1
|
Li X, Zhang X, Su F, Zhao H, Qu Z, Ge C, Fang J. Electrospun freestanding anodes for metal-ion batteries: structural design and application. NANOSCALE 2025; 17:8999-9020. [PMID: 40116878 DOI: 10.1039/d5nr00372e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
With the rapid development of flexible electronic devices, flexible metal-ion batteries have attracted considerable interest. One-dimensional (1D) nanofiber materials fabricated through electrospinning are regarded as excellent candidates for flexible freestanding anodes due to their high specific surface area, short electron transport paths, and excellent flexibility. They demonstrate impressive application potential in meeting the demand for deformation and outstanding electrochemical performance. This comprehensive review delves into their structural design, such as porous, core-shell, hollow, and composite structures, with particular detail on the approaches, polymer combination, and post-treatment methods. We focus on the contribution of different structures to stability, reversible capacity, long-term cycling, and rate performance during the charge/discharge process of the freestanding nanofibrous anodes. We introduce the combination of commonly used silicon-based materials, alloys, metal oxides, and metal sulfides with multi-structure nanofibers used in anodes. The paper explains how this combination overcomes the difficulties encountered by active materials in different types of metal-ion batteries. Finally, the paper concludes and discusses the challenges and prospects of electrospinning for enhancing freestanding anode and flexible metal-ion batteries.
Collapse
Affiliation(s)
- Xinyu Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Xunlong Zhang
- Institute of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Fangqin Su
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Haoyue Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Zhan Qu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
2
|
Panagiotidou S, Vasilaki E, Katsarakis N, Vernardou D, Vamvakaki M. Dextran stabilised hematite: a sustainable anode in aqueous electrolytes. NANOSCALE 2025; 17:4578-4590. [PMID: 39804256 DOI: 10.1039/d4nr04897k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling. The present work focuses on the fabrication of novel and sustainable anode electrodes for use in energy storage devices, utilizing cross-linked oxidized dextran (Ox-Dex) as the binder and hematite (α-Fe2O3) cubes as the active component. The ion diffusion mechanism within the anode electrode materials, as well as their cycling stability, were studied via cyclic voltammetry measurements, using Li+, Zn2+ and Al3+ aqueous electrolytes. The hybrid iron oxide electrodes exhibited the highest electrochemical performance in the Al2(SO4)3 electrolyte (3000 mA g-1), followed by ZnSO4 (2000 mA g-1) and Li2SO4 (800 mA g-1). The differences in the performance of the anodes for the three investigated electrolytes were attributed to the ionic radii of Li+, Zn2+ and Al3+, which affect the rate of ion diffusion within the material lattice exhibiting the highest diffusion coefficient of 4.64 × 10-9 cm2 s-1 in Al3+. Notably, the hybrid anodes demonstrated superior cycling performance (with the lowest variance percentage of 1.3% for hybrid compared to 38.1% for the bare in the presence of Zn2+), underlining the pivotal role of the natural binder. This was attributed to hydrogen bonding interactions, which increase the contact points between the inorganic and polymeric components, resulting in a more uniform network structure. Additionally, the cross-linking of Ox-Dex promotes stability and tolerance to the volume expansion of the electrodes. These results underscore the immense potential of the proposed hybrid electrodes in the field of energy storage.
Collapse
Affiliation(s)
- Sofia Panagiotidou
- Department of Materials Science and Engineering, University of Crete, 700 13 Heraklion, Crete, Greece.
| | - Evangelia Vasilaki
- Department of Materials Science and Engineering, University of Crete, 700 13 Heraklion, Crete, Greece.
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece
| | - Nikos Katsarakis
- Department of Electrical & Computer Engineering, School of Engineering, Hellenic Mediterranean University, Heraklion, 710 04 Crete, Greece.
| | - Dimitra Vernardou
- Department of Electrical & Computer Engineering, School of Engineering, Hellenic Mediterranean University, Heraklion, 710 04 Crete, Greece.
| | - Maria Vamvakaki
- Department of Materials Science and Engineering, University of Crete, 700 13 Heraklion, Crete, Greece.
