1
|
Li W, Farhadi B, Liu M, Wang P, Wang J, Zhang Y, Ma G, Huang R, Zhao J, Wang K, Tong Y. Interface engineering based NiCoMoO 4/Ti 3C 2T x MXene heterostructure for high-performance flexible supercapacitors. J Colloid Interface Sci 2025; 677:541-550. [PMID: 39154446 DOI: 10.1016/j.jcis.2024.08.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
The advancement of interface engineering has demonstrated remarkable efficacy in overcoming the primary impediment associated with sluggish reaction kinetics in supercapacitor electrodes. In this investigation, we employed a facile co-precipitation method to synthesize NiCoMoO4/MXene heterostructures utilizing Ti3C2Tx MXene nanosheets as carriers. This heterostructure inhibits the restacking of MXene nanosheets and simultaneously enhances the exposure of electrochemically active sites in NiCoMoO4 nanorods, thereby mitigating the reduction in specific capacitance resulting from volumetric fluctuations. The NiCoMoO4/MXene electrode, possessing pseudo-capacitance properties, demonstrates an impressive level of specific capacitance, exceptional performance across various charging rates, and consistent behavior throughout repeated cycles. By optimizing the mass ratio, this electrode achieves a specific capacity of 1900 F/g under a current density of 1 A/g. Even after enduring 10,000 cycles at a significantly higher current density of 5 A/g, it still maintains an impressive retention rate of 94.73 %. Our density functional theory (DFT) calculations indicate that the enhanced electrochemical performance can be attributed to the improved electronic coupling within the NiCoMoO4/MXene heterostructure. The integration of NiCoMoO4/MXene cathode and activated carbon (AC) anode with an alkaline gel electrolyte containing potassium ferricyanide in flexible quasi-solid-state supercapacitors (FSSCs) results in exceptional electrochemical performance and flexibility. These FSSCs demonstrate a maximum energy density of 72.89 Wh kg-1 at a power density of 850 W kg-1, while maintaining an impressive power output of 16,780 W kg-1 with an energy density of 37.28 Wh kg-1. Based on these outstanding properties, it is evident that the NiCoMoO4/MXene heterojunction possesses significant advantages as electrode material for supercapacitors, and the fabricated FSSCs devices pave a new pathway for flexible electronic devices.
Collapse
Affiliation(s)
- Wei Li
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Bita Farhadi
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Liu
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Peiru Wang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiayi Wang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yaoyao Zhang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Guoxiang Ma
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Runnan Huang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiayi Zhao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Kai Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yao Tong
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
2
|
Xiao T, Yin X, Zhang T, Wei C, Chen S, Jiang L, Xiang P, Ni S, Tao F, Tan X. Activation-Assisted High-Concentration Phosphorus-Doping to Enhance the Electrochemical Performance of Cobalt Carbonate Hydroxide Hydrate. Inorg Chem 2023. [PMID: 37365016 DOI: 10.1021/acs.inorgchem.3c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
P-doping into metal oxides has been demonstrated as a valid avenue to ameliorate electrochemical performance because it can tune the electronic structures and increase the active sites for an electrochemical reaction. However, it usually results in a low P-doping concentration via the commonly used gas phosphorization method. In this work, an activation-assisted P-doping strategy was explored to significantly raise the P-doping concentration in cobalt carbonate hydroxide hydrate (CCHH). The activation treatment increased active sites for electrochemical reaction and endowed the sample with a high P content in the subsequent gas phosphorization process, thereby greatly enhancing the conductivity of the sample. Therefore, the final CCHH-A-P electrode exhibited a high capacitance of 6.62 F cm-2 at 5 mA cm-2 and good cyclic stability. In addition, the CCHH-A-P//CC ASC with CCHH-A-P as the positive electrode and carbon cloth as the negative electrode provided a high energy density of 0.25 mWh cm-2 at 4 mW cm-2 as well as excellent cycling performance with capacitance retention of 91.2% after 20,000 cycles. Our work shows an effective strategy to acquire Co-based materials with high-concentration P-doping that holds great potential in boosting the electrochemical performance of electrode materials via P-doping technology.
