1
|
Laranjeira JS, Martins N, Denis PA, Sambrano J. High Stability, Piezoelectric Response, and Promising Photocatalytic Activity on the New Pentagonal CGeP 4 Monolayer. ACS PHYSICAL CHEMISTRY AU 2025; 5:62-71. [PMID: 39867439 PMCID: PMC11758271 DOI: 10.1021/acsphyschemau.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/28/2025]
Abstract
This study introduces the penta-structured semiconductor p-CGeP4 through density functional theory simulations, which possesses an indirect band gap transition of 3.20 eV. Mechanical analysis confirms the mechanical stability of p-CGeP4, satisfying Born-Huang criteria. Notably, p-CGeP4 has significant direct (e 31 = -11.27 and e 36 = -5.34 × 10-10 C/m) and converse (d 31 = -18.52 and d 36 = -13.18 pm/V) piezoelectric coefficients, surpassing other pentagon-based structures. Under tensile strain, the band gap energy increases to 3.31 eV at 4% strain, then decreases smoothly to 1.97 eV at maximum stretching, representing an ∼38% variation. Under compressive strain, the band gap decreases almost linearly to 2.65 eV at -8% strain and then drops sharply to 0.97 eV, an ∼69% variation. Strongly basic conditions result in a promising band alignment for the new p-CGeP4 monolayer. This suggests potential photocatalytic behavior across all tensile strain regimes and significant compression levels (ε = 0% to -8%). This study highlights the potential of p-CGeP4 for groundbreaking applications in nanoelectronic devices and materials engineering.
Collapse
Affiliation(s)
- José
A. S. Laranjeira
- Modeling
and Molecular Simulation Group, São
Paulo State University (UNESP), School of Sciences, Bauru 17033-360, Brazil
| | - Nicolas Martins
- Modeling
and Molecular Simulation Group, São
Paulo State University (UNESP), School of Sciences, Bauru 17033-360, Brazil
| | - Pablo A. Denis
- Computational
Nanotechnology, DETEMA, Facultad de Química, UDELAR, CC 1157, Montevideo 11800, Uruguay
| | - Julio Sambrano
- Modeling
and Molecular Simulation Group, São
Paulo State University (UNESP), School of Sciences, Bauru 17033-360, Brazil
| |
Collapse
|
2
|
Liu S, Bao J, Tian B, Li S, Yang M, Yang D, Lu X, Liu X, Gai S, Yang P. Piezoelectric Bilayer Nickel-Iron Layered Double Hydroxide Nanosheets with Tumor Microenvironment Responsiveness for Intensive Piezocatalytic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404146. [PMID: 39136080 PMCID: PMC11497024 DOI: 10.1002/advs.202404146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Indexed: 10/25/2024]
Abstract
Piezocatalytic therapy (PCT) based on 2D layered materials has emerged as a promising non-invasive tumor treatment modality, offering superior advantages. However, a systematic investigation of PCT, particularly the mechanisms underlying the reactive oxygen species (ROS) generation by 2D nanomaterials, is still in its infancy. Here, for the first time, biodegradable piezoelectric 2D bilayer nickel-iron layered double hydroxide (NiFe-LDH) nanosheets (thickness of ≈1.86 nm) are reported for enhanced PCT and ferroptosis. Under ultrasound irradiation, the piezoelectric semiconducting NiFe-LDH exhibits a remarkable ability to generate superoxide anion radicals, due to the formation of a built-in electric field that facilitates the separation of electrons and holes. Notably, the significant excitonic effect in the ultrathin NiFe-LDH system enables long-lived excited triplet excitons (lifetime of ≈5.04 µs) to effectively convert triplet O2 molecules into singlet oxygen. Moreover, NiFe-LDH exhibited tumor microenvironment (TME)-responsive peroxidase (POD)-like and glutathione (GSH)-depleting capabilities, further enhancing oxidative stress in tumor cells and inducing ferroptosis. To the best of knowledge, this is the first report on piezoelectric semiconducting sonosensitizers based on LDHs for PCT and ferroptosis, providing a comprehensive understanding of the piezocatalysis mechanism and valuable references for the application of LDHs and other 2D materials in cancer therapy.