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece
| |
Collapse
|
3
|
Yang Z, Wang Z, Cao J, Wang S, Lei W, Wang X, Liu D. Stabilizing zinc powder anodes via bifunctional MXene towards flexible zinc-ion batteries. J Colloid Interface Sci 2024; 680:657-664. [PMID: 39531883 DOI: 10.1016/j.jcis.2024.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Flexible zinc (Zn) batteries have gained considerable attention as wearable energy storage devices because of their inherent safety and high theoretical capacity. However, conventional Zn anodes suffer from dendrite growth, high rigidity, and poor cycling stability issues, hindering their practical application in flexible zinc-ion batteries. Herein, a dendrite-free and flexible Zn anode is designed using direct ink writing (DIW) printed MXene as a flexible and highly conductive current collector and MXene-wrapped Zn powder (ZnP) as the active material by carefully optimising the rheological properties of MXene-based dispersion. As a result, the synergistic effects of the MXene-based current collector and the MXene protective layer promoted dendrite-free Zn deposition and prevented side reactions, achieving an outstanding cycling performance that exceeded 130 h at a high depth of discharge of 30%. When paired with a Vanadium pentoxide (V2O5)-based cathode, the flexible full cell demonstrated stable electrochemical performance under mechanical deformation and can power electronic devices, presenting a promising pathway for the development of flexible zinc-ion batteries.
Collapse
Affiliation(s)
- Zixuan Yang
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia
| | - Zhiyu Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia
| | - Junlun Cao
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia
| | - Shana Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia; School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Xungai Wang
- The Hong Kong Polytechnic University, Research Institute for Sports Science and Technology, School of Fashion and Textiles, Hung Hom, Kowloon, Hong Kong, 999077 China.
| | - Dan Liu
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Locked Bag 20000, Victoria 3220, Australia; School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
4
|
Chen J, Shi Y, Zheng S, Zhao W, Li R, Ye K, Zhao X, Zuo Z, Pan Z, Yang X. Blocking Interfacial Proton Transport via Self-Assembled Monolayer for Hydrogen Evolution-Free Zinc Batteries. Angew Chem Int Ed Engl 2024; 63:e202404825. [PMID: 38647332 DOI: 10.1002/anie.202404825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Aqueous Zn-ion batteries (ZIBs) are promising next-generation energy storage devices, yet suffer from the issues of hydrogen evolution reaction (HER) and intricate side reactions on the Zn anode surface. The hydrogen (H)-bond networks play a critical role in interfacial proton transport that may closely relate to HER but are rarely investigated. Herein, we report a self-assembled monolayer (SAM) strategy which is constructed by anchoring ionic liquid cations on Ti3C2Tx substrate for HER-free Zn anode. Molecule dynamics simulations reveal that the rationally designed SAM with a high coordination number of water molecules (25-27, 4-6 for Zn2+) largely reduces the interfacial densities of H2O molecules, therefore breaking the connectivity of H-bond networks and blocking proton transport on the interface, by which the HER is suppressed. Then, a series of in situ characterizations demonstrate that negligible amounts of H2 gas are collected from the Zn@SAM-MXene anode. Consequently, the symmetric cell enables a long-cycling life of 3000 h at 1 mA cm-2 and 1000 h at 5 mA cm-2. More significantly, the stable Zn@SAM-MXene films are successfully used for coin full cells showing high-capacity retention of over 94 % after 1000 cycles and large-area (10×5 cm2) pouch cells with desired performance.
Collapse
Affiliation(s)
- Jianping Chen
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yayun Shi
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Songhe Zheng
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Wanyu Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruimin Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Ke Ye
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiaoli Zhao
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhijun Zuo
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zhenghui Pan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiaowei Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Bai S, Huang Z, Liang G, Yang R, Liu D, Wen W, Jin X, Zhi C, Wang X. Electrolyte Additives for Stable Zn Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304549. [PMID: 38009799 PMCID: PMC10811481 DOI: 10.1002/advs.202304549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Indexed: 11/29/2023]
Abstract
Zn-ion batteries are regarded as the most promising batteries for next-generation, large-scale energy storage because of their low cost, high safety, and eco-friendly nature. The use of aqueous electrolytes results in poor reversibility and leads to many challenges related to the Zn anode. Electrolyte additives can effectively address many such challenges, including dendrite growth and corrosion. This review provides a comprehensive introduction to the major challenges in and current strategies used for Zn anode protection. In particular, an in-depth and fundamental understanding is provided of the various functions of electrolyte additives, including electrostatic shielding, adsorption, in situ solid electrolyte interphase formation, enhancing water stability, and surface texture regulation. Potential future research directions for electrolyte additives used in aqueous Zn-ion batteries are also discussed.