Collapse
Affiliation(s)
- Ting Xiao
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
- College of Materials and Chemical Engineering and Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Xingyu Yin
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Tanying Zhang
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Chong Wei
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Shengyu Chen
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Lihua Jiang
- College of Materials and Chemical Engineering and Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Peng Xiang
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Shibing Ni
- College of Materials and Chemical Engineering and Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Fujun Tao
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Xinyu Tan
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| |
Collapse
|
3
|
Pascariu P, Homocianu M, Vacareanu L, Asandulesa M. Multi-Functional Materials Based on Cu-Doped TiO 2 Ceramic Fibers with Enhanced Pseudocapacitive Performances and Their Dielectric Characteristics. Polymers (Basel) 2022; 14:4739. [PMID: 36365732 PMCID: PMC9654394 DOI: 10.3390/polym14214739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/11/2024] Open
Abstract
In this work, pure TiO2 and Cu (0.5, 1, 2%)-doped TiO2 composites prepared by electrospinning technique followed by calcination at 900 °C, and having high pseudocapacitive and dielectric characteristics were reported. These nanocomposites were characterized by scanning electron microscopy, X-ray diffraction, and dynamic water sorption vapor measurements. The structural characterization of these nanostructures highlighted good crystallinity including only the rutile phase. The electrochemical characteristics were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements, which were performed in a KOH electrolyte solution. Among the Cu-doped TiO2 nanostructures that were prepared, the one containing 0.5% Cu exhibited superior electrochemical properties, including high specific gravimetric capacitance of 1183 F·g-1, specific capacitance of 664 F·g-1, energy density of 45.20 Wh·kg-1, high power density of 723.14 W·kg-1, and capacitance retention of about 94% after 100 cycles. The dielectric investigation shows good dielectric properties for all materials, where the dielectric constant and the dielectric loss decreased with the frequency increase. Thus, all the interconnected studies proved that these new materials show manifold ability and real applicative potential as pseudocapacitors and high-performance dielectrics. Future work and perspectives are anticipated for characterizing electrochemical and dielectric properties for materials including larger amounts of Cu dopant.
Collapse
Affiliation(s)
- Petronela Pascariu
- ”Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | | | | | | |
Collapse
|
4
|
Li X, Huang W, Zhong Y, Liao L, Cheng Y, Zheng K, Liu J. Dandelion‐like Nanospheres Synthesized by CoO@CuO Nanowire Arrays for High‐Performance Asymmetric Supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiuzhen Li
- College of Material Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Centre for Marine Biomass Fibers Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 Shandong China
| | - Weiguo Huang
- College of Material Science and Engineering Central South University Changsha 410000 Hunan China
| | - Yuxue Zhong
- College of Material Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Centre for Marine Biomass Fibers Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 Shandong China
| | - Leiping Liao
- College of Material Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Centre for Marine Biomass Fibers Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 Shandong China
| | - Yujun Cheng
- College of Material Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Centre for Marine Biomass Fibers Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 Shandong China
| | - Kun Zheng
- College of Material Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Centre for Marine Biomass Fibers Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 Shandong China
| | - Jingquan Liu
- College of Material Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Centre for Marine Biomass Fibers Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 Shandong China
| |
Collapse
|
5
|
Li X, Li P, Wei F, Wang X, Han W, Yue J. Effect of oxygen vacancies on the electronic structure and electrochemical performance of MnMoO 4: computational simulation and experimental verification. NEW J CHEM 2022. [DOI: 10.1039/d1nj05085k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous nanopetals of MnMoO4 with oxygen vacancies (MnMoO4–OV) were synthesized and deliver preferable energy storage performance.
