1
|
Sadler CJ, Sandler JP, Shamsabadi A, Frenette LC, Creamer A, Stevens MM. Signal Enhancement in Immunoassays via Coupling to Catalytic Nanoparticles. ACS Sens 2025. [PMID: 40390533 DOI: 10.1021/acssensors.5c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Early diagnosis is vital for effective disease management, selection of appropriate treatment regimes, and surveillance and control of disease transmission. There is a growing need for point-of-need diagnostic platforms, such as lateral flow immunoassays (LFIAs), to reduce healthcare burdens, particularly in low-resource settings. However, LFIAs often suffer from inadequate sensitivity and exhibit limited dynamic ranges, leading to late-stage diagnosis or misdiagnosis. Here, we present a signal enhancement platform for use in both plate- and paper-based immunoassays, based on the formation of a coupled nanoparticle network. We demonstrate the coupling of an antigen-targeting detection probe with a secondary, catalytically active nanoparticle by utilizing secondary antibody interactions. Here, we show that signal enhancement is achieved through two functional mechanisms: network formation, facilitated by the secondary nanoparticle increasing the relative concentration of nanoparticles immobilized at the test zone; and the inclusion of catalytically active nanoparticles, which catalyze the oxidation of a chromogenic substrate at the test zone. Through this approach, we yielded a 40-fold improvement in the limit of detection (LOD) using 40 nm gold nanoparticle detection probes in spiked pooled human saliva. Further, the signal enhancement platform can be utilized alongside a range of detection probes, including gold nanoparticles, commonly employed for use in LFIAs. This work concludes by showcasing that the signal enhancement mechanism is compatible for use with complex sample matrices, such as human saliva.
Collapse
Affiliation(s)
- Christy J Sadler
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Jan P Sandler
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K
| | - André Shamsabadi
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Leah C Frenette
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K
| | - Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London SW7 2AZ, U.K
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
2
|
Cheng X, Chen H, Li W, Tu Z, Wang Y, Wei H, Wang S, Liu L, Rong Z. Nanozyme-Catalyzed Colorimetric Microfluidic Immunosensor for the Filtration Enrichment and Ultrasensitive Detection of Salmonella typhimurium in Food Samples. Anal Chem 2025; 97:6454-6463. [PMID: 40043091 DOI: 10.1021/acs.analchem.4c05607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Rapid screening of foodborne pathogens is crucial to prevent food poisoning. In this study, we proposed a nanozyme-catalyzed colorimetric microfluidic immunosensor (Nano-CMI) for the filtration enrichment and ultrasensitive detection of Salmonella typhimurium in complex matrices. Gold-core porous platinum shell nanopompoms (Au@Pt nanopompoms) were synthesized with excellent peroxidase-like activity to oxidize 3,3',5,5'-tetramethylbenzidine with significant color change. The Au@Pt nanopompoms demonstrated a large reaction area, superior catalytic property, and good stability. The microfluidic chip used in the Nano-CMI was designed based on the size disparities among S. typhi, Au@Pt nanopompoms, and the pore sizes of filters I and II. Thus, a biosensor containing pretreatment, incubation, enrichment, and detection of four-in-one functions was established and performed under the drive of a medical plastic syringe. This biosensor can accomplish ultrasensitive detection of S. typhi with a limit of detection as low as 9 cfu/mL within 20 min, which makes it suitable for point-of-care testing. The proposed Nano-CMI also possessed high specificity and good repeatability (RSD < 2.1%) and can thus be applied directly to the analysis of real food samples, suggesting its great potential for practical application in the food safety field.