Collapse
Affiliation(s)
- Shaohua Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
- The Key Laboratory of Rare Earth Functional Materials and ApplicationsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Jianchun Bao
- Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Boshi Tian
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
- The Key Laboratory of Rare Earth Functional Materials and ApplicationsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Shuyao Li
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| | - Meiqi Yang
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| | - Xuyun Lu
- Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Xueliang Liu
- The Key Laboratory of Rare Earth Functional Materials and ApplicationsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001P. R. China
| |
Collapse
|
3
|
Ghasemian MB, Zavabeti A, Allioux FM, Sharma P, Mousavi M, Rahim MA, Khayyam Nekouei R, Tang J, Christofferson AJ, Meftahi N, Rafiezadeh S, Cheong S, Koshy P, Tilley RD, McConville CF, Russo SP, Ton-That C, Seidel J, Kalantar-Zadeh K. Liquid Metal Doping Induced Asymmetry in Two-Dimensional Metal Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309924. [PMID: 38263808 DOI: 10.1002/smll.202309924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The emergence of ferroelectricity in two-dimensional (2D) metal oxides is a topic of significant technological interest; however, many 2D metal oxides lack intrinsic ferroelectric properties. Therefore, introducing asymmetry provides access to a broader range of 2D materials within the ferroelectric family. Here, the generation of asymmetry in 2D SnO by doping the material with Hf0.5Zr0.5O2 (HZO) is demonstrated. A liquid metal process as a doping strategy for the preparation of 2D HZO-doped SnO with robust ferroelectric characteristics is implemented. This technology takes advantage of the selective interface enrichment of molten Sn with HZO crystallites. Molecular dynamics simulations indicate a strong tendency of Hf and Zr atoms to migrate toward the surface of liquid metal and embed themselves within the growing oxide layer in the form of HZO. Thus, the liquid metal-based harvesting/doping technique is a feasible approach devised for producing novel 2D metal oxides with induced ferroelectric properties, represents a significant development for the prospects of random-access memories.
Collapse
Affiliation(s)
- Mohammad B Ghasemian
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Francois-Marie Allioux
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Pankaj Sharma
- ARC Center of Excellence in Future Low-Energy Electronics Technologies (FLEET), University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Adelaide, SA, 5042, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Md Arifur Rahim
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Rasoul Khayyam Nekouei
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Andrew J Christofferson
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Center of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nastaran Meftahi
- ARC Center of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Somayeh Rafiezadeh
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Soshan Cheong
- Mark Wainwright Analytical Centre, Electron Microscope Unit, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Richard D Tilley
- Mark Wainwright Analytical Centre, Electron Microscope Unit, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Chris F McConville
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3216, Australia
| | - Salvy P Russo
- ARC Center of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Cuong Ton-That
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jan Seidel
- ARC Center of Excellence in Future Low-Energy Electronics Technologies (FLEET), University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Li A, Yang J, He Y, Wen J, Jiang X. Advancing piezoelectric 2D nanomaterials for applications in drug delivery systems and therapeutic approaches. NANOSCALE HORIZONS 2024; 9:365-383. [PMID: 38230559 DOI: 10.1039/d3nh00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Precision drug delivery and multimodal synergistic therapy are crucial in treating diverse ailments, such as cancer, tissue damage, and degenerative diseases. Electrodes that emit electric pulses have proven effective in enhancing molecule release and permeability in drug delivery systems. Moreover, the physiological electrical microenvironment plays a vital role in regulating biological functions and triggering action potentials in neural and muscular tissues. Due to their unique noncentrosymmetric structures, many 2D materials exhibit outstanding piezoelectric performance, generating positive and negative charges under mechanical forces. This ability facilitates precise drug targeting and ensures high stimulus responsiveness, thereby controlling cellular destinies. Additionally, the abundant active sites within piezoelectric 2D materials facilitate efficient catalysis through piezochemical coupling, offering multimodal synergistic therapeutic strategies. However, the full potential of piezoelectric 2D nanomaterials in drug delivery system design remains underexplored due to research gaps. In this context, the current applications of piezoelectric 2D materials in disease management are summarized in this review, and the development of drug delivery systems influenced by these materials is forecast.