Collapse
Affiliation(s)
- Shengchi Bai
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Zhaodong Huang
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| | - Guojin Liang
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| | - Rui Yang
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Di Liu
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Wen Wen
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Xu Jin
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Chunyi Zhi
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| | - Xiaoqi Wang
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| |
Collapse
|
6
|
Wang X, He T, Cheng J, Wu Y, Wang B. Strategies Toward Stretchable Aqueous Zn-based Batteries for Wearable Electronics from Components to Devices. SMALL METHODS 2023; 7:e2300591. [PMID: 37421225 DOI: 10.1002/smtd.202300591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Recently, aqueous Zn-based batteries (AZBs) are receiving increased attention in wearable and implantable electronics due to the low cost, high safety, high eco-efficiency, and relatively high energy density. However, it is still a big challenge to develop stretchable AZBs (SAZBs) which can be conformally folded, crumpled, and stretched with human body motions. Although a lot of efforts have been dedicated to constructions of SAZBs, a comprehensive review which focuses on summarizing stretchable materials, device configurations and challenges of SAZBs is needed. Herein, this review attempts to critically review the latest developments and progress in stretchable electrodes, electrolytes, packaging materials and device configurations in detail. Furthermore, these challenges and potential future research directions in the field of SAZBs are also discussed.
Collapse
Affiliation(s)
- Xilin Wang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Tao He
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Jianli Cheng
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Yuping Wu
- School of Energy and Environment, South East University, Nanjing, Jiangsu, 211189, P. R. China
| | - Bin Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Sciences and Technology of China, Chengdu, 611731, China
| |
Collapse
|
7
|
Zhu Y, Haghniaz R, Hartel MC, Mou L, Tian X, Garrido PR, Wu Z, Hao T, Guan S, Ahadian S, Kim HJ, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomater Sci Eng 2023; 9:2048-2069. [PMID: 34784170 PMCID: PMC10823919 DOI: 10.1021/acsbiomaterials.1c00741] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired new materials and novel designs for next-generation wearable devices. Hydrogels are being intensively investigated for their versatile functions in wearable devices due to their superior softness, biocompatibility, and rapid stimulus response. This review focuses on recent strategies for developing bioinspired hydrogel wearable devices that can accommodate mechanical strain and integrate seamlessly with biological systems. We will provide an overview of different types of bioinspired hydrogels tailored for wearable devices. Next, we will discuss the recent progress of bioinspired hydrogel wearable devices such as electronic skin and smart contact lenses. Also, we will comprehensively summarize biosignal readout methods for hydrogel wearable devices as well as advances in powering and wireless data transmission technologies. Finally, current challenges facing these wearable devices are discussed, and future directions are proposed.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Lei Mou
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Xinyu Tian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pamela Rosario Garrido
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Electric and Electronic Engineering, Technological Institute of Merida, Merida, Yucatan 97118, Mexico
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Taige Hao
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
8
|
He H, Song Z, Lan Y, Huang M, Wu S, Ben C, He D, Hou X, Song XM, Zhang Y. Photocorrosion-Based BiOCl Photothermal Materials for Synergistic Solar-Driven Desalination and Photoelectrochemistry Energy Storage and Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17947-17956. [PMID: 36977202 DOI: 10.1021/acsami.3c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Solar-driven interfacial evaporation is one of the most promising desalination technologies. However, few studies have effectively combined energy storage with evaporation processes. Here, a novel multifunctional interfacial evaporator, calcium alginate hydrogel/bismuth oxychloride/carbon black (HBiC), is designed, which integrates the characteristics of interfacial evaporation and direct photoelectric conversion. Under illumination, the Bi nanoparticles which were produced by photoetching of BiOCl and its reaction heat are simultaneously used for the heating of water molecules. Meanwhile, part of the solar energy is converted into chemical energy through the photocorrosion reaction and stored in HBiC. At night, Bi NPs undergo autooxidation reaction and an electric current is generated during this process (like a metal-air battery), in which the maximum current density is more than 15 μA cm-2. This scientific design cleverly combines desalination with power generation and provides a new development direction for energy collection and storage.
Collapse
Affiliation(s)
- Hongjiang He
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhining Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yalin Lan
- Analysis Center, Shenyang University of Chemical Technology, Shenyang 110141, China
| | - Mengnan Huang
- College of Chemistry, Key Laboratory of Rare-scattered Elements of Liaoning Province, Liaoning University, Shenyang 110036, China
| | - Shuyao Wu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Chuxuan Ben
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Dongqing He
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xing Hou
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yu Zhang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
9
|
Qi J, Zhang Y, Li M, Xu H, Zhang Y, Wen J, Zhai H, Yang W, Li C, Wang H, Fan X, Liu J. Facile and effective defect engineering strategy boosting ammonium vanadate nanoribbon for high performance aqueous zinc-ion batteries. J Colloid Interface Sci 2023; 642:430-438. [PMID: 37028156 DOI: 10.1016/j.jcis.2023.03.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Vanadium-based oxides have gained widespread attention as promising cathode materials for aqueous zinc-ion batteries (AZIBs) due to their abundant valences, high theoretical capacity and low cost. However, the intrinsic sluggish kinetics and unsatisfactory conductivity have severely hampered their further development. Herein, a facile and effective defect engineering strategy was developed at room temperature to prepare the defective (NH4)2V10O25·8H2O (d-NHVO) nanoribbon with plenty of oxygen vacancies. Owing to the introduction of oxygen vacancies, the d-NHVO nanoribbon possessed more active sites, excellent electronic conductivity and fast ion diffusion kinetics. Benefiting from these advantages, the d-NHVO nanoribbon as an aqueous zinc-ion battery cathode material exhibited superior specific capacity (512 mAh g-1 at 0.3 A g-1), excellent rate capability and long-term cycle performance. Simultaneously, the storage mechanism of the d-NHVO nanoribbon was clarified via comprehensive characterizations. Furthermore, the pouch battery based on the d-NHVO nanoribbon was fabricated and presented eminent flexibility and feasibility. This work provides a novel thought for simple and efficient development of high- performance vanadium-based oxides cathode materials for AZIBs.
