1
|
Silva WS, Silva WF, Rocha U, Medeiros DM, Motta RJB, Astrath NGC, Dantas NO, Silva ACA, Jacinto C. (Invited) Influence of Nd 3⁺ Doping and Thermal Annealing on Luminescent Properties and Thermal Sensing of Na₂Ti₆O₁₃ Nanocrystals. Chem Asian J 2025:e202401699. [PMID: 40326614 DOI: 10.1002/asia.202401699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/03/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
This study investigates the effects of Nd3⁺ doping and thermal annealing (at 250, 500, 650, and 800 °C) on the structural and luminescent properties of Nd3⁺-doped Na₂Ti₆O₁₃ nanocrystals (NCs), with a focus on their potential for thermal sensing applications. The optimal doping concentration was found to be 0.5 wt% Nd3⁺, where luminescence intensity decreases with higher concentrations due to concentration quenching. Thermal annealing significantly enhances both the crystallinity and luminescence intensity of the NCs, with the most notable improvements observed up to 500 °C. However, heating beyond 650 °C induces a phase transition from Na₂Ti₆O₁₃ to TiO₂, which impacts the NCs' structural and luminescent properties. Thermal sensing performance was evaluated using the fluorescence intensity ratio (FIR) between emissions at 1060 nm and 1340 nm across a temperature range of 300-343K, revealing the highest relative thermal sensitivity (Sr) of 3.28% K⁻¹ in the sample annealed at 250 °C. For applications requiring high emission intensity, the 0.5 wt% Nd3⁺-doped Na₂Ti₆O₁₃ NCs annealed at 800 °C exhibited the highest figure of merit, combining high luminescence intensity at 1060 nm with excellent Sr, making them ideal for nanothermometry. Notably, the excitation (808 nm) and emission wavelengths (900, 1060, and 1340 nm) fall within the biological tissue windows, suggesting significant potential for biological nanothermometry applications. This study underscores the critical role of optimizing both doping concentration and thermal annealing conditions to enhance the properties of NCs, offering new insights into their use for advanced thermal sensing applications in biological and medical fields.
Collapse
Affiliation(s)
- Wesley S Silva
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, Maceió-AL, 57072-900, Brazil
| | - Wagner F Silva
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, Maceió-AL, 57072-900, Brazil
| | - Uéslen Rocha
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, Maceió-AL, 57072-900, Brazil
| | - Daiane M Medeiros
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, Maceió-AL, 57072-900, Brazil
| | - Rayssa J B Motta
- Laboratório de Microscopia Eletrônica de Transmissão (LabMET), Institute of Physics, Universidade Federal de Alagoas, Maceió-AL, 57072-900, Brazil
| | - Nelson G C Astrath
- Department of Physics, Universidade Estadual de Maringá, Maringá-PR, 87020-900, Brazil
| | - Noelio O Dantas
- Laboratório de Novos Materiais Nanoestruturados e Funcionais, Institute of Physics, Universidade Federal de Alagoas, Maceió-AL, 57072-900, Brazil
| | - Anielle C A Silva
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, Maceió-AL, 57072-900, Brazil
| | - Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, Maceió-AL, 57072-900, Brazil
| |
Collapse
|
2
|
Maldonado MJ, Farías-Carreño P, Gil Y, Vega A, de Santana RC, Aravena D, Brites CDS, Carlos LD, Neto ANC, Vetrone F, Fuentealba P. Anti-thermal quenching in Nd III molecular near-infrared thermometers operating at physiological temperatures. Commun Chem 2025; 8:136. [PMID: 40319187 PMCID: PMC12049464 DOI: 10.1038/s42004-025-01536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
Examples of molecular complexes acting as thermometers operating at room temperature in near infrared region are scarce, therefore this work showcases the anti-thermal quenching effect on neodymium(III) molecular thermometers working in biological windows within the physiological temperature range. A mononuclear complex, [Nd(L)(NO3)3] (1Nd), where L is a macrocyclic ligand, was synthesized and used as a precursor to develop two novel species: a dinuclear, [(Nd(L)(NO3))2(µ-BDC)](NO3)2·H2O (2Nd), linked by 1,4-benzenedicarboxylate (BDC), and a hexameric, [(Nd(L))(µ-BTC)(H2O)]6·35H2O (6Nd), linked with 1,3,5-benzenetricarboxylate (BTC). Thermometric properties were studied in the physiological temperature range (292-332 K), utilizing 804 nm laser excitation (first biological window) and monitoring emissions in the second biological window (908, 1065, and 1340 nm) associated with the 4F3/2 → 4I9/2, 4I11/2, 4I13/2 transitions, respectively. Among the complexes, the hexamer 6Nd exhibited exceptional performance, with Sr of 2.4%K-1 at 293 K, when luminescence intensity ratio (LIR) of two Stark components of the 4F3/2 → 4I11/2 emission was used, positioning it as a high-performance NdIII-based thermometer. All complexes displayed anti-thermal quenching behavior, surpassing the current molecular-based thermometers in the near-infrared region. Theoretical calculations using complete active space self consistent field (CASSCF) and Boltzmann population models between Kramers doublets of the 4F3/2 level were performed to rationalize the anti-thermal behavior.