Collapse
Affiliation(s)
- Anshuo Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
- State Key Laboratory of Metastable Materials Science and Technology, Nanobiotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jiawei Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nanobiotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
5
|
He F, Li W, Liu B, Zhong Y, Jin Q, Qin X. Progress of Piezoelectric Semiconductor Nanomaterials in Sonodynamic Cancer Therapy. ACS Biomater Sci Eng 2024; 10:298-312. [PMID: 38124374 DOI: 10.1021/acsbiomaterials.3c01232] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Sonodynamic therapy is an emerging noninvasive tumor treatment method that utilizes ultrasound to stimulate sonosensitizers to produce a large amount of reactive oxygen species, inducing tumor cell death. Though sonodynamic therapy has very promising prospects in cancer treatment, the application of early organic sonosensitizers has been limited in efficacy due to the high blood clearance-rate, poor water solubility, and low stability. Inorganic sonosensitizers have thus been developed, among which piezoelectric semiconductor materials have received increasing attention in sonodynamic therapy due to their piezoelectric properties and strong stability. In this review, we summarized the designs, principles, modification strategies, and applications of several commonly used piezoelectric materials in sonodynamic therapy and prospected the future clinical applications for piezoelectric semiconductor materials in sonodynamic therapy.
Collapse
Affiliation(s)
- Fang He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Beibei Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yi Zhong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaojuan Qin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
6
|
Jian ZB, Wu CH, Chen S. First-Principles Study on Out-of-Plane Piezoelectricity of Self-Assembled Ammonia Layers Confined in Two Vertically Stacked Graphene Oxide Nanosheets. J Phys Chem Lett 2023; 14:10129-10136. [PMID: 37922336 DOI: 10.1021/acs.jpclett.3c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Two-dimensional (2D) piezoelectric materials have attracted widespread attention due to their increasingly important niche applications in flexible nanoscale devices. The water-wetted graphene oxide papers exhibit scalable out-of-plane piezoelectricity induced by the hydrogen-bonded network within, and this system can be treated as a potential 2D piezoelectric candidate for future device applications. It triggered our interest to search for more 2D piezoelectric hydrogen-bonded networks. Ammonia (NH3) isoelectronic with water is introduced to generate NH3-wetted graphene oxide papers and realize their out-of-plane piezoelectricity. Their structures and piezoelectricity are investigated using first-principles calculations. They reveal ultrahigh piezoelectricity, compared to the best reported 2D materials. Their piezoelectricity is tuned by varying oxygen-containing functional groups in GO plates, confined NH3 layers, or orientations of NH3 molecules, and it could be applied to fabrication of ammonia sensors. Our study not only enriches the family of 2D piezoelectric nanosystems but also inspires their future experimental exploration.
Collapse
Affiliation(s)
- Zhi-Bin Jian
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen-Hua Wu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Shuang Chen
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
7
|
Thanasarnsurapong T, Detrattanawichai P, Dabsamut K, Chatratin I, T-Thienprasert J, Jungthawan S, Boonchun A. Ternary pentagonal BXN (X = C, Si, Ge, and Sn) sheets with high piezoelectricity. RSC Adv 2023; 13:9636-9641. [PMID: 36968035 PMCID: PMC10037298 DOI: 10.1039/d2ra08342f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
The discovery of new and stable two-dimensional pentagonal materials with piezoelectric properties is essential for technological advancement. Inspired by recently reported piezoelectric materials penta-BCN and penta-BSiN, we proposed penta-BGeN and penta-BSnN as new members of the penta-family based on first-principles calculations. Comprehensive analyses indicated that both penta-BGeN and penta-BSnN are thermodynamically, dynamically, mechanically, and thermally stable. In terms of mechanical stability, the elastic constant decreased as lower elements in group 4A of the periodic table were used. Therefore, penta-BGeN and penta-BSnN are softer than penta-BCN and penta-BSiN. In terms of piezoelectric properties, piezoelectric stress and strain tensors increase following the same pattern. In group 4A, penta-BSnN had the highest intrinsic piezoelectricity, especially the e 22 piezoelectric stress. Typically, the piezoelectric strain d ij coefficient increases with material softness; penta-BSnN possessed the highest d ij . Thus, due to its inherent piezoelectricity, penta-BSnN has tremendous potential as a nanoscale piezoelectric material.