Collapse
Affiliation(s)
- Junjie Qi
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yufen Zhang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Meng Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Huiting Xu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yaning Zhang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Jinjin Wen
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Haonan Zhai
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Wenyue Yang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Chunli Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Honghai Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiapeng Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
10
|
Xiao X, Zheng Z, Zhong X, Gao R, Piao Z, Jiao M, Zhou G. Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS NANO 2023; 17:1764-1802. [PMID: 36716429 DOI: 10.1021/acsnano.2c09509] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advent of 5G and the Internet of Things has spawned a demand for wearable electronic devices. However, the lack of a suitable flexible energy storage system has become the "Achilles' Heel" of wearable electronic devices. Additional problems during the transformation of the battery structure from conventional to flexible also present a severe challenge to the battery design. Flexible Zn-based batteries, including Zn-ion batteries and Zn-air batteries, have long been considered promising candidates due to their high safety, eco-efficiency, substantial reserve, and low cost. In the past decade, researchers have come up with elaborate designs for each portion of flexible Zn-based batteries to improve the ionic conductivities, mechanical properties, environment adaptabilities, and scalable productions. It would be helpful to summarize the reported strategies and compare their pros and cons to facilitate further research toward the commercialization of flexible Zn-based batteries. In this review, the current progress in developing flexible Zn-based batteries is comprehensively reviewed, including their electrolytes, cathodes, and anodes, and discussed in terms of their synthesis, characterization, and performance validation. By clarifying the challenges in flexible Zn-based battery design, we summarize the methodology from previous investigations and propose challenges for future development. In the end, a research paradigm of Zn-based batteries is summarized to fit the burgeoning requirement of wearable electronic devices in an iterative process, which will benefit the future development of Zn-based batteries.
Collapse
Affiliation(s)
- Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhiyang Zheng
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Xiongwei Zhong
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Miaolun Jiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
11
|
Li X, Chen F, Zhao B, Zhang S, Zheng X, Wang Y, Jin X, Dai C, Wang J, Xie J, Zhang Z, Zhao Y. Ultrafast Synthesis of Metal-Layered Hydroxides in a Dozen Seconds for High-Performance Aqueous Zn (Micro-) Battery. NANO-MICRO LETTERS 2023; 15:32. [PMID: 36624319 PMCID: PMC9829956 DOI: 10.1007/s40820-022-01004-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field. However, most of the synthetic routes at present mainly rely on traditional bottom-up method, which involves tedious steps, time-consuming treatments, or additional alkaline media, and is unfavorable for high-efficiency production. Herein, we present a facile, ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method. With high reaction kinetics caused by the instantaneous high temperature, seven kinds of transition metal-layered hydroxides (TM-LDHs) are formed on carbon cloth. Therein, the fastest synthesis rate reaches ~ 0.46 cm2 s-1. Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates. This efficient approach avoids the use of extra agents, multiple steps, and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability, showing practical advantages in both common and micro-zinc ion-based energy storage devices. To prove its utility, as a cathode in rechargeable aqueous alkaline Zn (micro-) battery, the NiCo LDH@carbon cloth exhibits a high energy density, superior to most transition metal LDH materials reported so far.