Collapse
Affiliation(s)
- María José Maldonado
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | - Yolimar Gil
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Andrés Vega
- Departamento de Ciencias Químicas, Universidad Andrés Bello, Santiago, Chile
| | | | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Carlos D S Brites
- Physics Department, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Luís D Carlos
- Physics Department, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Albano N Carneiro Neto
- Physics Department, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Montréal, QC, Canada
| | - Pablo Fuentealba
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Liu M, Liang J, Vetrone F. Toward Accurate Photoluminescence Nanothermometry Using Rare-Earth Doped Nanoparticles for Biomedical Applications. Acc Chem Res 2024; 57:2653-2664. [PMID: 39192666 DOI: 10.1021/acs.accounts.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Photoluminescence nanothermometry can detect the local temperature at the submicrometer scale with minimal contact with the object under investigation. Owing to its high spatial resolution, this technique shows great potential in biomedicine in both fundamental studies as well as preclinical research. Photoluminescence nanothermometry exploits the temperature-dependent optical properties of various nanoscale optical probes including organic fluorophores, quantum dots, and carbon nanostructures. At the vanguard of these diverse optical probes, rare-earth doped nanoparticles (RENPs) have demonstrated remarkable capabilities in photoluminescence nanothermometry. They distinguish themselves from other luminescent nanoprobes owning to their unparalleled and versatile optical properties that include narrow emission bandwidths, high photostability, tunable lifetimes from microseconds to milliseconds, multicolor emissions spanning the ultraviolet, visible, and near-infrared (NIR) regions, and the ability to undergo upconversion, all with excitation of a single, biologically friendly NIR wavelength. Recent advancements in the design of novel RENPs have led to new fundamental breakthroughs in photoluminescence nanothermometry. Moreover, driven by their excellent biocompatibility, both in vitro and in vivo, their implementation in biomedical applications has also gained significant traction. However, these nanoprobes face limitations caused by the complex biological environments, including absorption and scattering of various biomolecules as well as interference from different tissues, which limit the spatial resolution and detection sensitivity in RENP temperature sensing. Among existing approaches in RENP photoluminescence nanothermometry, the most prevalent implemented mechanisms either leverage the changes in the relative intensity ratio of two emission bands or exploit the lifetimes of various excited states. Photoluminescence intensity ratio (PLIR) nanothermometry has been the mainstream method owing to the readily available spectrometers for photoluminescence acquisition. Despite offering high temperature sensitivity and spatial resolution, this technique is restricted by tedious calibration and undesirable fluctuation in photoluminescence intensity ascribed to factors such as probe concentration, excitation power density, and biochemical surroundings. Lifetime-based nanothermometry uses the lifetime of a specific transition as the contrast mechanism to infer the temperature. This modality is less susceptible to various experimental factors and is compatible with a broader range of photoluminescence nanoprobes. However, due to relatively expensive and complex instrumentation, long data acquisition, and sophisticated data analysis, lifetime-based nanothermometry is still breaking ground with recently emerging techniques lightening its path. In this Account, we provide an overview of RENP nanothermometry and their applications in biomedicine. The architectures and luminescence mechanisms of RENPs are examined, followed by the principles of PLIR and lifetime-based nanothermometry. The in-depth description of each approach starts with its basic principle of accurate temperature sensing, followed by a critical discussion of the representative techniques, applications as well as their strengths and limitations. Special emphasis is given to the emerging modality of lifetime-based nanothermometry in light of the important new developments in the field. Finally, a summary and an outlook are provided to conclude this Account.
Collapse
Affiliation(s)
- Miao Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Fiorenzo Vetrone
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
4
|
Yang C, Liu J, Jia C, Qu S, Li W, Song J, Guo N. Achieved High-Sensitivity Single-Band Ratiometric Optical Thermometry by Manipulating the Intervalence Charge-Transfer Band Position. Inorg Chem 2024; 63:14779-14785. [PMID: 39054647 DOI: 10.1021/acs.inorgchem.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Currently, optical thermometry has received widespread attention because of its noncontact and wide temperature range, but most of them are based on the application of dual-band optical ratiometric thermometry, so the development of a single-band ratiometric (SBR) optical thermometry, which is easier to analyze and use, is particularly important. In this work, the position of the intervalence charge-transfer (IVCT) band for Na2Gd2-xLaxTi3O10:Pr3+ (x = 0, 0.5, 1.0, 1.5, 2.0) was modulated using Gd/La substitution, enhancing the thermal response difference of Pr3+ 1D2 → 3H4 under charge-transfer band (CTB) and IVCT band excitation, thereby achieving high-sensitivity SBR optical thermometry, and the maximum relative sensitivity (Sr-max) reached 2.95% (at 298 K). In addition, this series of phosphors has high-color-purity red emission, indicating that it has potential for multifield applications.
Collapse
Affiliation(s)
- Chunwei Yang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Jianxia Liu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Chengzheng Jia
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Song Qu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wenting Li
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Jiatong Song
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Ning Guo
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
5
|
Wetzl C, Renero-Lecuna C, Cardo L, Liz-Marzán LM, Prato M. Temperature-Dependent Luminescence of Nd 3+-Doped Carbon Nanodots for Nanothermometry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35484-35493. [PMID: 38934218 DOI: 10.1021/acsami.4c07605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Noncontact optical nanothermometers operating within the biological transparency windows are required to study temperature-sensitive biological phenomena at the nanoscale. Nanoparticles containing rare-earth ions such as Nd3+ have been reported to be efficient luminescence-based ratiometric thermometers, however often limited by poor water solubility and concentration-related quenching effects. Herein, we introduce a new type of nanothermometer, obtained by employing low-dimensional carbon nanodots (CNDs) as matrices to host Nd3+ ions (NdCNDs). By means of a one-pot procedure, small (∼7-12 nm), water-soluble nanoparticles were obtained, with high (15 wt %) Nd3+ loading. This stable metal-CND system features temperature-dependent photoluminescence in the second biological window (BW II) upon irradiation at 808 nm, thereby allowing accurate and reversible (heating/cooling) temperature measurements with good sensitivity and thermal resolution. The system possesses remarkable biocompatibility in vitro and promising performance at a high penetration depth in tissue models.
Collapse
Affiliation(s)
- Cecilia Wetzl
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- University of the Basque Country, UPV-EHU, 20018 San Sebastián, Spain
| | - Carlos Renero-Lecuna
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Lucia Cardo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, 34127 Trieste, Italy
| |
Collapse
|
6
|
Puccini A, Liu N, Hemmer E. Lanthanide-based nanomaterials for temperature sensing in the near-infrared spectral region: illuminating progress and challenges. NANOSCALE 2024; 16:10975-10993. [PMID: 38607258 DOI: 10.1039/d4nr00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Being first proposed as a method to overcome limitations associated with conventional contact thermometers, luminescence thermometry has been extensively studied over the past two decades as a sensitive and fast approach to remote and minimally invasive thermal sensing. Herein, lanthanide (Ln)-doped nanoparticles (Ln-NPs) have been identified as particularly promising candidates, given their outstanding optical properties. Known primarily for their upconversion emission, Ln-NPs have also been recognized for their ability to be excited with and emit in the near-infrared (NIR) regions matching the NIR transparency windows. This sparked the emergence of the development of NIR-NIR Ln-NPs for a wide range of temperature-sensing applications. The shift to longer excitation and emission wavelengths resulted in increased efforts being put into developing nanothermometers for biomedical applications, however most research is still preclinical. This mini-review outlines and addresses the challenges that limit the reliability and implementation of luminescent nanothermometers to real-life applications. Through a critical look into the recent developments from the past 4 years, we highlight attempts to overcome some of the limitations associated with excitation wavelength, thermal sensitivity, calibration, as well as light-matter interactions. Strategies range from use of longer excitation wavelengths, brighter emitters through strategic core/multi-shell architectures, exploitation of host phonons, and a shift from double- to single-band ratiometric as well as lifetime-based approaches to innovative methods based on computation and machine learning. To conclude, we offer a perspective on remaining gaps and where efforts should be focused towards more robust nanothermometers allowing a shift to real-life, e.g., in vivo, applications.