Collapse
Affiliation(s)
| | | | - Klichchupong Dabsamut
- Department of Physics, Faculty of Science, Kasetsart University Chatuchak Bangkok 10900 Thailand
| | - Intuon Chatratin
- Department of Materials Science and Engineering, University of Delaware Newark Delaware 19716 USA
| | - Jiraroj T-Thienprasert
- Department of Physics, Faculty of Science, Kasetsart University Chatuchak Bangkok 10900 Thailand
| | - Sirichok Jungthawan
- School of Physics, Institute of Science, and Center of Excellence in Advanced Functional Materials, Suranaree University of Technology Muang Nakhon Ratchasima 30000 Thailand
| | - Adisak Boonchun
- Department of Physics, Faculty of Science, Kasetsart University Chatuchak Bangkok 10900 Thailand
| |
Collapse
|
8
|
Li X, Zhang F, Li J, Wang Z, Huang Z, Yu J, Zheng K, Chen X. Pentagonal C mX nY 6-m-n ( m = 2, 3; n = 1, 2; X, Y = B, N, Al, Si, P) Monolayers: Janus Ternaries Combine Omnidirectional Negative Poisson Ratios with Giant Piezoelectric Effects. J Phys Chem Lett 2023; 14:2692-2701. [PMID: 36892273 DOI: 10.1021/acs.jpclett.3c00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) materials composed of pentagon and Janus motifs usually exhibit unique mechanical and electronic properties. In this work, a class of ternary carbon-based 2D materials, CmXnY6-m-n (m = 2, 3; n = 1, 2; X, Y = B, N, Al, Si, P), are systematically studied by first-principles calculations. Six of 21 Janus penta-CmXnY6-m-n monolayers are dynamically and thermally stable. The Janus penta-C2B2Al2 and Janus penta-Si2C2N2 exhibit auxeticity. More strikingly, Janus penta-Si2C2N2 exhibits an omnidirectional negative Poisson ratio (NPR) with values ranging from -0.13 to -0.15; in other words, it is auxetic under stretch in any direction. The calculations of piezoelectricity reveal that the out-of-plane piezoelectric strain coefficient (d32) of Janus panta-C2B2Al2 is up to 0.63 pm/V and increases to 1 pm/V after a strain engineering. These omnidirectional NPR, giant piezoelectric coefficients endow the Janus pentagonal ternary carbon-based monolayers as potential candidates in the future nanoelectronics, especially in the electromechanical devices.
Collapse
Affiliation(s)
- Xiaowen Li
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| | - Fusheng Zhang
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 400044 Chongqing, China
| | - Jian Li
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 400044 Chongqing, China
| | - Zeping Wang
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| | - Zhengyong Huang
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 400044 Chongqing, China
| | - Jiabing Yu
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| | - Kai Zheng
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens, Lyngby 2800, Denmark
| | - Xianping Chen
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| |
Collapse
|
9
|
De S, Asthana D, Thirmal C, Keshri SK, Ghosh RK, Hundal G, Kumar R, Singh S, Chatterjee R, Mukhopadhyay P. A folded π-system with supramolecularly oriented dipoles: single-component piezoelectric relaxor with NLO activity. Chem Sci 2023; 14:2547-2552. [PMID: 36908941 PMCID: PMC9993858 DOI: 10.1039/d2sc06141d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Organic molecules with an active dipole moment have a natural propensity to align in an antiparallel fashion in the solid state, resulting in zero macroscopic polarization. This primary limitation makes the material unresponsive to switching with electric fields, mechanical forces, and to intense laser light. A single-component organic material that bestows macroscopic dipole-driven electro-mechanical and optical functions, e.g., piezoelectric, ferroelectric and nonlinear optical (NLO) activity, is unprecedented due to the design challenges imparted by crystal symmetry and dipole orientations. Herein we report a crystalline organic material that self-assembles with a polar order (P 1), and is endowed with a high piezoelectric coefficient (d 33-47 pm V-1), as well as ferroelectric and Debye-type relaxor properties. In addition, it shows second harmonic generation (SHG) activity, which is more than five times that of the benchmark potassium dihydrogen phosphate. Piezoelectric force microscopy (PFM) images validated electro-mechanical deformations. Piezoresponse force spectroscopy (PFS) studies confirmed a signature butterfly-like amplitude and a phase loop. To the best of our knowledge, this is the first report of a folded supramolecular π-system that manifests unidirectionally oriented dipoles and exhibits piezoelectricity, ferroelectricity, and has excellent ability to generate second harmonic light. These findings can herald new design possibilities based on folded architectures to explore opto-, electro- and mechano-responsive multifaceted functions.