Collapse
Affiliation(s)
- Xiangyang Li
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Fangshuai Chen
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Bo Zhao
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Shaohua Zhang
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaoyu Zheng
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Ying Wang
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xuting Jin
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chunlong Dai
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jiaqi Wang
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jing Xie
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Zhipan Zhang
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yang Zhao
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
12
|
Zhou LF, Du T, Li JY, Wang YS, Gong H, Yang QR, Chen H, Luo WB, Wang JZ. A strategy for anode modification for future zinc-based battery application. MATERIALS HORIZONS 2022; 9:2722-2751. [PMID: 36196916 DOI: 10.1039/d2mh00973k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the past several years, rechargeable zinc batteries, featuring the merits of low cost, environmental friendliness, easy manufacturing, and enhanced safety, have, attracted much attention. Zinc (Zn) anodes for zinc metal batteries play an important role. In this review, the fundamental understanding of these batteries and modification strategies to deal with the problematic issues for Zn anodes, including dendrite growth, corrosion, and the hydrogen evolution phenomenon will be summarized. The practical application of Zn anodes can still lead to Zn dendrites, various side reactions, and serious safety risks. Therefore, metal-free anodes for "rocking chair" zinc ion batteries to replace Zn anodes are systemically reviewed. The performance and the zinc storage mechanism of metal-free anodes will be discussed. Subsequently, a "rocking chair" zinc ion battery prototype selected as a recent example is assessed to explore the merits and demerits of Zn anodes and metal-free anodes. To conclude, a perspective on the future of zinc metal batteries and "rocking chair" zinc ion batteries is presented. It is hoped that this review may provide for further improvement of commercial rechargeable zinc batteries.
Collapse
Affiliation(s)
- Li-Feng Zhou
- Section of Environmental Protection Key Laboratory of Eco-Industry, Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, No. 11 Lane 3, Wenhua Road, Shenyang, China.
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Tao Du
- Section of Environmental Protection Key Laboratory of Eco-Industry, Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, No. 11 Lane 3, Wenhua Road, Shenyang, China.
| | - Jia-Yang Li
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Yi-Song Wang
- Section of Environmental Protection Key Laboratory of Eco-Industry, Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, No. 11 Lane 3, Wenhua Road, Shenyang, China.
| | - He Gong
- Section of Environmental Protection Key Laboratory of Eco-Industry, Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, No. 11 Lane 3, Wenhua Road, Shenyang, China.
| | - Qiu-Ran Yang
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Hong Chen
- Section of Environmental Protection Key Laboratory of Eco-Industry, Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, No. 11 Lane 3, Wenhua Road, Shenyang, China.
| | - Wen-Bin Luo
- Section of Environmental Protection Key Laboratory of Eco-Industry, Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, No. 11 Lane 3, Wenhua Road, Shenyang, China.
| | - Jia-Zhao Wang
- Institute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
13
|
Cai P, Li J, Huang J, Chen J, Ding Y, Peng X, Wen Z. Sub-1 nm MoC Quantum Dots Decorating N-Doped Graphene as Advanced Electrocatalysts of Flexible Hybrid Alkali-Acid Zn-Quinone Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201144. [PMID: 35499189 DOI: 10.1002/smll.202201144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The development of flexible energy devices is envisaged to revolutionize the next generation of the wearable electronics industry, the practical application yet faces critical issues of low power density, poor cycling stability, and low energy density. Herein, the authors report a newly flexible hybrid Zn-quinone battery (h-ZnQB) with acidic gel in the cathode and alkaline gel in the anode, in which proton (H+ ) and hydroxide ions (OH- ) are served as the ion charge carriers for acidic quinone cathode and alkaline Zn anode. To this end, the nanohybrids of sub-1 nm MoC quantum dots decorating nitrogen-doped ultrathin graphene (MoC QDs/NG) are developed as the advanced cathode electrocatalysts toward redox conversion between quinone and hydroquinone (H2 Q/Q). Comprehensive characterization studies and density functional theory (DFT) calculations reveal that high valent Mo species originating from the size-effects serve as the active sites for the conversion of H2 Q/Q, contributing to the impressive catalytic performance. The as-developed flexible h-ZnQB displays a high open-circuit voltage of 1.74 V with a specific capacity of 223.3 mAh g-1 and an energy density of 350 Wh kg-1 at 0.2 A g-1 , thanks to the fast kinetics of charge carriers (H+ and OH- ), the high activity of the catalyst, and the elaborate design of alkali-acid gel electrolytes.
Collapse
Affiliation(s)
- Pingwei Cai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Junwei Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Junheng Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yichun Ding
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Xinxin Peng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
14
|
Xu Y, Xu X, Guo M, Zhang G, Wang Y. Research Progresses and Challenges of Flexible Zinc Battery. Front Chem 2022; 10:827563. [PMID: 35237560 PMCID: PMC8882833 DOI: 10.3389/fchem.2022.827563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Flexible zinc batteries have great potential in wearable electronic devices due to their high safety, low cost, and environmental friendliness. In the past few years, a great deal of work on flexible zinc batteries has been reported, with exciting results. Therefore, many solutions have been proposed in electrode design and electrolyte preparation to ensure the desired flexibility without sacrificing the capacity. This paper reviews the recent progress of flexible zinc batteries. We discuss the differences between various anode materials, cathode materials, and electrolytes, introduce the differences of electrode preparation methods of active materials on flexible substrates and their influence on the performance of the battery. Finally, the challenges and future research trends of flexible zinc batteries in capacity and mechanical properties are pointed out.