Collapse
Affiliation(s)
- Xiaodan Cheng
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Hong Chen
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Weijia Li
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Zhijie Tu
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Yunxiang Wang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Hongjuan Wei
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
- State Key Laboratory of Kidney Diseases, Beijing 100853, P. R. China
| | - Liyan Liu
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| |
Collapse
|
3
|
Wu T, Liu Y, Zhou S, Li J, Sun G, Gu B, Wang C. Wheat Germ Agglutinin-Modified "Three-in-One" Multifunctional Probe Driven Broad-Spectrum and Flexible Immunochromatographic Diagnosis of viruses With High Sensitivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406053. [PMID: 39439187 DOI: 10.1002/smll.202406053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The conventional lateral flow assay (LFA) fails to the demands for the accurate screening of viruses as a result of its low sensitivity of colorimetric signal output and poor universality limited by antibody pairs. Here, a magnetically assisted dual-signal output LFA platform is developed for the ultrasensitive, universal, and flexible detection of viruses. A "three-in-one" multifunctional probe (MAuDQD) is prepared using a 180 nm Fe3O4 core to load numerous Au nanoparticles (NPs) and two layers of QDs, which can substantially improve the sensitivity of LFA through coupling with the effects of magnetic enrichment and colorimetric/fluorescent enhancement. Wheat germ agglutinin (WGA)-modified MAuDQD attained the broad-spectrum capture viral membrane proteins and the colorimetric/fluorescent dual-mode detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and monkeypox virus (MPXV) on the LFA strip. In the colorimetric mode, the target viruses detected directly, with the visual sensitivity reaching 0.1-0.5 ng mL-1 and the fluorescent mode supported quantitative analysis of SARS-CoV-2/MPXV with limits of detection decreasing to pg mL-1 level. Practicability of the MAuDQD@WGA-LFA is verified through the detection of 33 real clinical samples, showing the proposed assay has a great potential to become a sensitive, accurate, and universal tool for on-site monitoring of viral infections.
Collapse
Affiliation(s)
- Ting Wu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yun Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Sihai Zhou
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Chongwen Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
4
|
Dede M, van Dam A. Conjugation of visual enhancers in lateral flow immunoassay for rapid forensic analysis: A critical review. Anal Bioanal Chem 2025; 417:15-31. [PMID: 39384571 PMCID: PMC11695493 DOI: 10.1007/s00216-024-05565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
During crime scene investigations, numerous traces are secured and may be used as evidence for the evaluation of source and/or activity level propositions. The rapid chemical analysis of a biological trace enables the identification of body fluids and can provide significant donor profiling information, including age, sex, drug abuse, and lifestyle. Such information can be used to provide new leads, exclude from, or restrict the list of possible suspects during the investigative phase. This paper reviews the state-of-the-art labelling techniques to identify the most suitable visual enhancer to be implemented in a lateral flow immunoassay setup for the purpose of trace identification and/or donor profiling. Upon comparison, and with reference to the strengths and limitations of each label, the simplistic one-step analysis of noncompetitive lateral flow immunoassay (LFA) together with the implementation of carbon nanoparticles (CNPs) as visual enhancers is proposed for a sensitive, accurate, and reproducible in situ trace analysis. This approach is versatile and stable over different environmental conditions and external stimuli. The findings of the present comparative analysis may have important implications for future forensic practice. The selection of an appropriate enhancer is crucial for a well-designed LFA that can be implemented at the crime scene for a time- and cost-efficient investigation.
Collapse
Affiliation(s)
- Maria Dede
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
| | - Annemieke van Dam
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
- Department Forensic Science, Amsterdam University of Applied Sciences, Tafelbergweg 51, Amsterdam, 1105 BD, Netherlands
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
| |
Collapse
|
5
|