Collapse
Affiliation(s)
- Soumi De
- School of Physical Sciences, Jawaharlal Nehru University New Delhi - 110067 India
| | - Deepak Asthana
- Department of Chemistry, Ashoka University Sonipat Haryana 131029 India
| | - Chinthakuntla Thirmal
- Department of Physics, Indian Institute of Technology Delhi New Delhi - 110016 India
- VNR Vignana Jyothi Institute of Engineering and Technology Hyderabad Telangana 500 090 India
| | - Sudhir K Keshri
- School of Physical Sciences, Jawaharlal Nehru University New Delhi - 110067 India
| | - Ram Krishna Ghosh
- Department of Electronics & Communications Engineering, Indraprastha Institute of Information Technology Delhi New Delhi 110020 India
| | - Geeta Hundal
- Department of Chemistry, Guru Nanak Dev University Amritsar Punjab-143005 India
| | - Raju Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University New Delhi - 110067 India
| | - Satyendra Singh
- Special Centre for Nanoscience, Jawaharlal Nehru University New Delhi - 110067 India
| | - Ratnamala Chatterjee
- Department of Physics, Indian Institute of Technology Delhi New Delhi - 110016 India
| | - Pritam Mukhopadhyay
- School of Physical Sciences, Jawaharlal Nehru University New Delhi - 110067 India
| |
Collapse
|
10
|
Negedu SD, Tromer R, Gowda CC, Woellner CF, Olu FE, Roy AK, Pandey P, Galvao DS, Ajayan PM, Kumbhakar P, Tiwary CS. Two-dimensional cobalt telluride as a piezo-tribogenerator. NANOSCALE 2022; 14:7788-7797. [PMID: 35394476 DOI: 10.1039/d2nr00132b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) materials have been shown to be efficient in energy harvesting. Here, we report the use of waste heat to generate electricity via the combined piezoelectric and triboelectric properties of 2D cobalt telluride (CoTe2). The piezo-triboelectric nanogenerator (PTNG) produced an open-circuit voltage of ∼5 V under 1 N force and the effect of temperature in the range of 305-363 K shows a four-fold energy conversion efficiency improvement. The 2D piezo-tribogenerator shows excellent characteristics with a maximum voltage of ∼10 V, fast response time, and high responsivity. Density functional theory was used to gain further insights and validation of the experimental results. Our results could lead to energy harvesting approaches using 2D materials from various thermal sources and dissipating waste heat from electronic devices.
Collapse
Affiliation(s)
- Solomon Demiss Negedu
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
- Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
| | - Raphael Tromer
- Applied Physics Department, University of Campinas, Brazil.
| | - Chinmayee Chowde Gowda
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Cristiano F Woellner
- Physics Department, Federal University of Parana, UFPR, Curitiba, PR, 81531-980, Brazil
| | - Femi Emmanuel Olu
- Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
| | - Ajit K Roy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, OH 45433-7718, USA
| | - Prafull Pandey
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Douglas S Galvao
- Applied Physics Department, University of Campinas, Brazil.
- Center for Computational Engineering and Sciences, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX 77005, USA.
| | - Partha Kumbhakar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Chandra S Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
11
|
Mohanty R, Mansingh S, Parida K, Parida K. Boosting sluggish photocatalytic hydrogen evolution through piezo-stimulated polarization: a critical review. MATERIALS HORIZONS 2022; 9:1332-1355. [PMID: 35139141 DOI: 10.1039/d1mh01899j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To address the growing energy demand, remarkable progress has been made in transferring the fossil fuel-based economy to hydrogen-based environmentally friendly photocatalytic technology. However, the sluggish production rate due to the quick charge recombination and slow diffusion process needs careful engineering to achieve the benchmark photocatalytic efficiency. Piezoelectric photocatalysis has emerged as a promising field in recent years due to its improved catalytic performance facilitated by a built-in electric field that promotes the effective separation of excitons when subjected to mechanical stimuli. This review discusses the recent progress in piezo-photocatalytic hydrogen evolution while elaborating on the mechanistic pathway, effect of piezo-polarization and various strategies adopted to improve piezo-photocatalytic activity. Moreover, our review systematically emphasizes the fundamentals of piezoelectricity and piezo-phototronics along with the operational mechanism for designing efficient piezoelectric photocatalysts. Finally, the summary and outlooks provide insight into the existing challenges and outline the future prospects and roadmap for the development of next-generation piezo-photocatalysts towards hydrogen evolution.