Collapse
Affiliation(s)
- Abigale Puccini
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
8
|
Gálico DA, Murugesu M. Boosting the sensitivity with time-gated luminescence thermometry using a nanosized molecular cluster aggregate. NANOSCALE 2023; 15:5778-5785. [PMID: 36857687 DOI: 10.1039/d2nr06382d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Luminescence thermometry with trivalent lanthanide ions is a promising avenue for contactless temperature probing. The area has been growing exponentially for the last two decades, and its viability has been successfully demonstrated in various research domains. However, moving from laboratory equipment to real-life applications remains a challenging task. One of the reasons is the possibility of a background luminescence from the probing device or probed environment. To tackle this issue, we elegantly incorporate a rarely explored thermometric approach called time-gated luminescence thermometry (TGLT). Furthermore, we demonstrate an enhanced relative sensitivity through this innovative approach and a path to move toward practical application.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
9
|
Fedorov P, Alexandrov A, Korableva S, Chernova E. Thermal Stability of LiRF
4
(R = Gd, Tb) Compounds. CRYSTAL RESEARCH AND TECHNOLOGY 2023. [DOI: 10.1002/crat.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Pavel Fedorov
- Prokhorov General Physics Institute of the Russian Academy of Sciences 38 Vavilov st. Moscow 119991 Russia
| | - Alexander Alexandrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences 38 Vavilov st. Moscow 119991 Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Moscow 119071 Russia
| | | | - Elena Chernova
- Prokhorov General Physics Institute of the Russian Academy of Sciences 38 Vavilov st. Moscow 119991 Russia
| |
Collapse
|
10
|
Dong G, Zhang K, Dong M, Li X, Liu Z, Zhang L, Fu N, Guan L, Li X, Wang F. Effect of Sr 2+ ions on the structure, up-conversion emission and thermal sensing of Er 3+, Yb 3+ co-doped double perovskite Ba (2-x)Sr xMgWO 6 phosphors. Phys Chem Chem Phys 2023; 25:6214-6224. [PMID: 36753232 DOI: 10.1039/d2cp05190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Investigating the effect of different phases on the optical performance is crucial for thermal sensing phosphor materials. Ba(2-x)SrxMgWO6:Er3+, Yb3+, K+ double perovskite phosphors were successfully prepared using a high-temperature solid-phase method. The dominant up-conversion luminescent (UCL) mechanism was deduced by analyzing the power-dependence spectra and energy level diagrams. By X-ray diffraction tests and tolerance factor calculations, it was demonstrated that the substitution of Sr2+ ions for Ba2+ ions led to the phase changing from cubic to tetragonal. The phase transition led to a decrease in the crystallographic symmetry of the compounds and changes in the optical thermometric properties. The optical temperature sensing properties were investigated using the fluorescence intensity ratio of thermally coupled energy levels (2H11/2 and 4S3/2 to the ground state energy level 4I15/2) of Er3+ ions in Ba2MgWO6, BaSrMgWO6 and Sr2MgWO6. The maximum absolute sensitivities obtained for Ba2MgWO6, BaSrMgWO6 and Sr2MgWO6 doped with 7% Er3+, 2% Yb3+ and 9% K+ were 6.77 × 10-4 K-1, 10.09 × 10-4 K-1 and 23.4 × 10-4 K-1, respectively. The comparison revealed that the phase transition caused an increase in the luminescence intensity and absolute sensitivity. This provides a useful pathway for modulating the subsequent thermometric performance.
Collapse
Affiliation(s)
- Guoyi Dong
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
| | - Kexin Zhang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
| | - Mengrui Dong
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
| | - Xiangxiang Li
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
| | - Zhenyang Liu
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
| | - Lei Zhang
- Hebei Key Laboratory of Optoelectronic Information and Geo-detection Technology, Hebei GEO University, Shijiazhuang, China, 050031
| | - Nian Fu
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
| | - Li Guan
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
| | - Xu Li
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
| | - Fenghe Wang
- Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|
11
|
Liang Z, Wu J, Cui Y, Sun H, Ning CZ. Self-optimized single-nanowire photoluminescence thermometry. LIGHT, SCIENCE & APPLICATIONS 2023; 12:36. [PMID: 36740693 PMCID: PMC9899784 DOI: 10.1038/s41377-023-01070-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials-based photoluminescence thermometry (PLT) is a new contact-free photonic approach for temperature sensing, important for applications ranging from quantum technology to biomedical imaging and diagnostics. Even though numerous new materials have been explored, great challenges and deficiencies remain that hamper many applications. In contrast to most of the existing approaches that use large ensembles of rare-earth-doped nanomaterials with large volumes and unavoidable inhomogeneity, we demonstrate the ultimate size reduction and simplicity of PLT by using only a single erbium-chloride-silicate (ECS) nanowire. Importantly, we propose and demonstrate a novel strategy that contains a self-optimization or "smart" procedure to automatically identify the best PL intensity ratio for temperature sensing. The automated procedure is used to self-optimize key sensing metrics, such as sensitivity, precision, or resolution to achieve an all-around superior PLT including several record-setting metrics including the first sensitivity exceeding 100% K-1 (~138% K-1), the highest resolution of 0.01 K, and the largest range of sensible temperatures 4-500 K operating completely within 1500-1800 nm (an important biological window). The high-quality ECS nanowire enables the use of well-resolved Stark-sublevels to construct a series of PL intensity ratios for optimization in infrared, allowing the completely Boltzmann-based sensing at cryogenic temperature for the first time. Our single-nanowire PLT and the proposed optimization strategy overcome many existing challenges and could fundamentally impact PL nano-thermometry and related applications such as single-cell thermometry.
Collapse
Affiliation(s)
- Zhang Liang
- Department of Electronic Engineering, Tsinghua University, 100084, Beijing, China
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China
| | - Jinhua Wu
- Department of Electronic Engineering, Tsinghua University, 100084, Beijing, China
| | - Ying Cui
- Department of Electronic Engineering, Tsinghua University, 100084, Beijing, China
| | - Hao Sun
- Department of Electronic Engineering, Tsinghua University, 100084, Beijing, China
| | - Cun-Zheng Ning
- Department of Electronic Engineering, Tsinghua University, 100084, Beijing, China.
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Matulionyte M, Skripka A, Ramos-Guerra A, Benayas A, Vetrone F. The Coming of Age of Neodymium: Redefining Its Role in Rare Earth Doped Nanoparticles. Chem Rev 2023; 123:515-554. [PMID: 36516409 DOI: 10.1021/acs.chemrev.2c00419] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among luminescent nanostructures actively investigated in the last couple of decades, rare earth (RE3+) doped nanoparticles (RENPs) are some of the most reported family of materials. The development of RENPs in the biomedical framework is quickly making its transition to the ∼800 nm excitation pathway, beneficial for both in vitro and in vivo applications to eliminate heating and facilitate higher penetration in tissues. Therefore, reports and investigations on RENPs containing the neodymium ion (Nd3+) greatly increased in number as the focus on ∼800 nm radiation absorbing Nd3+ ion gained traction. In this review, we cover the basics behind the RE3+ luminescence, the most successful Nd3+-RENP architectures, and highlight application areas. Nd3+-RENPs, particularly Nd3+-sensitized RENPs, have been scrutinized by considering the division between their upconversion and downshifting emissions. Aside from their distinctive optical properties, significant attention is paid to the diverse applications of Nd3+-RENPs, notwithstanding the pitfalls that are still to be addressed. Overall, we aim to provide a comprehensive overview on Nd3+-RENPs, discussing their developmental and applicative successes as well as challenges. We also assess future research pathways and foreseeable obstacles ahead, in a field, which we believe will continue witnessing an effervescent progress in the years to come.
