscopy TeamKorea Basic Science InstituteDaejeon34133South Korea
| | - Jae Hyuck Jang
- Electron Microscopy and Spectroscopy TeamKorea Basic Science InstituteDaejeon34133South Korea
- Graduate School of Analytic Science and TechnologyChungnam National UniversityDaejeon34134South Korea
| | - Hee‐Suk Chung
- Electron Microscopy and Spectroscopy TeamKorea Basic Science InstituteDaejeon34133South Korea
| | - Dohun Kim
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| | - Youngwook Kim
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| | - Chang‐Hee Cho
- Department of Physics and ChemistryDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988South Korea
| |
Collapse
|
2
|
Chin HT, Wang DC, Wang H, Muthu J, Khurshid F, Chen DR, Hofmann M, Chuang FC, Hsieh YP. Confined VLS Growth of Single-Layer 2D Tungsten Nitrides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1705-1711. [PMID: 38145463 DOI: 10.1021/acsami.3c13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Two-dimensional (2D) metal nitrides have garnered significant interest due to their potential applications in future electronics and quantum systems. However, the synthesis of such materials with sufficient uniformity and at relevant scales remains an unaddressed challenge. This study demonstrates the potential of confined growth to control and enhance the morphology of 2D metal nitrides. By restricting the reaction volume of vapor-liquid-solid reactions, an enhanced precursor concentration was achieved that reduces the nucleation density, resulting in larger grain sizes and suppression of multilayer growth. Detailed characterization reveals the importance of balancing the energetic and kinetic aspects of tungsten nitride formation toward this ability. The introduction of a promoter enabled the realization of large-scale, single-layer tungsten nitride with a uniform and high interfacial quality. Finally, our advance in morphology control was applied to the production of edge-enriched 2D tungsten nitrides with significantly enhanced hydrogen evolution ability, as indicated by an unprecedented Tafel slope of 55 mV/dec.
Collapse
Affiliation(s)
- Hao-Ting Chin
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Deng-Chi Wang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hao Wang
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Jeyavelan Muthu
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan
| | - Farheen Khurshid
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Ding-Rui Chen
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Mario Hofmann
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Feng-Chuan Chuang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Center for Theoretical and Computational Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| | - Ya-Ping Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
3
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
4
|
Jelken J, Avilés MO, Lagugné-Labarthet F. The Hidden Flower in WS 2 Flakes: A Combined Nanomechanical and Tip-Enhanced Raman Exploration. ACS NANO 2022; 16:12352-12363. [PMID: 35876460 DOI: 10.1021/acsnano.2c03441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report on tungsten disulfide (WS2) flakes grown by chemical vapor deposition (CVD), which exhibit a flower-like surface structure above the primary few-layer flake with a triangular shape. The fine structure is only revealed in the mechanical, chemical, and electronic properties of the flake but not in the topography. The origin of this structure is the peculiar one-step growth during the CVD process that permits to control the sulfur concentration at any time. A high concentration of S at the onset of the deposition process leads to a rapid growth of the flake, resulting in tungsten vacancies. Reducing the sulfur concentration toward the end of the growth slows down the reaction and leads to sulfur vacancies. These microscale domains were studied by confocal- and tip-enhanced Raman spectroscopy revealing their chemical composition with high spatial resolution. A strong quenching of the photoluminescence in the tungsten-vacancy domains is observed. Atomic force microscope measurements, performed in intermittent contact mode, force modulation mode (including lateral force mode), and PeakForce quantitative nanomechanics mode, show that the mechanical properties of these domains differ. Within the tungsten-vacancy domains, the adhesion force is reduced, while the friction force increased. Kelvin probe force microscopy measurements show that the electronic properties of the flakes are modulated by these domains. The combined nanomechanical and nanospectroscopy measurements provide detailed insights on the inhomogeneous surface properties of the single WS2 flake, further highlighting how its multidomain properties can be finely tuned using CVD.
Collapse
Affiliation(s)
- Joachim Jelken
- The Centre for Advanced Materials and Biomaterials Research (CAMBR), Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - María O Avilés
- The Centre for Advanced Materials and Biomaterials Research (CAMBR), Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - François Lagugné-Labarthet
- The Centre for Advanced Materials and Biomaterials Research (CAMBR), Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Kang S, Eshete YA, Lee S, Won D, Im S, Lee S, Cho S, Yang H. Bandgap modulation in the two-dimensional core-shell-structured monolayers of WS 2. iScience 2022; 25:103563. [PMID: 34988404 PMCID: PMC8693456 DOI: 10.1016/j.isci.2021.103563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Tungsten disulfide (WS2) has tunable bandgaps, which are required for diverse optoelectronic device applications. Here, we report the bandgap modulation in WS2 monolayers with two-dimensional core-shell structures formed by unique growth mode in chemical vapor deposition (CVD). The core-shell structures in our CVD-grown WS2 monolayers exhibit contrasts in optical images, Raman, and photoluminescence spectroscopy. The strain and doping effects in the WS2, introduced by two different growth processes, generate PL peaks at 1.83 eV (at the core domain) and 1.98 eV (at the shell domain), which is distinct from conventional WS2 with a primary PL peak at 2.02 eV. Our density functional theory (DFT) calculations explain the modulation of the optical bandgap in our core-shell-structured WS2 monolayers by the strain, accompanying a direct-to-indirect bandgap transition. Thus, the core-shell-structured WS2 monolayers provide a practical method to fabricate lateral heterostructures with different optical bandgaps, which are required for optoelectronic applications.