Collapse
Affiliation(s)
- Ritik Mohanty
- Centre for Nanoscience and Nanotechnology, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | - Sriram Mansingh
- Centre for Nanoscience and Nanotechnology, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | - Kaushik Parida
- School of Materials Science and Engineering, Nanyang Technological University Singapore, 50 Nanyang Avenue 639798, Singapore
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| |
Collapse
|
12
|
Ma W, Yao B, Yang Q, Zhang T, Tian K, Zhang W, Niu J, Yu Y, Chang Z, He Y. Synergetic contribution of enriched selenium vacancies and out-of-plane ferroelectric polarization in AB-stacked MoSe 2 nanosheets as efficient piezocatalysts for TC degradation. NEW J CHEM 2022. [DOI: 10.1039/d1nj05579h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel MoSe2 piezocatalysts with surface selenium vacancies and out-of-plane ferroelectric polarization exhibit ultrafast degradation of the antibiotic tetracycline.
Collapse
Affiliation(s)
- Wei Ma
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
- The key Laboratory of Northwest Water Resources and Environmental Ecology of Ministry of Education, Xi’an University of Technology, Xi’an 710048, China
| | - Binghua Yao
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
- The key Laboratory of Northwest Water Resources and Environmental Ecology of Ministry of Education, Xi’an University of Technology, Xi’an 710048, China
| | - Qian Yang
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Ting Zhang
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Kecong Tian
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Wen Zhang
- Department of Civil Engineering, University of Arkansas, Fayetteville 72701, USA
| | - Jinfen Niu
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Yan Yu
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Zheng Chang
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Yangqing He
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
13
|
Sherrell PC, Fronzi M, Shepelin NA, Corletto A, Winkler DA, Ford M, Shapter JG, Ellis AV. A bright future for engineering piezoelectric 2D crystals. Chem Soc Rev 2021; 51:650-671. [PMID: 34931635 DOI: 10.1039/d1cs00844g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.
Collapse
Affiliation(s)
- Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Marco Fronzi
- School of Mathematical and Physical Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia.,Shibaura Institute of Technology, SIT Research Laboratories, 3-7-5, Toyosu, Koto-ku, Tokyo, 135-8548, Japan.
| | - Nick A Shepelin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia. .,Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Alexander Corletto
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia. .,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3086, Australia.,School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Mike Ford
- School of Mathematical and Physical Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
14
|
Abstract
Low-dimensional (LD) transition metal dichalcogenides (TMDs) in the form of nanoflakes, which consist of one or several layers, are the subject of intensive fundamental and applied research. The tuning of the electronic properties of the LD-TMDs are commonly related with applied strains and strain gradients, which can strongly affect their polar properties via piezoelectric and flexoelectric couplings. Using the density functional theory and phenomenological Landau approach, we studied the bended 2H-MoS2 monolayer and analyzed its flexoelectric and piezoelectric properties. The dependences of the dipole moment, strain, and strain gradient on the coordinate along the layer were calculated. From these dependences, the components of the flexoelectric and piezoelectric tensors have been determined and analyzed. Our results revealed that the contribution of the flexoelectric effect dominates over the piezoelectric effect in both in-plane and out-of-plane directions of the monolayer. In accordance with our calculations, a realistic strain gradient of about 1 nm−1 can induce an order of magnitude higher than the flexoelectric response in comparison with the piezoelectric reaction. The value of the dilatational flexoelectric coefficient is almost two times smaller than the shear component. It appeared that the components of effective flexoelectric and piezoelectric couplings can be described by parabolic dependences of the corrugation. Obtained results are useful for applications of LD-TMDs in strain engineering and flexible electronics.
Collapse
|
15
|
Ghasemian MB, Zavabeti A, Mousavi M, Murdoch BJ, Christofferson AJ, Meftahi N, Tang J, Han J, Jalili R, Allioux FM, Mayyas M, Chen Z, Elbourne A, McConville CF, Russo SP, Ringer S, Kalantar-Zadeh K. Doping Process of 2D Materials Based on the Selective Migration of Dopants to the Interface of Liquid Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104793. [PMID: 34510605 DOI: 10.1002/adma.202104793] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The introduction of trace impurities within the doping processes of semiconductors is still a technological challenge for the electronics industries. By taking advantage of the selective enrichment of liquid metal interfaces, and harvesting the doped metal oxide semiconductor layers, the complexity of the process can be mitigated and a high degree of control over the outcomes can be achieved. Here, a mechanism of natural filtering for the preparation of doped 2D semiconducting sheets based on the different migration tendencies of metallic elements in the bulk competing for enriching the interfaces is proposed. As a model, liquid metal alloys with different weight ratios of Sn and Bi in the bulk are employed for harvesting Bi2 O3 -doped SnO nanosheets. In this model, Sn shows a much stronger tendency than Bi to occupy surface sites of the Bi-Sn alloys, even at the very high concentrations of Bi in the bulk. This provides the opportunity for creating SnO 2D sheets with tightly controlled Bi2 O3 dopants. By way of example, it is demonstrated how such nanosheets could be made selective to both reducing and oxidizing environmental gases. The process demonstrated here offers significant opportunities for future synthesis and fabrication processes in the electronics industries.