Collapse
Affiliation(s)
- Marija Matulionyte
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Alma Ramos-Guerra
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Antonio Benayas
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.,Molecular Imaging Program at Stanford Department of Radiology Stanford University 1201 Welch Road, Lucas Center (exp.), Stanford, California 94305-5484, United States
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
13
|
The role of Nd 3+ concentration in the modulation of the thermometric performance of Stokes/anti-Stokes luminescence thermometer in NaYF 4:Nd 3. Sci Rep 2023; 13:472. [PMID: 36627331 PMCID: PMC9832010 DOI: 10.1038/s41598-022-27339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The growing popularity of luminescence thermometry observed in recent years is related to the high application potential of this technique. However, in order to use such materials in a real application, it is necessary to have a thorough understanding of the processes responsible for thermal changes in the shape of the emission spectrum of luminophores. In this work, we explain how the concentration of Nd3+ dopant ions affects the change in the thermometric parameters of a thermometer based on the ratio of Stokes (4F3/2 → 4I9/2) to anti-Stokes (4F7/2,4S3/2 → 4I9/2) emission intensities in NaYF4:Nd3+. It is shown that the spectral broadening of the 4I9/2 → 4F5/2, 2H9/2 absorption band observed for higher dopant ion concentrations enables the modulation of the relative sensitivity, usable temperature range, and uncertainty of temperature determination of such a luminescent thermometer.
Collapse
|
14
|
Salerno EV, Carneiro Neto AN, Eliseeva SV, Hernández-Rodríguez MA, Lutter JC, Lathion T, Kampf JW, Petoud S, Carlos LD, Pecoraro VL. Tunable Optical Molecular Thermometers Based on Metallacrowns. J Am Chem Soc 2022; 144:18259-18271. [PMID: 36173924 DOI: 10.1021/jacs.2c04821] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of ligands' energy levels on thermal dependence of lanthanide emission was examined to create new molecular nanothermometers. A series of Ln2Ga8L8'L8″ metallacrowns (shorthand Ln2L8'), where Ln = Gd3+, Tb3+, or Sm3+ (H3L' = salicylhydroxamic acid (H3shi), 5-methylsalicylhydroxamic acid (H3mshi), 5-methoxysalicylhydroxamic acid (H3moshi), and 3-hydroxy-2-naphthohydroxamic acid (H3nha)) and H2L″ = isophthalic acid (H2iph), was synthesized and characterized. Within the series, ligand-centered singlet state (S1) energy levels ranged from 23,300 to 27,800 cm-1, while triplet (T1) energy levels ranged from 18,150 to 21,980 cm-1. We demonstrated that the difference between T1 levels and relevant energies of the excited 4G5/2 level of Sm3+ (17,800 cm-1) and 5D4 level of Tb3+ (20,400 cm-1) is the major parameter controlling thermal dependence of the emission intensity via the back energy transfer mechanism. However, when the energy difference between S1 and T1 levels is small (below 3760 cm-1), the S1 → T1 intersystem crossing (and its reverse, S1 ← T1) mechanism contributes to the thermal behavior of metallacrowns. Both mechanisms affect Ln3+-centered room-temperature quantum yields with values ranging from 2.07(6)% to 31.2(2)% for Tb2L8' and from 0.0267(7)% to 2.27(5)% for Sm2L8'. The maximal thermal dependence varies over a wide thermal range (ca. 150-350 K) based on energy gaps between relevant ligand-based and lanthanide-based electronic states. By mixing Tb2moshi8' with Sm2moshi8' in a 1:1 ratio, an optical thermometer with a relative thermal sensitivity larger than 3%/K at 225 K was created. Other temperature ranges are also accessible with this approach.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Albano N Carneiro Neto
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro Campus de Santiago, Aveiro 3810-193, Portugal
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire CNRS UPR 4301, 45071 Orléans Cedex 2, France
| | - Miguel A Hernández-Rodríguez
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro Campus de Santiago, Aveiro 3810-193, Portugal
| | - Jacob C Lutter
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothée Lathion
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff W Kampf
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire CNRS UPR 4301, 45071 Orléans Cedex 2, France
| | - Luis D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro Campus de Santiago, Aveiro 3810-193, Portugal
| | - Vincent L Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
16
|
Kolesnikov IE, Afanaseva EV, Kurochkin MA, Vaishlia EI, Kolesnikov EY, Lähderanta E. Dual-center co-doped and mixed ratiometric LuVO 4:Nd 3+/Yb 3+nanothermometers. NANOTECHNOLOGY 2022; 33:165504. [PMID: 35008067 DOI: 10.1088/1361-6528/ac49c3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
During last decade luminescence thermometry has become a widely studied research field due to its potential applications for real time contactless temperature sensing where usual thermometers cannot be used. Special attention is paid to the development of accurate and reliable thermal sensors with simple reading. To address existing problems of ratiometric thermometers based on thermally-coupled levels, LuVO4:Nd3+/Yb3+thermal sensors were studied as a proof-of-concept of dual-center thermometer obtained by co-doping or mixture. Both approaches to create a dual-center sensor were compared in terms of energy transfer efficiency, relative sensitivity, and temperature resolution. Effect of excitation mechanism and Yb3+doping concentration on thermometric performances was also investigated. The best characteristics ofSr = 0.34% K-1@298 K and ΔT = 0.2 K were obtained for mixed phosphors upon host excitation.