Liu S, Liao Y, Shu R, Sun J, Zhang D, Zhang W, Wang J. Evaluation of the Multidimensional Enhanced Lateral Flow Immunoassay in Point-of-Care Nanosensors. ACS NANO 2024; 18:27167-27205. [PMID: 39311085 DOI: 10.1021/acsnano.4c06564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Point-of-care (POC) nanosensors with high screening efficiency show promise for user-friendly manipulation in the ever-increasing on-site analysis demand for illness diagnosis, environmental monitoring, and food safety. Currently, inspired by the merits of integrating advanced nanomaterials, molecular biology, machine learning, and artificial intelligence, lateral flow immunoassay (LFIA)-based POC nanosensors have been devoted to satisfying the commercial demands in terms of sensitivity, specificity, and practicality. Herein, we examine the use of multidimensional enhanced LFIA in various fields over the past two decades, focusing on introducing advanced nanomaterials to improve the acquisition capability of small order of magnitude targets through engineering transformations and emphasizing interdomain fusion to collaboratively address the inherent challenges in current commercial applications, such as multiplexing, development of detectors for quantitative analysis, more practical on-site monitoring, and sensitivity enhancement. Specifically, this comprehensive review encompasses the latest advances in comprehending LFIA with an alternative signal transduction pattern, aiming to achieve rapid, ultrasensitive, and "sample-to-answer" available options with progressive applications for POC nanosensors. In summary, through the cross-collaboration development of disciplines, LFIA has the potential to break the barriers toward commercialization and achieve laboratory-level POC nanosensors, thus leading to the emergence of the next generation of LFIA.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangjun Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Li D, Ao L, Hu R, Zhang X, Huang L, Jiang C, Gao G, Shen Z, Hu J, Wang J. Kiwi-Inspired Rational Nanoarchitecture with Intensified and Discrete Magneto-Fluorescent Functionalities for Ultrasensitive Point-of-Care Immunoassay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402676. [PMID: 38847072 DOI: 10.1002/smll.202402676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Indexed: 10/19/2024]
Abstract
Fluorescent lateral flow immunoassays (FLFIA) is a well-established rapid detection technique for quantitative analysis. However, achieving accurate analysis of biomarkers at the pg mL-1 level using FLFIA still poses challenges. Herein, an ultrasensitive FLFIA platform is reported utilizing a kiwi-type magneto-fluorescent silica nanohybrid (designated as MFS) that serves as both a target-enrichment substrate and an optical signal enhancement label. The spatially-layered architecture comprises a Fe3O4 core, an endocarp-fibers like dendritic mesoporous silica, seed-like quantum dots, and a kiwi-flesh like silica matrix. The MFS demonstrates heightened fluorescence brightness, swift magnetic response, excellent size uniformity, and dispersibility in water. Through liquid-phase capturing and fluorescence-enhanced signal amplification, as well as magnetic-enrichment sample amplification and magnetic-separation noise reduction, the MFS-based FLFIA is successfully applied to the detection of cardiac troponin I that achieved a limit of detection at 8.4 pg mL-1, tens of times lower than those of previously published fluorescent and colorimetric lateral flow immunoassays. This work offers insights into the strategic design of magneto-fluorescent synergetic signal amplification on LFIA platform and underscores their prospects in high-sensitive rapid and on-site diagnosis of biomarkers.
Collapse
Affiliation(s)
- Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lijiao Ao
- Institute of Biomedical Engineering, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, P. R. China
| | - Rong Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xueqiang Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Chenxing Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, 315010, P. R. China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
7
|
Zhu Z, Lv Z, Wang L, Tan H, Xu Y, Li S, Chen L. A pump-free paper/PDMS hybrid microfluidic chip for bacteria enrichment and fast detection. Talanta 2024; 275:126155. [PMID: 38678928 DOI: 10.1016/j.talanta.2024.126155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Developing portable and sensitive biosensors for bacteria detection is highly demanded due to their association with environmental and food safety. Paper-based microfluidic chip is the suitable candidate for constructing pump-free biosensor since paper is hydrophilic, low-cost and easy to use. However, the contradiction between sensitivity and small sample volume seriously affects the application of paper-based chip for bacteria detection. Here, a new microfluidic biosensor, combining large PDMS reservoir for sample storage, hydrophilic paper substrate for pump-free water transport, coated microspheres for bacteria capture and super absorbent resin for water absorption, is designed for the detection of bacteria in aqueous samples. Once the sample solution is introduced in the reservoir, water will automatically flow through the gaps between microspheres and the target bacteria will be captured by the aptamer coated on the surface. To facilitate PDMS reservoir bonding and ensure water transport, the upper side of paper substrate is coated with Polyethylenimine modified PDMS and the bottom side is kept unchanged. After all the solution is filtrated, fluorescent dye strained bacteria are enriched on the microspheres. The fluorescent intensity representing the number of bacteria captured is then measured using a portable instrument. Through the designed microfluidic biosensor, the bacteria detection can be achieved with 2 mL sample solution in less than 15 min for water or 20 min for diluted milk. A linear range from 10 CFU/mL to 1000 CFU/mL is obtained. The paper-based 3D biosensor has the merits of low-cost, simple operation, pump-free and high sensitivity and it can be applied to the simultaneous detection of multiple bacteria via integrating different aptamers.