Collapse
Affiliation(s)
- Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Ali Zavabeti
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, Victoria, 3001, Australia
| | | | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jialuo Han
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Rouhollah Jalili
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Zibin Chen
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Chris F McConville
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3216, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Simon Ringer
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
16
|
Xu Q, Gao X, Zhao S, Liu Y, Zhang D, Zhou K, Khanbareh H, Chen W, Zhang Y, Bowen C. Construction of Bio-Piezoelectric Platforms: From Structures and Synthesis to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008452. [PMID: 34033180 PMCID: PMC11469329 DOI: 10.1002/adma.202008452] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/28/2021] [Indexed: 05/04/2023]
Abstract
Piezoelectric materials, with their unique ability for mechanical-electrical energy conversion, have been widely applied in important fields such as sensing, energy harvesting, wastewater treatment, and catalysis. In recent years, advances in material synthesis and engineering have provided new opportunities for the development of bio-piezoelectric materials with excellent biocompatibility and piezoelectric performance. Bio-piezoelectric materials have attracted interdisciplinary research interest due to recent insights on the impact of piezoelectricity on biological systems and their versatile biomedical applications. This review therefore introduces the development of bio-piezoelectric platforms from a broad perspective and highlights their design and engineering strategies. State-of-the-art biomedical applications in both biosensing and disease treatment will be systematically outlined. The relationships between the properties, structure, and biomedical performance of the bio-piezoelectric materials are examined to provide a deep understanding of the working mechanisms in a physiological environment. Finally, the development trends and challenges are discussed, with the aim to provide new insights for the design and construction of future bio-piezoelectric materials.
Collapse
Affiliation(s)
- Qianqian Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Xinyu Gao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Senfeng Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - You‐Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Dou Zhang
- State Key Laboratory of Powder MetallurgyCentral South UniversityHunan410083China
| | - Kechao Zhou
- State Key Laboratory of Powder MetallurgyCentral South UniversityHunan410083China
| | | | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Yan Zhang
- State Key Laboratory of Powder MetallurgyCentral South UniversityHunan410083China
| | - Chris Bowen
- Department of Mechanical EngineeringUniversity of BathBathBA27AYUK
| |
Collapse
|
17
|
Yarajena SS, Biswas R, Raghunathan V, Naik AK. Quantitative probe for in-plane piezoelectric coupling in 2D materials. Sci Rep 2021; 11:7066. [PMID: 33782418 PMCID: PMC8007818 DOI: 10.1038/s41598-021-86252-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/05/2021] [Indexed: 11/08/2022] Open
Abstract
Piezoelectric response in two-dimensional (2D) materials has evoked immense interest in using them for various applications involving electromechanical coupling. In most of the 2D materials, piezoelectricity is coupled along the in-plane direction. Here, we propose a technique to probe the in-plane piezoelectric coupling strength in layered nanomaterials quantitively. The method involves a novel approach for in-plane field excitation in lateral Piezoresponse force microscopy (PFM) for 2D materials. Operating near contact resonance has enabled the measurement of the piezoelectric coupling coefficients in the sub pm/V range. Detailed methodology for the signal calibration and the background subtraction when PFM is operated near the contact resonance of the cantilever is also provided. The technique is verified by estimating the in-plane piezoelectric coupling coefficients (d11) for freely suspended MoS2 of one to five atomic layers. For 2D-MoS2 with the odd number of atomic layers, which are non-centrosymmetric, finite d11 is measured. The measurements also indicate that the coupling strength decreases with an increase in the number of layers. The techniques presented would be an effective tool to study the in-plane piezoelectricity quantitatively in various materials along with emerging 2D-materials.