Collapse
Affiliation(s)
- Ilya E Kolesnikov
- St. Petersburg State University, Universitetskaya nab. 7-9, 199034, St. Petersburg, Russia
- LUT University, Skinnarilankatu 34, FI-53850, Lappeenranta, Finland
| | - Elena V Afanaseva
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, 195251, St. Petersburg, Russia
| | - Mikhail A Kurochkin
- St. Petersburg State University, Universitetskaya nab. 7-9, 199034, St. Petersburg, Russia
| | - Elena I Vaishlia
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, 195251, St. Petersburg, Russia
| | - Evgenii Yu Kolesnikov
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, 195251, St. Petersburg, Russia
| | - Erkki Lähderanta
- LUT University, Skinnarilankatu 34, FI-53850, Lappeenranta, Finland
| |
Collapse
|
17
|
Safe and Scalable Polyethylene Glycol-Assisted Hydrothermal Synthesis and Laser Cooling of 10%Yb3+:LiLuF4 Crystals. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rare earth doped lithium fluorides are a class of materials with a wide variety of optical applications, but the hazardous reagents used in their synthesis often restrict the amount of product that can be created at one time. In this work, 10%Yb3+:LiLuF4 (Yb:LLF) crystals have been synthesized through a safe and scalable polyethylene glycol (PEG)-assisted hydrothermal method. A combination of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and photoluminescence (PL) measurements were used to characterize the obtained materials. The influence of reaction temperature, time, fluoride source, and precursor amount on the shape and size of the Yb:LLF crystals are also discussed. Calibrated PL spectra of Yb3+ ions show laser cooling to more than 15 K below room temperature in air and 5 K in deionized water under 1020 nm diode laser excitation measured at a laser power of 50 mW.
Collapse
|
18
|
Kolesnikov I, Mamonova D, Kurochkin M, Medvedev V, Bai G, Ivanova T, Borisov E, Kolesnikov E. Double-doped YVO4 nanoparticles as optical dual-center ratiometric thermometers. Phys Chem Chem Phys 2022; 24:15349-15356. [DOI: 10.1039/d2cp01543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystalline inorganic nanoparticles doped with rare earth ions are widely used in variety of scientific and industry applications due to the unique spectroscopic properties. Temperature dependence of their luminescence parameters...
Collapse
|
19
|
Yu D, Li H, Zhang D, Zhang Q, Meijerink A, Suta M. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd 3. LIGHT, SCIENCE & APPLICATIONS 2021; 10:236. [PMID: 34811347 PMCID: PMC8608900 DOI: 10.1038/s41377-021-00677-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 05/03/2023]
Abstract
Ratiometric luminescence thermometry with trivalent lanthanide ions and their 4fn energy levels is an emerging technique for non-invasive remote temperature sensing with high spatial and temporal resolution. Conventional ratiometric luminescence thermometry often relies on thermal coupling between two closely lying energy levels governed by Boltzmann's law. Despite its simplicity, Boltzmann thermometry with two excited levels allows precise temperature sensing, but only within a limited temperature range. While low temperatures slow down the nonradiative transitions required to generate a measurable population in the higher excitation level, temperatures that are too high favour equalized populations of the two excited levels, at the expense of low relative thermal sensitivity. In this work, we extend the concept of Boltzmann thermometry to more than two excited levels and provide quantitative guidelines that link the choice of energy gaps between multiple excited states to the performance in different temperature windows. By this approach, it is possible to retain the high relative sensitivity and precision of the temperature measurement over a wide temperature range within the same system. We demonstrate this concept using YAl3(BO3)4 (YAB):Pr3+, Gd3+ with an excited 6PJ crystal field and spin-orbit split levels of Gd3+ in the UV range to avoid a thermal black body background even at the highest temperatures. This phosphor is easily excitable with inexpensive and powerful blue LEDs at 450 nm. Zero-background luminescence thermometry is realized by using blue-to-UV energy transfer upconversion with the Pr3+-Gd3+ couple upon excitation in the visible range. This method allows us to cover a temperature window between 30 and 800 K.
Collapse
Affiliation(s)
- Dechao Yu
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical Systems, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Huaiyong Li
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical Systems, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qinyuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510641, China.
| | - Andries Meijerink
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Markus Suta
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands.
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
20
|
Zhou P, Zhang Q, Dou X, Wang J, Sun B, Shen Y, Liu B, Han D. Optical pressure and temperature sensing properties of Nd 3+:YTaO 4. Phys Chem Chem Phys 2021; 23:23380-23388. [PMID: 34636820 DOI: 10.1039/d1cp03418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pressure- and temperature-dependent luminescence properties of M'-phase Nd3+:YTaO4 synthesized by a molten salt method are presented. Ten near-infrared emission lines originating from the transitions between the two Stark levels R1,2 of the 3F3/2 state and the five Stark levels Z1,2,3,4,5 of the 4I9/2 state for the doped Nd3+ ions can be clearly identified. All these emission lines are found to shift linearly with pressure in a range up to ∼11 GPa. The R2,1 → Z5 emission lines have larger pressure sensitivities, which are 16.44 and 14.27 cm-1 GPa-1. The intensities of all the emission lines evolve with pressure non-monotonically, and peak at ∼1 GPa. The R1 → Z4,5 and R2 → Z1 emission lines can be obviously narrowed under the hydrostatic pressure, and broadened under the non-hydrostatic pressure, indicating their potential capability for reflecting the characteristic of a pressure environment. The intensity ratio of the R2,1 → Z5 emission lines exhibits a large temperature dependence, with a relative sensitivity between 0.129% and 0.108% K-1 in the physiological temperature range of 290-320 K. Thermal variations of the spectral positions and widths of the R2,1 → Z5 emission lines are also investigated. A high thermal stability for the position of the R2 → Z5 emission line is revealed. Based on the experimental results, the advantages and potential of Nd3+:YTaO4 as a multi-functional sensor for pressure and temperature are discussed.
Collapse
Affiliation(s)
- Pengyu Zhou
- School of Science, Northeast Electric Power University, Jilin 132012, China.
| | - Qingli Zhang
- Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiuming Dou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
| | - Jian Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
| | - Baoquan Sun
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
| | - Yuhua Shen
- School of Science, Northeast Electric Power University, Jilin 132012, China.
| | - Bao Liu
- School of Science, Northeast Electric Power University, Jilin 132012, China.
| | - Dandan Han
- School of Science, Northeast Electric Power University, Jilin 132012, China.
| |
Collapse
|
21
|
Nexha A, Carvajal JJ, Pujol MC, Díaz F, Aguiló M. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications. NANOSCALE 2021; 13:7913-7987. [PMID: 33899861 DOI: 10.1039/d0nr09150b] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of lanthanide-doped non-contact luminescent nanothermometers with accuracy, efficiency and fast diagnostic tools attributed to their versatility, stability and narrow emission band profiles has spurred the replacement of conventional contact thermal probes. The application of lanthanide-doped materials as temperature nanosensors, excited by ultraviolet, visible or near infrared light, and the generation of emissions lying in the biological window regions, I-BW (650 nm-950 nm), II-BW (1000 nm-1350 nm), III-BW (1400 nm-2000 nm) and IV-BW (centered at 2200 nm), are notably growing due to the advantages they present, including reduced phototoxicity and photobleaching, better image contrast and deeper penetration depths into biological tissues. Here, the different mechanisms used in lanthanide ion-doped nanomaterials to sense temperature in these biological windows for biomedical and other applications are summarized, focusing on factors that affect their thermal sensitivity, and consequently their temperature resolution. Comparing the thermometric performance of these nanomaterials in each biological window, we identified the strategies that allow boosting of their sensing properties.