Collapse
Affiliation(s)
| | | | | | | | - Yaqun Wang
- *Correspondence: Guoxin Zhang, ; Yaqun Wang,
| |
Collapse
|
15
|
Maruyama J, Nakajima D, Maruyama S, Takenaka S, Mizuhata H, Yoshida A, Kawaguchi M. Graphitic Carbon Materials with Various Nanostructures Decorated with Fe-N-C Catalytically Active Sites for Air Electrodes. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00716-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Lan Y, Batmunkh M, Li P, Qian B, Bu D, Zhao Q, Huang H, Sun W, Zhang Y, Ma T, Song XM, Jia B. Smart Solar-Metal-Air Batteries Based on BiOCl Photocorrosion for Monolithic Solar Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105668. [PMID: 34877809 DOI: 10.1002/smll.202105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Herein, a BiOCl hydrogel film electrode featuring excellent photocorrosion and regeneration properties acts as the anode to construct a novel type of smart solar-metal-air batteries (SMABs), which combines the characteristics of solar cells (direct photovoltaic conversion) and metal-air batteries (electric energy storage and release interacting with atmosphere). The cyclic photocorrosion processes between BiOCl (Bi3+ ) and Bi can simply be achieved by solar light illumination and standing in the dark. Upon illumination, the device takes open-circuit configuration to charge itself from the sunlight. Notably, in this system, the converted solar energy can be stored in the SMABs without the need of external assistance. In the discharging process in the dark, Bi0 spontaneously turns back to Bi3+ producing electrons to induce the oxygen reduction reaction. With an illumination of 15 min, the battery with an electrode area of 1 cm2 can be continuously discharged for ≈3000 s. Taking elemental Bi as the calculation object, the theoretical capacity of the SMABs is 384.75 mAh g-1 , showing its potential application in energy storage. This novel type of SMABs is developed based on the unique photocorrosive and self-oxidation reaction of BiOCl to achieve photochemical energy generation and storage.
Collapse
Affiliation(s)
- Yalin Lan
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
- Analysis Center, Shenyang University of Chemical Technology, Shenyang, 110141, China
| | - Munkhbayar Batmunkh
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Peng Li
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Bingzhi Qian
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Degang Bu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Qin Zhao
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Hongwei Huang
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yu Zhang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| |
Collapse
|
17
|
Zhang B, Qin L, Fang Y, Chai Y, Xie X, Lu B, Liang S, Zhou J. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci Bull (Beijing) 2022; 67:955-962. [DOI: 10.1016/j.scib.2022.01.027] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022]
|
18
|
Lv Y, Xiao Y, Ma L, Zhi C, Chen S. Recent Advances in Electrolytes for "Beyond Aqueous" Zinc-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106409. [PMID: 34806240 DOI: 10.1002/adma.202106409] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Indexed: 06/13/2023]
Abstract
With the growing demands for large-scale energy storage, Zn-ion batteries (ZIBs) with distinct advantages, including resource abundance, low-cost, high-safety, and acceptable energy density, are considered as potential substitutes for Li-ion batteries. Although numerous efforts are devoted to design and develop high performance cathodes and aqueous electrolytes for ZIBs, many challenges, such as hydrogen evolution reaction, water evaporation, and liquid leakage, have greatly hindered the development of aqueous ZIBs. Developing "beyond aqueous" electrolytes can be able to avoid these issues due to the absence of water, which are beneficial for the achieving of highly efficient ZIBs. In this review, the recent development of the "beyond aqueous" electrolytes, including conventional organic electrolytes, ionic liquid, all-solid-state, quasi-solid-state electrolytes, and deep eutectic electrolytes are presented. The critical issues and the corresponding strategies of the designing of "beyond aqueous" electrolytes for ZIBs are also summarized.
Collapse
Affiliation(s)
- Yanqun Lv
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Ying Xiao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Longtao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, 83Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Shimou Chen
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
19
|
Mu Y, Zhou T, Zhai Z, Zhang S, Li D, Chen L, Ge G. Metal organic complexes as an artificial solid-electrolyte interface with Zn-ion transfer promotion for long-life zinc metal batteries. NANOSCALE 2021; 13:20412-20416. [PMID: 34870656 DOI: 10.1039/d1nr05753g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal organic complexes as an artificial solid-electrolyte interface (MOC-SEI) have been generated via in situ coordinative polymerization between Zn2+ and organic ligand molecules. Compared to conventional anodes, the MOC-SEI coated anode significantly prolongs the lifespan from 100 h to 1450 h for the Zn||Zn symmetrical cells and increases the reversible capacity up to 160 mA h g-1 after 1100 cycles for the Zn||V2O5 full-cells.