Collapse
Affiliation(s)
- Xiaoli Li
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| | - Pengxi Li
- Purification Equipment Research Institute of CSSC, Handan, 056027, China
| | - Fangfang Wei
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| | | | - Weiwen Han
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| | - Jiang Yue
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| |
Collapse
|
6
|
Xie Y. Electrochemical properties of sodium manganese oxide/nickel foam supercapacitor electrode material. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1897617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Xie Y. Synthesis and electrochemical performance of an electroactive nitrogen-doping SnO2 nanoarray supported on carbon fiber. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/1747519821994252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An electroactive nitrogen-doping tin dioxide nanorod array (N-SnO2 NRA) is designed as an effective energy-storage electrode material for supercapacitor applications. N-SnO2 supported on a carbon fiber substrate is prepared using SnCl4 as a precursor through hydrolysis, hydrothermal growth, and an NH3-nitriding process. Electroactive N-SnO2 is formed by an N-doping reaction between Sn(OH)4 and NH3, revealing a high nitrogen-doping level of 12.5% in N-SnO2. N-SnO2/carbon fiber reveals a lower ohmic resistance and charge transfer resistance than SnO2/carbon fiber, which is consistent with its higher current response and lower voltage drop in electrochemical measurements. N-SnO2 NRA has an independent nanoarray structure and a small side length of a quadrangular nanorod, contributing to a more accessible interspace, reactive sites, and feasible electrolyte ion diffusion. The N-SnO2/carbon fiber NRA electrode shows higher specific capacitance (105.4 F g−1 at 0.5 A g−1) and rate capacitance retention (45.0% from 0.5 to 5 A g−1) than a SnO2/carbon fiber NRA electrode (58.6 F g−1, 38.4%). Significantly, the cycling capacitance retention after 2000 cycles increases from 78.1% of SnO2/carbon fiber to 98.8% of N-SnO2/carbon fiber, presenting a superior electrochemical cycling stability. The N-SnO2 supercapacitor maintains stable power working at an output voltage of 1.6 V. The specific capacitance decreases from 75.2 to 55.1 F g−1 when the current density increases from 1 to 10 A g−1. The corresponding energy density decreases from 24.23 to 9.81 Wh kg−1, presenting a reasonable rate capability. So, the prepared N-SnO2 nanorod array demonstrates superior capacitance performance for energy-storage applications.
Collapse
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Li P, Wang J, Li L, Song S, Yuan X, Jiao W, Hao Z, Li X. Design of a ZnMoO 4 porous nanosheet with oxygen vacancies as a better performance electrode material for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj01219c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ZnMoO4 porous nanosheet with oxygen vacancies (ZnMoO4-OV) was synthesized which delivers a preferable energy storage performance.
Collapse
Affiliation(s)
- Pengxi Li
- Purification Equipment Research Institute of CSSC
- Handan
- China
- School of Chemistry and Chemical Engineering
- Southeast University
| | - Jiepeng Wang
- Purification Equipment Research Institute of CSSC
- Handan
- China
- School of Materials Science and Engineering
- Shanghai University
| | - Liming Li
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Shili Song
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Xianming Yuan
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Wenqiang Jiao
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Zhen Hao
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Xiaoli Li
- School of Materials Science and Engineering
- Hebei University of Engineering
- Handan
- China
| |
Collapse
|
9
|
Xie Y. Fabrication and charge storage capacitance of PPY/TiO2/PPY jacket nanotube array. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2020-0232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A PPY/TiO2/PPY jacket nanotube array was fabricated by coating PPY layer on the external and internal surface of a tube wall-separated TiO2 nanotube array. It shows coaxial triple-walled nanotube structure with two PPY nanotube layers sandwiching one TiO2 nanotube layer. PPY/TiO2/PPY reveals much higher current response than TiO2. The theoretical calculation indicates PPY/TiO2/PPY reveals higher density of states and lower band gap, accordingly presenting higher conductivity and electroactivity, which is consistent with the experimental result of a higher current response. The electroactivity is highly enhanced in H2SO4 rather than Na2SO4 electrolyte due to feasible pronation process of PPY in an acidic solution. PPY/TiO2/PPY could conduct the redox reaction in H2SO4 electrolyte which involves the reversible protonation/deprotonation and HSO4
− doping/dedoping process and accordingly contributes to Faradaic pseudocapacitance. The specific capacitance is highly enhanced from 1.7 mF cm−2 of TiO2 to 123.4 mF cm−2 of PPY/TiO2/PPY at 0.1 mA cm−2 in H2SO4 electrolyte. The capacitance also declines from 123.4 to 31.7 mF cm−2 when the current density increases from 0.1 to 1 mA cm−2, presenting the rate capacitance retention of 26.7% due to the semiconductivity of TiO2. A PPY/TiO2/PPY jacket nanotube with high charge storage capacitance is regarded as a promising supercapacitor electrode material.