Collapse
Affiliation(s)
- Albenc Nexha
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007, Tarragona, Spain.
| | | | | | | | | |
Collapse
|
22
|
Wang S, Zhang J, Wu J, Ye Z, Yu H, Zhang H. Rational Design of a Nd
3+
‐Mn
4+
Co‐doped Luminescent Thermometer: Towards High‐Sensitivity Temperature Sensing. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shuxian Wang
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Jinpu Zhang
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Jiaming Wu
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Zhengmao Ye
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Haohai Yu
- Institute of Crystal Materials Shandong University Jinan Shandong 250100 China
| | - Huaijin Zhang
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
- Institute of Crystal Materials Shandong University Jinan Shandong 250100 China
| |
Collapse
|
23
|
Zhou P, Zhang Q, Peng F, Sun B, Dou X, Liu B, Han D, Xue Y, Ding K. Optical properties of Nd3+ ions doped GdTaO4 for pressure and temperature sensing. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Luminescent Yb 3+,Er 3+-Doped α-La(IO 3) 3 Nanocrystals for Neuronal Network Bio-Imaging and Nanothermometry. NANOMATERIALS 2021; 11:nano11020479. [PMID: 33668600 PMCID: PMC7918153 DOI: 10.3390/nano11020479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Dual-light emitting Yb3+,Er3+-codoped α-La(IO3)3 nanocrystals, known to exhibit both second harmonic signal and photoluminescence (PL), are evaluated as optical nanoprobes and thermal sensors using both conventional microscopes and a more sophisticated micro-PL setup. When loaded in cortical and hippocampal neurons for a few hours at a concentration of 0.01 mg/mL, a visible PL signal arising from the nanocrystals can be clearly detected using an epifluorescent conventional microscope, enabling to localize the nanocrystals along the stained neurons and to record PL variation with temperature of 0.5% K−1. No signal of cytotoxicity, associated with the presence of nanocrystals, is observed during the few hours of the experiment. Alternatively, a micro-PL setup can be used to discriminate the different PL lines. From ratiometric PL measurements, a relative thermal sensitivity of 1.2% K−1 was measured.
Collapse
|
25
|
Galvão R, Santos LFD, Gonçalves RR, Menezes LDS. Fluorescence Intensity Ratio‐based temperature sensor with single Nd
3 +
:Y
2
O
3
nanoparticles: Experiment and theoretical modeling. NANO SELECT 2021. [DOI: 10.1002/nano.202000148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rodrigo Galvão
- Departamento de Física Universidade Federal de Pernambuco Recife PE Brazil
| | - Luiz F. dos Santos
- Laboratório de Materiais Luminescentes Micro e Nanoestruturados‐Mater Lumen Departamento de Química Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Rogéria R. Gonçalves
- Laboratório de Materiais Luminescentes Micro e Nanoestruturados‐Mater Lumen Departamento de Química Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | | |
Collapse
|
26
|
Marin R, Jaque D. Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chem Rev 2020; 121:1425-1462. [DOI: 10.1021/acs.chemrev.0c00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Riccardo Marin
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, 28034 Madrid, Spain
| |
Collapse
|
27
|
Cantarano A, Yao J, Matulionyte M, Lifante J, Benayas A, Ortgies DH, Vetrone F, Ibanez A, Gérardin C, Jaque D, Dantelle G. Autofluorescence-Free In Vivo Imaging Using Polymer-Stabilized Nd 3+-Doped YAG Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51273-51284. [PMID: 33156603 DOI: 10.1021/acsami.0c15514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neodymium-doped yttrium aluminum garnet (YAG:Nd3+) has been widely developed during roughly the past 60 years and has been an outstanding fluorescent material. It has been considered as the gold standard among multipurpose solid-state lasers. Yet, the successful downsizing of this system into the nanoregimen has been elusive, so far. Indeed, the synthesis of a garnet structure at the nanoscale, with enough crystalline quality for optical applications, was found to be quite challenging. Here, we present an improved solvothermal synthesis method producing YAG:Nd3+ nanocrystals of remarkably good structural quality. Adequate surface functionalization using asymmetric double-hydrophilic block copolymers, constituted of a metal-binding block and a neutral water-soluble block, provides stabilized YAG:Nd3+ nanocrystals with long-term colloidal stability in aqueous suspensions. These newly stabilized nanoprobes offer spectroscopic quality (long lifetimes, narrow emission lines, and large Stokes shifts) close to that of bulk YAG:Nd3+. The narrow emission lines of YAG:Nd3+ nanocrystals are exploited by differential infrared fluorescence imaging, thus achieving an autofluorescence-free in vivo readout. In addition, nanothermometry measurements, based on the ratiometric fluorescence of the stabilized YAG:Nd3+ nanocrystals, are demonstrated. The progress here reported paves the way for the implementation of this new stabilized YAG:Nd3+ system in the preclinical arena.
Collapse
Affiliation(s)
- Alexandra Cantarano
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Jingke Yao
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Marija Matulionyte
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes (Québec) J3X 1S2, Canada
| | - José Lifante
- Fluorescence Imaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo, 2, Madrid 28029, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Antonio Benayas
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Dirk H Ortgies
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes (Québec) J3X 1S2, Canada
| | - Alain Ibanez
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Corine Gérardin
- ICGM, Univ. Montpellier, CNRS UMR 5253, ENSCM, 240 Avenue E. Jeanbrau, 34296 Montpellier cedex 5, France
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Géraldine Dantelle
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
28
|
Marciniak L, Trejgis K, Lisiecki R, Bednarkiewicz A. Synergy between NIR luminescence and thermal emission toward highly sensitive NIR operating emissive thermometry. Sci Rep 2020; 10:19692. [PMID: 33184455 PMCID: PMC7664999 DOI: 10.1038/s41598-020-76851-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
There are many figures of merit, which determine suitability of luminescent thermometers for practical applications. These include thermal sensitivity, thermal accuracy as well as ease and cost effectivness of technical implementation. A novel contactless emission thermometer is proposed, which takes advantage of the coexistence of photoluminescence from Nd3+ doping ions and black body emission in transparent Nd3+ doped-oxyfluorotellurite glass host matrix. The opposite temperature dependent emission from these two phenomena, enables to achieve exceptionally high relative sensitivity SR = 8.2%/°C at 220 °C. This enables to develop new type of emissive noncontact temperature sensors.