Collapse
Affiliation(s)
- Yanlu Mu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tianyi Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaoyi Zhai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuangbin Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dexing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, China.
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, China.
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, China.
| |
Collapse
|
20
|
|
21
|
Li Y, Wu F, Qian J, Zhang M, Yuan Y, Bai Y, Wu C. Metal Chalcogenides with Heterostructures for High‐Performance Rechargeable Batteries. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yu Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 P. R. China
| | - Ji Qian
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Minghao Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Yanxian Yuan
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 P. R. China
| |
Collapse
|
22
|
Zhu L, Fei B, Xie Y, Cai D, Chen Q, Zhan H. Engineering Hierarchical Co@N-Doped Carbon Nanotubes/α-Ni(OH) 2 Heterostructures on Carbon Cloth Enabling High-Performance Aqueous Nickel-Zinc Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22304-22313. [PMID: 33971712 DOI: 10.1021/acsami.1c01711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Searching for high-performance Ni-based cathodes plays an important role in developing better aqueous nickel-zinc (Ni-Zn) batteries. For this purpose, herein, we demonstrate the design and synthesis of ultrathin α-Ni(OH)2 nanosheets branched onto metal-organic frameworks (MOFs)-derived 3D cross-linked N-doped carbon nanotubes encapsulated with tiny Co nanoparticles (denoted as Co@NCNTs/α-Ni(OH)2), which are directly supported on a flexible carbon cloth (CC). An aqueous Ni-Zn battery employing the hierarchical CC/Co@NCNTs/α-Ni(OH)2 as the binder-free cathode and a commercial Zn plate as the anode is fabricated, which displays an ultrahigh capacity (316 mAh g-1) and energy density (540.4 Wh kg-1) at 1 A g-1 as well as excellent rate capability (238 mAh g-1 at 10 A g-1) and superior cycling performance (about 84% capacity retention after 2000 cycles at 10 A g-1). The impressive electrochemical performance might benefit from the rich active sites, rapid electron transfer, cushy electrolyte access, rapid ion transport, and robust structural stability. In addition, the quasi-solid-state CC/Co@NCNTs/α-Ni(OH)2//Zn batteries are also successfully assembled with polymer electrolyte, indicating the great potential for portable and wearable electronics. This work might provide important guidance for constructing carbon-based hybrid materials directly supported on conductive substrates as high-performance electrodes for energy-related devices.
Collapse
Affiliation(s)
- Longzhen Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ban Fei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yulan Xie
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Daoping Cai
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qidi Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
23
|
Tao Y, Huang D, Chen H, Luo Y. Electrochemical Generation of Hydrated Zinc Vanadium Oxide with Boosted Intercalation Pseudocapacitive Storage for a High-Rate Flexible Zinc-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16576-16584. [PMID: 33784816 DOI: 10.1021/acsami.1c03194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the surging development of flexible wearable and stretchable electronic devices, flexible energy-storage devices with excellent electrochemical properties are in great demand. Herein, a flexible Zn-ion battery comprised by hydrated zinc vanadium oxide/carbon cloth (ZnVOH/CC) as the cathode is developed, and it shows a high energy density, superior lifespan, and good safety. ZnVOH/CC is obtained by the in situ transformation of hydrated vanadium oxide/carbon cloth (VOH/CC) by an electrochemical method, and the intercalation pseudocapacitive reaction mechanism is discovered for ZnVOH/CC. The co-insertion/deinsertion of H+/Zn2+ is observed; the H+ insertion dominates in the initial discharge stage and the high-rate electrochemical process, while Zn2+ insertion dominates the following discharge stage and the low-rate electrochemical procedure. An ultrastable reversible capacity of 135 mAh g-1 at 20 A g-1 is obtained after 5000 cycles without capacity fading. Moreover, the as-assembled flexible zinc-ion battery can operate normally under rolled, folded, and punched conditions with superior safety. It is capable to deliver a high discharge capacity of 184 mAh g-1 at 10 A g-1 after 170 cycles. This work paves a new way for designing low-cost, safe, and quick-charging energy-storage devices for flexible electronics.