Collapse
Affiliation(s)
- Sai Saraswathi Yarajena
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
| | - Rabindra Biswas
- Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Varun Raghunathan
- Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Akshay K Naik
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
18
|
Wang Y, Vu LM, Lu T, Xu C, Liu Y, Ou JZ, Li Y. Piezoelectric Responses of Mechanically Exfoliated Two-Dimensional SnS 2 Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51662-51668. [PMID: 33140968 DOI: 10.1021/acsami.0c16039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The emergence of piezoelectric properties in two-dimensional (2D) layered transition metal dichalcogenides (TMDs) has triggered the intensive research on using low dimensional materials for conversion of mechanical stimuli into electrical signals or vice versa. While the bulk intrinsically presents no piezoelectric property, the origin of the piezoelectric responses in their 2D thin planes is ascribed to the loss of centrosymmetry. There are also other categories of 2D layered materials such as post-transition metal dichalcogenides (PTMDs) that might be of interests, which have been confirmed theoretically and are yet to be fully explored experimentally. In this work, we investigate the thickness-dependent piezoelectric responses of 2D tin disulfide (SnS2) nanosheets as a representative of layered PTMDs. The results indicate that the 2D SnS2 nanosheets with a thickness of ∼4 nm present an effective out-of-plane piezoelectric response of 2 ± 0.22 pm/V. Furthermore, the thickness dependence of the piezoelectric behavior at a resonant frequency shows that the piezoelectric coefficient decreases with increasing the thickness of 2D SnS2 nanosheets. Additionally, in reference to periodically poled lithium niobate piezoelectric crystal, the measured effective lateral piezoelectric coefficients at different voltages range from 0.61 to 1.55 pm/V with the average value at ∼1 pm/V. This study expands candidates for new piezoelectric materials in the 2D domain with comparable vertical and lateral coefficients, potentially opening a broader horizon for integration into sensors, actuators, and micro- and nanoelectromechanical systems.
Collapse
Affiliation(s)
- Yichao Wang
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Le-May Vu
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Teng Lu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Chenglong Xu
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Yongxiang Li
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
19
|
Javvaji B, Mortazavi B, Rabczuk T, Zhuang X. Exploration of mechanical, thermal conductivity and electromechanical properties of graphene nanoribbon springs. NANOSCALE ADVANCES 2020; 2:3394-3403. [PMID: 36134265 PMCID: PMC9418781 DOI: 10.1039/d0na00217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/16/2020] [Indexed: 06/16/2023]
Abstract
Recent experimental advances [Liu et al., npj 2D Mater. Appl., 2019, 3, 23] propose the design of graphene nanoribbon springs (GNRSs) to substantially enhance the stretchability of pristine graphene. A GNRS is a periodic undulating graphene nanoribbon, where undulations are of sinus or half-circle or horseshoe shapes. Besides this, the GNRS geometry depends on design parameters, like the pitch's length and amplitude, thickness and joining angle. Because of the fact that parametric influence on the resulting physical properties is expensive and complicated to examine experimentally, we explore the mechanical, thermal and electromechanical properties of GNRSs using molecular dynamics simulations. Our results demonstrate that the horseshoe shape design GNRS (GNRH) can distinctly outperform the graphene kirigami design concerning the stretchability. The thermal conductivity of GNRSs was also examined by developing a multiscale modeling, which suggests that the thermal transport along these nanostructures can be effectively tuned. We found that however, the tensile stretching of the GNRS and GNRH does not yield any piezoelectric polarization. The bending induced hybridization change results in a flexoelectric polarization, where the corresponding flexoelectric coefficient is 25% higher than that of graphene. Our results provide a comprehensive vision of the critical physical properties of GNRSs and may help to employ the outstanding physics of graphene to design novel stretchable nanodevices.
Collapse
Affiliation(s)
- Brahmanandam Javvaji
- Chair of Computational Science and Simulation Technology, Department of Mathematics and Physics, Leibniz Universität Hannover Applestr. 11 30167 Hannover Germany
| | - Bohayra Mortazavi
- Chair of Computational Science and Simulation Technology, Department of Mathematics and Physics, Leibniz Universität Hannover Applestr. 11 30167 Hannover Germany
| | - Timon Rabczuk
- Institute of Structural Mechanics, Bauhaus University Weimar Marienstrasse 15 99423 Weimar Germany
- College of Civil Engineering, Department of Geotechnical Engineering, Tongji University Shanghai China
| | - Xiaoying Zhuang
- Division of Computational Mechanics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Civil Engineering, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|