Collapse
Affiliation(s)
- Lukasz Marciniak
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Wrocław, Poland.
| | - Karolina Trejgis
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Wrocław, Poland
| | - Radosław Lisiecki
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Wrocław, Poland
| | - Artur Bednarkiewicz
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Wrocław, Poland
| |
Collapse
|
29
|
Skripka A, Benayas A, Brites CDS, Martín IR, Carlos LD, Vetrone F. Inert Shell Effect on the Quantum Yield of Neodymium-Doped Near-Infrared Nanoparticles: The Necessary Shield in an Aqueous Dispersion. NANO LETTERS 2020; 20:7648-7654. [PMID: 32941042 DOI: 10.1021/acs.nanolett.0c03187] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lanthanide-doped nanoparticles (LnNPs) are versatile near-infrared (NIR) emitting nanoprobes that have led to their growing interest for use in biomedicine-related imaging. Toward the brightest LnNPs, high photoluminescence quantum yield (PLQY) values are attained by implementing core/shell engineering, particularly with an optically inert shell. In this work, a thorough investigation is performed to quantify how an outer inert shell maintains the PLQY of Nd3+-doped LnNPs dispersed in an aqueous environment. Three relevant quantitative findings affecting the PLQY of Nd3+-doped LnNPs are identified: (i) the PLQY of core LnNPs is improved 3-fold upon inert shell coating; (ii) PLQY decreases with increasing Nd3+ doping despite the inert shell; and (iii) solvent quenching has a major influence on the PLQY of the LnNPs, though it is relatively lessened for high Nd3+ doping. Overall, we shed new light on the impact of the LnNP architecture on the NIR emission, as well as on the quenching effects caused by doping concentration and solvent molecules.
Collapse
Affiliation(s)
- Artiom Skripka
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Antonio Benayas
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Carlos D S Brites
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Inocencio R Martín
- Departamento de Física, Universidad de La Laguna, Apdo. 456. E-38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
- Instituto Universitario de Materiales y Nanotecnología (IMN), Universidad de La Laguna, Apdo. 456, E-38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Fiorenzo Vetrone
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| |
Collapse
|
30
|
Suta M, Meijerink A. A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers—Thermodynamic and Kinetic Guidelines for Optimized Performance. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000176] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Markus Suta
- Condensed Matter and Interfaces Debye Institute for Nanomaterials Science Department of Chemistry, Utrecht University Princetonplein 1 Utrecht 3584 CC The Netherlands
| | - Andries Meijerink
- Condensed Matter and Interfaces Debye Institute for Nanomaterials Science Department of Chemistry, Utrecht University Princetonplein 1 Utrecht 3584 CC The Netherlands
| |
Collapse
|
31
|
Skripka A, Cheng T, Jones CMS, Marin R, Marques-Hueso J, Vetrone F. Spectral characterization of LiYbF 4 upconverting nanoparticles. NANOSCALE 2020; 12:17545-17554. [PMID: 32812995 DOI: 10.1039/d0nr04357e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In light of the recent developments on Yb3+-based upconverting rare-earth nanoparticles (RENPs), we have systematically explored the spectral features of LiYbF4:RE3+/LiYF4 core/shell RENPs doped with various amounts of Tm3+, Er3+, or Ho3+. Tm3+-RENPs displayed photoluminescence from the UV to near-infrared (NIR), and the dominant high-photon-order upconversion emission of these RENPs was tunable by Tm3+ doping. Similarly, Er3+- and Ho3+-RENPs with green and red upconversion showed wide color tuning, depending on the doping amount and excitation power density. From steady-state power plot and photoluminescence decay studies we have observed respective changes in upconversion photon order and average lifetime that attest to a number of cross-relaxation processes occurring at higher RE3+ doping concentration. Particularly in the case of Tm3+-RENPs, cross-relaxation promotes four- and five-photon order upconversion emission in the UV and blue spectral regions. The quantum yield of high-order upconversion emission was on par with classic Yb3+/Tm3+-doped systems, yet due to the high number of sensitizer ions in the LiYbF4 host these RENPs are expected to be brighter and thus better suited for applications such as controlled drug delivery or optogenetics. Overall, LiYbF4:RE3+/LiYF4 RENPs are promising systems to effectively generate high-order upconversion emissions, owing to excitation energy confinement within the Yb3+ network and its efficient funneling to the activator dopants.
Collapse
Affiliation(s)
- Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Ting Cheng
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Callum M S Jones
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Riccardo Marin
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada and Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| | - Jose Marques-Hueso
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Fiorenzo Vetrone
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| |
Collapse
|
32
|
Kitos AA, Gálico DA, Castañeda R, Ovens JS, Murugesu M, Brusso JL. Stark Sublevel-Based Thermometry with Tb(III) and Dy(III) Complexes Cosensitized via the 2-Amidinopyridine Ligand. Inorg Chem 2020; 59:11061-11070. [DOI: 10.1021/acs.inorgchem.0c01534] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alexandros A. Kitos
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Diogo A. Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Raúl Castañeda
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey S. Ovens
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Jaclyn L. Brusso
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
33
|
Porosnicu I, Colbea C, Baiasu F, Lungu M, Istrate MC, Avram D, Tiseanu C. A sensitive near infrared to near-infrared luminescence nanothermometer based on triple doped Ln -Y 2O 3. Methods Appl Fluoresc 2020; 8:035005. [PMID: 32320952 DOI: 10.1088/2050-6120/ab8c20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, luminescence nanothermometers with near infrared light (NIR) emission excited in the NIR range have attracted much attention due to their potential in bio applications. Here, we propose a new nanothermometer based on triple doped 1%Ho, 1%Er, 1%Yb - Y2O3 that operates in the second and third biological windows around 1200 and 1530 nm under pulsed excitation at 905 nm. The NIR emissions were analysed in the temperature range of 298-473 K in terms of intensity, shape and dynamics. The nanothermometer performances were described using the luminescent intensity ratio (LIR) corresponding to the 5I6-5I8 and 4I13/2-4I15/2 emissions transitions of Ho and Er, respectively. A maximum relative sensitivity of 1.5% K-1 was achieved at 309 K, which is among the highest five values reported so far for the NIR to NIR downconversion nanothermometers. The thermometer performance for biological application was assessed in terms of nanothermometer reliability and stability as well as emission shape changes induced by water and custom designed optical phantoms. Combination between use of pulsed excitation and identification of Ln doping configuration offering both excitation and emission in the biological windows represent a solid approach that can be easily translated to other hosts to develop a new class of near infrared nanothermometers.
Collapse
Affiliation(s)
- Ioana Porosnicu
- National Institute for Laser, Plasma and Radiation Physics, PO Box MG-36, RO 76900 Bucharest-Magurele, Romania. University of Bucharest, Faculty of Physics, 405 Atomistilor Street, 077125 Magurele-Ilfov, Romania
| | | | | | | | | | | | | |
Collapse
|
34
|
Shen Y, Lifante J, Fernández N, Jaque D, Ximendes E. In Vivo Spectral Distortions of Infrared Luminescent Nanothermometers Compromise Their Reliability. ACS NANO 2020; 14:4122-4133. [PMID: 32227917 DOI: 10.1021/acsnano.9b08824] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Luminescence nanothermometry has emerged over the past decade as an exciting field of research due to its potential applications where conventional methods have demonstrated to be ineffective. Preclinical research has been one of the areas that have benefited the most from the innovations proposed in the field. Nevertheless, certain questions concerning the reliability of the technique under in vivo conditions have been continuously overlooked by most of the scientific community. In this proof-of-concept, hyperspectral in vivo imaging is used to explain how unverified assumptions about the thermal dependence of the optical transmittance of biological tissues in the so-called biological windows can lead to erroneous measurements of temperature. Furthermore, the natural steps that should be taken in the future for a reliable in vivo luminescence nanothermometry are discussed together with a perspective view of the field after the findings here reported.