Collapse
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189 , China
| |
Collapse
|
10
|
One-dimensional zinc-manganate oxide hollow nanostructures with enhanced supercapacitor performance. J Colloid Interface Sci 2020; 585:138-147. [PMID: 33279696 DOI: 10.1016/j.jcis.2020.11.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Hollow electrode materials with structural advantages of large contact interface and sufficient cavity structures are significant for electrochemical energy storage. Herein, ultra-long one-dimensional zinc-manganese oxide (ZnMn2O4) hollow nanofibers were successfully prepared by electrospinning at an appropriate temperature (500 °C). The optimal electrode of ZnMn2O4 exhibited a larger specific capacitance (1026 F g-1) as compared to ZnMn2O4 powder (125 F g-1) at a current density of 2 A g-1 in three-electrode configuration. Moreover, the optimal electrode of the ZnMn2O4 hollow nanofibers also possessed long-term cycling stability with a slight upward capacitance (100.8%) after 5000 cycles. Their higher specific capacitance and the outstanding cycle stability may be attributed to the unique 1D hollow nanostructure, which enhanced the charge transfer and improved the diffusion of the electrolyte ions at the surface. Thus, this work designed a high-performance electrode with unique hollow nanostructure that can be applied to the field of energy storage.
Collapse
|
11
|
Xie Y, Wang Y. Electronic structure and electrochemical performance of CoS2/MoS2 nanosheet composite: Simulation calculation and experimental investigation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Xie Y. Fabrication and electrochemical properties of flow-through polypyrrole and polypyrrole/polypyrrole nanoarrays. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01411-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Paliwal MK, Meher SK. 3D-heterostructured NiO nanofibers/ultrathin g-C3N4 holey nanosheets: An advanced electrode material for all-solid-state asymmetric supercapacitors with multi-fold enhanced energy density. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136871] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Meng Y, Yu D, Teng Y, Liu X, Liu X. A high-performance electrode based on the ZnCo2O4@CoMoO4 core-shell nanosheet arrays on nickel foam and their application in battery-supercapacitor hybrid device. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Boosting the energy density of supercapacitors by encapsulating a multi-shelled zinc-cobalt-selenide hollow nanosphere cathode and a yolk-double shell cobalt-iron-selenide hollow nanosphere anode in a graphene network. NANOSCALE 2020; 12:12476-12489. [PMID: 32495793 DOI: 10.1039/d0nr02642e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The practical exploration of electrode materials with complex hollow structures is of considerable significance in energy storage applications. Mixed-metal selenides (MMSs) with favorable architectures emerge as new electrode materials for supercapacitor (SC) applications owing to their excellent conductivity. Herein, a facile and effective metal-organic framework (MOF)-derived strategy is introduced to encapsulate multi-shelled zinc-cobalt-selenide hollow nanosphere positive and yolk-double shell cobalt-iron-selenide hollow nanosphere negative electrode materials with controlled shell numbers in a graphene network (denoted as G/MSZCS-HS and G/YDSCFS-HS, respectively) for SC applications. Due to the considerable electrical conductivity and unique structures of both electrodes, the G/MSZCS-HS positive and G/YDSCFS-HS negative electrodes exhibit remarkable capacities (∼376.75 mA h g-1 and 293.1 mA h g-1, respectively, at 2 A g-1), superior rate performances (83.4% and 74%, respectively), and an excellent cyclability (96.8% and 92.9%, respectively). Furthermore, an asymmetric device (G/MSZCS-HS//G/YDSCFS-HS) has been fabricated with the ability to deliver an exceptional energy density (126.3 W h kg-1 at 902.15 W kg-1), high robustness of 91.7%, and a reasonable capacity of 140.3 mA h g-1.