Collapse
Affiliation(s)
- Seohui Kang
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yonas Assefa Eshete
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sujin Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dongyeun Won
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Saemi Im
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangheon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Suyeon Cho
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Lakshad Wimalananda MS, Kim JK, Cho SW, Lee JM. Millimeter-Scale Continuous Film of MoS 2 Synthesized Using a Mo, Na, and Seeding Promoter-Based Coating as a Solid Precursor. ACS OMEGA 2021; 6:32208-32214. [PMID: 34870041 PMCID: PMC8638302 DOI: 10.1021/acsomega.1c05052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
While the chemical vapor deposition technique can be used to fabricate 2D materials in a larger area, materials like MoS2 have limited controllability due to their lack of self-controlling nature. This article presents a new technique for synthesizing a void-free millimeter-scale continuous monolayer MoS2 film through the diffusion of a well-controlled Mo, Na, and seeding promoter-based coating under a low-pressure N2 atmosphere. Compared to the conventional method, this technique provides precise control of solid precursors, where MoS2 grows next to the coating. At 800 °C, the synthesized MoS2 showed a uniform single-layer MoS2 film; however, a Na-free coating showed nanoscale voids and poor crystal quality, which are attributed to a higher edge-attachment barrier that slows down the MoS2 lateral growth. The synthesized MoS2 with Na-containing solution showed an intense PL peak with a 1.86 eV band gap. Even at the relatively low temperature of 700 °C, compared to the Na-excluded condition, MoS2 showed almost two times higher area coverage with a comparatively larger crystal size. This finding may assist in the future development of MoS2-based electronic and optoelectronic devices such as transistors and photodetectors.
Collapse
|
7
|
Abstract
The energy from fossil fuels has been recognized as a main factor of global warming and environmental pollution. Therefore, there is an urgent need to replace fossil fuels with clean, cost-effective, long-lasting, and environmentally friendly fuel to solve the future energy crisis of the world. Therefore, the development of clean, sustainable, and renewable energy sources is a prime concern. In this regard, solar energy-driven hydrogen production is considered as an overriding opening for renewable and green energy by virtue of its high energy efficiency, high energy density, and non-toxicity along with zero emissions. Water splitting is a promising technology for producing hydrogen, which represents a potentially and environmentally clean fuel. Water splitting is a widely known process for hydrogen production using different techniques and materials. Among different techniques of water splitting, electrocatalytic and photocatalytic water splitting using semiconductor materials have been considered as the most scalable and cost-effective approaches for the commercial production of sustainable hydrogen. In order to achieve a high yield of hydrogen from these processes, obtaining a suitable, efficient, and stable catalyst is a significant factor. Among the different types of semiconductor catalysts, tungsten disulfide (WS2) has been widely utilized as a catalytic active material for the water-splitting process, owing to its layered 2D structure and its interesting chemical, physical, and structural properties. However, WS2 suffers from some disadvantages that limit its performance in catalytic water splitting. Among the various techniques and strategies that have been constructed to overcome the limitations of WS2 is heterostructure construction. In this process, WS2 is coupled with another semiconducting material in order to facilitate the charge transfer and prevent the charge recombination, which will enhance the catalytic performance. This review aims to summarize the recent studies and findings on WS2 and its heterostructures as a catalyst in the electrocatalytic and photocatalytic water-splitting processes.
Collapse
|
8
|
Gopakumar G, Nair SV, Shanmugam M. Plasma driven nano-morphological changes and photovoltaic performance in dye sensitized 2D-layered dual oxy-sulfide phase WS 2 films. NANOSCALE 2020; 12:239-247. [PMID: 31816000 DOI: 10.1039/c9nr07566f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present work examined dye sensitized 2D layered tungsten disulfide (WS2) as a photo-anode in solar cells with no use of nanocrystalline metal oxides as electron acceptors such as titanium dioxide. It is observed that coating WS2 directly onto a fluorine doped tin oxide (FTO) transparent conductor, annealed at 530 °C, resulted in a mixed oxy-sulfide dual phase as confirmed by transmission electron microscopy and X-ray diffraction studies. Further studies on the surface morphology of the dual phase WS2-WO3 film showed a random distribution of platelets which further shaped into precisely regulated hexagonal platelets upon plasma treatment. High resolution transmission electron microscopic studies elucidated two different phases, WS2 and WO3, with d-spacing values of 0.26 nm and 0.37 nm, respectively. A well-defined grain boundary was also observed which separated the oxy-sulfide phase in the sample. The dual WS2-WO3 phase films showed optical absorption in the wavelength range of 350 nm-800 nm with a systematic increase in plasma exposure duration. Photovoltaic devices fabricated using the WS2-WO3 mixed phase photo-anodes resulted in 0.61% efficiency (η) which further was observed to be sensitive to the plasma exposure as it was observed that the 20 minute plasma treated sample increased the η value to 0.67%. Plasma treatment on the dual-phase samples orients and modifies the shapes of the platelets with a significant change in the surface which eventually influences the charge transport in resulting photovoltaic devices and thus the variation with respect to exposure duration.
Collapse
Affiliation(s)
- Gopika Gopakumar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kerala-682041, India.
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kerala-682041, India.
| | - Mariyappan Shanmugam
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kerala-682041, India.
| |
Collapse
|