Collapse
Affiliation(s)
- Yuanxue Tao
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Dekang Huang
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Hao Chen
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yanzhu Luo
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
24
|
Li X, Tang Y, Zhu J, Lv H, Zhao L, Wang W, Zhi C, Li H. Boosting the Cycling Stability of Aqueous Flexible Zn Batteries via F Doping in Nickel-Cobalt Carbonate Hydroxide Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001935. [PMID: 32603014 DOI: 10.1002/smll.202001935] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Cathodes of rechargeable Zn batteries typically face the issues of irreversible phase transformation, structure collapse, and volume expansion during repeated charge/discharge cycles, which result in an increased transfer resistance and poor long-term cycling stability. Herein, a facile F doping strategy is developed to boost the cycling stability of nickel cobalt carbonate hydroxide (NiCo-CH) cathode. Benefiting from the extremely high electronegativity, the phase and morphology stabilities as well as the electrical conductivity of NiCo-CH are remarkably enhanced by F incorporation (NiCo-CH-F). Phase interface and amorphous microdomains are also introduced, which are favorable for the electrochemical performance of cathode. Benefiting from these features, NiCo-CH-F delivers a high capacity (245 mA h g-1 ), excellent rate capability (64% retention at 8 A g-1 ), and outstanding cycling stability (maintains 90% after 10 000 cycles). Moreover, the quasi-solid-state battery also manifests superior cycling stability (maintains 90% after 7200 cycles) and desirable flexibility. This work offers a general strategy to boost the cycling stability of cathode materials for aqueous Zn batteries.
Collapse
Affiliation(s)
- Xuejin Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China
| | - Yongchao Tang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China
| | - Jiaxiong Zhu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Haiming Lv
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China
| | - Lianming Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Wenlong Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China
| | - Chunyi Zhi
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hongfei Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
25
|
Shi Y, Chen Y, Shi L, Wang K, Wang B, Li L, Ma Y, Li Y, Sun Z, Ali W, Ding S. An Overview and Future Perspectives of Rechargeable Zinc Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000730. [PMID: 32406195 DOI: 10.1002/smll.202000730] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
Aqueous rechargeable zinc-based batteries have sparked a lot of enthusiasm in the energy storage field recently due to their inherent safety, low cost, and environmental friendliness. Although remarkable progress has been made in the exploration of performance so far, there are still many challenges such as low working voltage and dissolution of electrode materials at the material and system level. Herein, the central tenet is to establish a systematic summary for the construction and mechanism of different aqueous zinc-based batteries. Details for three major zinc-based battery systems, including alkaline rechargeable Zn-based batteries (ARZBs), aqueous Zn ion batteries (AZIBs), and dual-ion hybrid Zn batteries (DHZBs) are given. First, the electrode materials and energy storage mechanism of the three types of zinc-based batteries are discussed to provide universal guidance for these batteries. Then, the electrode behavior of zinc anodes and strategies to deal with problems such as dendrite and passivation are recommended. Finally, some challenge-oriented solutions are provided to facilitate the next development of zinc-based batteries. Combining the characteristics of zinc-based batteries with good use of concepts and ideas from other disciplines will surely pave the way for its commercialization.
Collapse
Affiliation(s)
- Yuchuan Shi
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ye Chen
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Shi
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ke Wang
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Biao Wang
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Long Li
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yaming Ma
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuhan Li
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zehui Sun
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wajid Ali
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shujiang Ding
- Department of Applied Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
26
|
Zhang X, Chen H, Liu W, Xiao N, Zhang Q, Rui X, Huang S. A Long-Cycling Aqueous Zinc-Ion Pouch Cell: NASICON-Type Material and Surface Modification. Chem Asian J 2020; 15:1430-1435. [PMID: 32167677 DOI: 10.1002/asia.202000162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/13/2020] [Indexed: 11/10/2022]
Abstract
Aqueous zinc-ion batteries (ZIBs) have become the highest potential energy storage system for large-scale applications owing to the high specific capacity, good safety and low cost. In this work, a NASICON-type Na3 V2 (PO4 )3 cathode modified by a uniform carbon layer (NVP/C) has been synthesized via a facile solid-state method and exhibited significantly improved electrochemical performance when working in an aqueous ZIB. Specifically, the NVP/C cathode shows an excellent rate capacity (e. g., 48 mAh g-1 at 1.0 A g-1 ). Good cycle stability is also achieved (e. g., showing a capacity retention of 88% after 2000 cycles at 1.0 A g-1 ). Furthermore, the Zn2+ (de)intercalation mechanism in the NVP cathode has been determined by various ex-situ techniques. In addition, a Zn||NVP/C pouch cell has been assembled, delivering a high capacity of 89 mAhg-1 at 0.2 A g-1 and exhibiting a superior long cycling stability.
Collapse
Affiliation(s)
- Xianghua Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Haoliang Chen
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Weiling Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ni Xiao
- Aviation Fuel Research & Development Center, China National Aviation Fuel Group Limited, Beijing, 102603, P.R. China
| | - Qi Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xianhong Rui
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P.R. China.,State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua, Sichuan, 617000, P.R. China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|