Collapse
|
16
|
Facile synthesis of double-layered CoNiO2/CoO nanowire arrays as multifunction electrodes for hydrogen electrocatalysis and supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Xu J, Mu Y, Ruan C, Li P, Xie Y. S or N-monodoping and S,N-codoping effect on electronic structure and electrochemical performance of tin dioxide: Simulation calculation and experiment validation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135950] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Mu Y, Ruan C, Li P, Xu J, Xie Y. Enhancement of electrochemical performance of cobalt (II) coordinated polyaniline: A combined experimental and theoretical study. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135881] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Veerakumar P, Sangili A, Manavalan S, Thanasekaran P, Lin KC. Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| | - Arumugam Sangili
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei 10608, Taiwan
| | - Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei 10608, Taiwan
| | - Pounraj Thanasekaran
- Department of Chemistry, Fu Jen Catholic University, Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Binder-Free Nickel Oxide Lamellar Layer Anchored CoO x Nanoparticles on Nickel Foam for Supercapacitor Electrodes. NANOMATERIALS 2020; 10:nano10020194. [PMID: 31979002 PMCID: PMC7074865 DOI: 10.3390/nano10020194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
To enhance the connection of electroactive materials/current collector and accelerate the transport efficiency of the electrons, a binder-free electrode composed of nickel oxide anchored CoOx nanoparticles on modified commercial nickel foam (NF) was developed. The nickel oxide layer with lamellar structure which supplied skeleton to load CoOx electroactive materials directly grew on the NF surface, leading to a tight connection between the current collector and electroactive materials. The fabricated electrode exhibits a specific capacitance of 475 F/g at 1 mA/cm2. A high capacitance retention of 96% after 3000 cycles is achieved, attributed to the binding improvement at the current collector/electroactive materials interface. Moreover, an asymmetric supercapacitor with an operating voltage window of 1.4 V was assembled using oxidized NF anchored with cobalt oxide as the cathode and activated stainless steel wire mesh as the anode. The device achieves a maximum energy density of 2.43 Wh/kg and power density of 0.18 kW/kg, respectively. The modified NF substrate conducted by a facile and effective electrolysis process, which also could be applied to deposit other electroactive materials for the energy storage devices.
Collapse
|
21
|
Hou JF, Gao JF, Kong LB. Boosting the performance of cobalt molybdate nanorods by introducing nanoflake-like cobalt boride to form a heterostructure for aqueous hybrid supercapacitors. J Colloid Interface Sci 2020; 565:388-399. [PMID: 31981848 DOI: 10.1016/j.jcis.2020.01.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/24/2022]
Abstract
Binary transition metal oxides have received extensive attention because of their multiple oxidation states. However, due to the inherent vices of poor electronic/ionic conductivities, their practical performance as supercapacitor material is limited. Herein, a cobalt molybdate/cobalt boride (CoMoO4/Co-B) composite is constructed with cobalt boride nanoflake-like as a conductive additive in CoMoO4 nanorods using a facile water bath deposition process and liquid-phase reduction method. The effects of CoMoO4/Co-B mass ratios on its electrochemical performance are investigated. Remarkably, the CoMoO4/Co-B composite obtained at a mass ratio of 2:1 shows highly enhanced electrochemical performance relative to those obtained at other ratios and exhibits an optimum specific capacity of 436 F g-1 at 0.5 A g-1. This kind of composite could also display great rate capacity (294 F g-1 at 10 A g-1) and outstanding long cycle performance (90.5% capacitance retention over 10 000 cycles at 5 A g-1). Also, the asymmetric supercapacitor device is prepared by using CoMoO4/Co-B composite as the anode with the active carbon as the cathode. Such a device demonstrates an outstanding energy density of 23.18 Wh kg-1 and superior long-term stability with 100% initial specific capacity retained after 10,000 cycles. The superior electrochemical properties show that the CoMoO4/Co-B electrode material has tremendous potential in energy storage equipment applications.
