1
|
Guo LY, Li JF, Lu ZW, Zhang J, He CT. Biomass-Derived Carbon-Based Multicomponent Integration Catalysts for Electrochemical Water Splitting. CHEMSUSCHEM 2023; 16:e202300214. [PMID: 37148161 DOI: 10.1002/cssc.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 05/04/2023] [Indexed: 05/07/2023]
Abstract
Electrocatalytic water splitting powered by sustainable electricity is a crucial approach for the development of new generation green hydrogen technology. Biomass materials are abundant and renewable, and the application of catalysis can increase the value of some biomass waste and turn waste into fortune. Converting economical and resource-rich biomass into carbon-based multicomponent integrated catalysts (MICs) has been considered as one of the most promising ways to obtain inexpensive, renewable and sustainable electrocatalysts in recent years. In this review, recent advances in biomass-derived carbon-based MICs towards electrocatalytic water splitting are summarized, and the existing issues and key aspects in the development of these electrocatalysts are also discussed and prospected. The application of biomass-derived carbon-based materials will bring some new opportunities in the fields of energy, environment, and catalysis, as well as promote the commercialization of new nanocatalysts in the near future.
Collapse
Affiliation(s)
- Lu-Yao Guo
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jin-Feng Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Zi-Wei Lu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jia Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Chun-Ting He
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
2
|
Jeong S, Yoo SW, Kim HJ, Park J, Kim JW, Lee C, Kim H. Recent Progress on Molecular Photoacoustic Imaging with Carbon-Based Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5643. [PMID: 34640053 PMCID: PMC8510032 DOI: 10.3390/ma14195643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
For biomedical imaging, the interest in noninvasive imaging methods is ever increasing. Among many modalities, photoacoustic imaging (PAI), which is a combination of optical and ultrasound imaging techniques, has received attention because of its unique advantages such as high spatial resolution, deep penetration, and safety. Incorporation of exogenous imaging agents further amplifies the effective value of PAI, since they can deliver other specified functions in addition to imaging. For these agents, carbon-based materials can show a large specific surface area and interesting optoelectronic properties, which increase their effectiveness and have proved their potential in providing a theragnostic platform (diagnosis + therapy) that is essential for clinical use. In this review, we introduce the current state of the PAI modality, address recent progress on PAI imaging that takes advantage of carbon-based agents, and offer a future perspective on advanced PAI systems using carbon-based agents.
Collapse
Affiliation(s)
- Songah Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun 58128, Jeollanam-do, Korea;
| | - Hea Ji Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Jieun Park
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Ji Woo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Changho Lee
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun 58128, Jeollanam-do, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju 61469, Korea
- Department of Artificial Intelligence Convergence, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| |
Collapse
|
3
|
Heo E, Noh S, Lee U, Le TH, Lee H, Jo H, Lee S, Yoon H. Surfactant-in-Polymer Templating for Fabrication of Carbon Nanofibers with Controlled Interior Substructures: Designing Versatile Materials for Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007775. [PMID: 33739582 DOI: 10.1002/smll.202007775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/17/2021] [Indexed: 06/12/2023]
Abstract
A simple, scalable, surfactant-in-polymer templating approach is demonstrated to create controlled long-range secondary substructures in a primary structure. A metal bis(2-ethylhexyl) sulfosuccinate (MAOT) as the surfactant is shown to be capable of serving as a sacrificial template and metal precursor in carbon nanofibers. The low interfacial tension and controllable dimensions of the MAOT are maintained in the solid-phase polymer, even during electrospinning and heat-treatment processes, allowing for the long-range uniform formation of substructures in the nanofibers. The MAOT content is found to be a critical parameter for tailoring the diameter of the nanofibers and their textural properties, such as size and volume of interior pores. The metal counterion species in the MAOT determine the introduction of metallic phases in the nanofiber interior. The incorporation of MAOT with Na as the counterion into the polymer phase leads to the formation of a built-in pore structure in the nanofibers. In contrast, MAOT with Fe as a counterion generates unique iron-in-pore substructures in the nanofibers (FeCNFs). The FeCNFs exhibit outstanding charge storage and water splitting performances. As a result, the MAOT-in-polymer templating approach can be extended to combinations of various metal precursors and thus create desirable functionalities for different target applications.
Collapse
Affiliation(s)
- Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Unhan Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Haney Lee
- Alan G. MacDiarmid Energy Research Institute, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyemi Jo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- Alan G. MacDiarmid Energy Research Institute, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
4
|
Kim Y, Lee S, Yoon H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers (Basel) 2021; 13:540. [PMID: 33673106 PMCID: PMC7918670 DOI: 10.3390/polym13040540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.
Collapse
Affiliation(s)
- Yukyung Kim
- R&D Laboratory: Korea Fire Institute, 331 Jisam-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17088, Korea;
| | - Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|