Collapse
Affiliation(s)
- Yingli Shen
- Fluorescence Imaging Group, Departamento de Fı́sica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - José Lifante
- Fluorescence Imaging Group, Departamento de Fisiologı́a, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, Madrid 28029, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Nuria Fernández
- Fluorescence Imaging Group, Departamento de Fisiologı́a, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, Madrid 28029, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Fı́sica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Erving Ximendes
- Fluorescence Imaging Group, Departamento de Fı́sica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| |
Collapse
|
35
|
Suta M, Antić Ž, Ðorđević V, Kuzman S, Dramićanin MD, Meijerink A. Making Nd 3+ a Sensitive Luminescent Thermometer for Physiological Temperatures-An Account of Pitfalls in Boltzmann Thermometry. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E543. [PMID: 32197319 PMCID: PMC7153599 DOI: 10.3390/nano10030543] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/25/2022]
Abstract
Ratiometric luminescence thermometry employing luminescence within the biological transparency windows provides high potential for biothermal imaging. Nd3+ is a promising candidate for that purpose due to its intense radiative transitions within biological windows (BWs) I and II and the simultaneous efficient excitability within BW I. This makes Nd3+ almost unique among all lanthanides. Typically, emission from the two 4F3/2 crystal field levels is used for thermometry but the small ~100 cm-1 energy separation limits the sensitivity. A higher sensitivity for physiological temperatures is possible using the luminescence intensity ratio (LIR) of the emissive transitions from the 4F5/2 and 4F3/2 excited spin-orbit levels. Herein, we demonstrate and discuss various pitfalls that can occur in Boltzmann thermometry if this particular LIR is used for physiological temperature sensing. Both microcrystalline, dilute (0.1%) Nd3+-doped LaPO4 and LaPO4: x% Nd3+ (x = 2, 5, 10, 25, 100) nanocrystals serve as an illustrative example. Besides structural and optical characterization of those luminescent thermometers, the impact and consequences of the Nd3+ concentration on their luminescence and performance as Boltzmann-based thermometers are analyzed. For low Nd3+ concentrations, Boltzmann equilibrium starts just around 300 K. At higher Nd3+ concentrations, cross-relaxation processes enhance the decay rates of the 4F3/2 and 4F5/2 levels making the decay faster than the equilibration rates between the levels. It is shown that the onset of the useful temperature sensing range shifts to higher temperatures, even above ~ 450 K for Nd concentrations over 5%. A microscopic explanation for pitfalls in Boltzmann thermometry with Nd3+ is finally given and guidelines for the usability of this lanthanide ion in the field of physiological temperature sensing are elaborated. Insight in competition between thermal coupling through non-radiative transitions and population decay through cross-relaxation of the 4F5/2 and 4F3/2 spin-orbit levels of Nd3+ makes it possible to tailor the thermometric performance of Nd3+ to enable physiological temperature sensing.
Collapse
Affiliation(s)
- Markus Suta
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands;
| | - Željka Antić
- Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade, Serbia; (Ž.A.); (V.Ð.); (S.K.); (M.D.D.)
| | - Vesna Ðorđević
- Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade, Serbia; (Ž.A.); (V.Ð.); (S.K.); (M.D.D.)
| | - Sanja Kuzman
- Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade, Serbia; (Ž.A.); (V.Ð.); (S.K.); (M.D.D.)
| | - Miroslav D. Dramićanin
- Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade, Serbia; (Ž.A.); (V.Ð.); (S.K.); (M.D.D.)
| | - Andries Meijerink
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands;
| |
Collapse
|
36
|
Brites CDS, Kuznetsov SV, Konyushkin VA, Nakladov AN, Fedorov PP, Carlos LD. Simultaneous Measurement of the Emission Quantum Yield and Local Temperature: The Illustrative Example of SrF
2
:Yb
3+
/Er
3+
Single Crystals. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Carlos D. S. Brites
- Phantom‐g CICECO – Aveiro Institute of Materials Department of Physics Universidade de Aveiro 3810‐193 Aveiro Portugal
| | - Sergey V. Kuznetsov
- CICECO – Aveiro Institute of Materials Prokhorov General Physics Institute of the Russian Academy of Sciences 119991 Moscow Russia
| | - Vasilii A. Konyushkin
- CICECO – Aveiro Institute of Materials Prokhorov General Physics Institute of the Russian Academy of Sciences 119991 Moscow Russia
| | - Andrey N. Nakladov
- CICECO – Aveiro Institute of Materials Prokhorov General Physics Institute of the Russian Academy of Sciences 119991 Moscow Russia
| | - Pavel P. Fedorov
- CICECO – Aveiro Institute of Materials Prokhorov General Physics Institute of the Russian Academy of Sciences 119991 Moscow Russia
| | - Luís D. Carlos
- Phantom‐g CICECO – Aveiro Institute of Materials Department of Physics Universidade de Aveiro 3810‐193 Aveiro Portugal
| |
Collapse
|
37
|
Yu Z, Chan WK, Tan TTY. Neodymium-Sensitized Nanoconstructs for Near-Infrared Enabled Photomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905265. [PMID: 31782909 DOI: 10.1002/smll.201905265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Neodymium (Nd3+ )-sensitized nanoconstructs have gained increasing attention in recent decades due to their unique properties, especially optical properties. The design of various Nd3+ -sensitized nanosystems is expected to contribute to medical and health applications, due to their advantageous properties such as high penetration depth, excellent photostability, non-photobleaching, low cytotoxicity, etc. However, the low conversion efficiency and potential long-term toxicity of Nd3+ -sensitized nanoconstructs are huge obstacles to their clinical translations. This review article summarizes three energy transfer pathways of all kinds of Nd3+ -sensitized nanoconstructs focusing on the properties of Nd3+ ions and discusses their recent potential applications as near-infrared (NIR) enabled photomedicine. This review article will contribute to the design and fabrication of novel Nd3+ -sensitized nanoconstructs for NIR-enabled photomedicine, aiming for potentially safer and more efficient designs to get closer to clinical usage.
Collapse
Affiliation(s)
- Zhongzheng Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Wen Kiat Chan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Timothy Thatt Yang Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|