Collapse
Affiliation(s)
- Jing-Feng Hou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P.R. China
| | - Jian-Fei Gao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P.R. China
| | - Ling-Bin Kong
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P.R. China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P.R. China.
| |
Collapse
|
22
|
Chebrolu VT, Balakrishnan B, Cho I, Bak JS, Kim HJ. A unique core-shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach. Dalton Trans 2020; 49:14432-14444. [PMID: 33044469 DOI: 10.1039/d0dt00263a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The integration of metal oxide composite nanostructures has attracted great attention in supercapacitor (SC) applications. Herein, we fabricated a series of metal oxide composite nanostructures, including ZnO nanowires, NiO nanosheets, ZnO/CuO nanowire arrays, ZnO/FeO nanocrystals, ZnO/NiO nanosheets and ZnO/PbO nanotubes, via a simple and cost-effective chemical bath deposition (CBD) method. The electrochemical properties of the produced SCs were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) analysis, and electrochemical impedance spectroscopy (EIS). Of the different metal oxides and metal oxide composites tested, the unique surface morphology of the ZnO/NiO nanosheets most effectively increased the electron transfer rate and electrical conductivity, which resulted in improved energy storage properties. The binder-free ZnO/NiO electrode delivered a high specific capacitance/capacity of 1248 F g-1 (599 mA h g-1) at 8 mA cm-2 and long-term cycling stability over the course of 3000 cycles with a capacity retention of 79%. These results suggested a superiority in performance of the ZnO/NiO nanosheets relative to the nanowires, nanowire arrays, nanocrystals, and nanotubes. Thus, the present work has provided an opportunity to fabricate new metal oxide composite nanostructures with high-performance energy storage devices.
Collapse
Affiliation(s)
- Venkata Thulasivarma Chebrolu
- Department of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, Republic of Korea.
| | - Balamuralitharan Balakrishnan
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai - 600062, Tamil Nadu, India
| | - Inho Cho
- Department of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, Republic of Korea.
| | - Jin-Soo Bak
- Department of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, Republic of Korea.
| | - Hee-Je Kim
- Department of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, Republic of Korea.
| |
Collapse
|
23
|
Ruan C, Xie Y. Electrochemical performance of activated carbon fiber with hydrogen bond-induced high sulfur/nitrogen doping. RSC Adv 2020; 10:37631-37643. [PMID: 35515159 PMCID: PMC9057191 DOI: 10.1039/d0ra06724e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/14/2020] [Indexed: 11/25/2022] Open
Abstract
The sulfur/nitrogen co-doped activated carbon fiber (S/N-ACF) is prepared by the thermal treatment of thiourea-bonded hydroxyl-rich carbon fiber, which can bond the decomposition products of thiourea through hydrogen bond interaction to avoid the significant loss of sulfur and nitrogen sources during the thermal treatment process. The sulfur/nitrogen co-doped carbon fiber (S/N-CF) is prepared by the thermal treatment of thiourea-adsorbed carbon fiber. The doping degree of the carbon fiber is improved by reasonable strategy. S/N-ACF shows a higher amount of S/N doping (4.56 at% N and 3.16 at% S) than S/N-CF (1.25 at% N and 0.61 at% S). S/N-ACF with high S/N doping level involves highly active sites to improve the capacitive performance, and high delocalization electron to improve the conductivity and rate capability when compared with the normal S/N co-doped carbon fiber (S/N-CF). Accordingly, the specific capacitance increases from 1196 mF cm−2 for S/N-CF to 2704 mF cm−2 for S/N-ACF at 1 mA cm−2. The all-solid-state flexible S/N-ACF supercapacitor achieves 184.7 μW h cm−2 at 350 μW cm−2. The results suggest that S/N-ACF has potential application as a CF-based supercapacitor electrode material. Sulfur/nitrogen co-doped activated carbon fiber is prepared by thermal treatment of thiourea-bonded hydroxyl-rich carbon fiber, which achieves high doping level and electrochemical performance.![]()
Collapse
Affiliation(s)
- Chaohui Ruan
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Yibing Xie
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
24
|
|
25
|
Ruan C, Li P, Xu J, Chen Y, Xie Y. Activation of carbon fiber for enhancing electrochemical performance. Inorg Chem Front 2019. [DOI: 10.1039/c9qi01028a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbon fiber sequentially undergoes thermal activation, electrochemical oxidation activation, electrochemical reduction activation and a secondary thermal activation process to form a highly activated carbon fiber electrode material.
Collapse
Affiliation(s)
- Chaohui Ruan
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Pengxi Li
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Jing Xu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Yucheng Chen
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Yibing Xie
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|