Collapse
Affiliation(s)
- Zhengshan Zhu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Zilan Lv
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Li Wang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Haolan Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 4001331, China
| | - Yi Xu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
| | - Li Chen
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
8
|
Zhang J, Yan C, Liu G. Visual detection of microRNAs using gold nanorod-based lateral flow nucleic acid biosensor and exonuclease III-assisted signal amplification. Mikrochim Acta 2024; 191:491. [PMID: 39066913 DOI: 10.1007/s00604-024-06557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
An ultrasensitive method for the visual detection of microRNAs (miRNAs) in cell lysates using a gold nanorod-based lateral flow nucleic acid biosensor (GN-LFNAB) and exonuclease III (Exo III)-assisted signal amplification. The Exo III-catalyzed target recycling strategy is employed to generate a large number of single-strand DNA products, which can be detected by GN-LFNAB visually. With the implementation of a unique recycling strategy, we have demonstrated that the miRNA in the concentration as low as 0.5 pM can be detected without the need for instrumentation, providing a detection limit that surpasses previous reports. The new biosensor is ultrasensitive and can be applied to the reliable monitoring of miRNAs in cell lysates with high accuracy. The approach offers a simple and rapid tool for cancer diagnosis and clinical biomedicine, thanks to its flexibility, simplicity, cost-effectiveness, and convenience. This new method has the potential to significantly improve the detection and monitoring of cancer biomarkers, ultimately contributing to more effective cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, 230601, China
| | - Guodong Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| |
Collapse
|
9
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
10
|
Chen Z, Luo G, Ren J, Wang Q, Zhao X, Wei L, Wang Y, Liu Y, Deng Y, Li S. Recent Advances in and Application of Fluorescent Microspheres for Multiple Nucleic Acid Detection. BIOSENSORS 2024; 14:265. [PMID: 38920569 PMCID: PMC11201543 DOI: 10.3390/bios14060265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Traditional single nucleic acid assays can only detect one target while multiple nucleic acid assays can detect multiple targets simultaneously, providing comprehensive and accurate information. Fluorescent microspheres in multiplexed nucleic acid detection offer high sensitivity, specificity, multiplexing, flexibility, and scalability advantages, enabling precise, real-time results and supporting clinical diagnosis and research. However, multiplexed assays face challenges like complexity, costs, and sample handling issues. The review explores the recent advancements and applications of fluorescent microspheres in multiple nucleic acid detection. It discusses the versatility of fluorescent microspheres in various fields, such as disease diagnosis, drug screening, and personalized medicine. The review highlights the possibility of adjusting the performance of fluorescent microspheres by modifying concentrations and carrier forms, allowing for tailored applications. It emphasizes the potential of fluorescent microsphere technology in revolutionizing nucleic acid detection and advancing health, disease treatment, and medical research.
Collapse
Affiliation(s)
- Zhu Chen
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Gaoming Luo
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jie Ren
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Qixuan Wang
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinping Zhao
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Linyu Wei
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China;
| | - Yuan Liu
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Yan Deng
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Song Li
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| |
Collapse
|
11
|
Wang F, Xiao M, Qi J, Zhu L. Paper-based fluorescence sensor array with functionalized carbon quantum dots for bacterial discrimination using a machine learning algorithm. Anal Bioanal Chem 2024; 416:3139-3148. [PMID: 38632131 PMCID: PMC11068836 DOI: 10.1007/s00216-024-05262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
The rapid discrimination of bacteria is currently an emerging trend in the fields of food safety, medical detection, and environmental observation. Traditional methods often require lengthy culturing processes, specialized analytical equipment, and bacterial recognition receptors. In response to this need, we have developed a paper-based fluorescence sensor array platform for identifying different bacteria. The sensor array is based on three unique carbon quantum dots (CQDs) as sensing units, each modified with a different antibiotic (polymyxin B, ampicillin, and gentamicin). These antibiotic-modified CQDs can aggregate on the bacterial surface, triggering aggregation-induced fluorescence quenching. The sensor array exhibits varying fluorescent responses to different bacterial species. To achieve low-cost and portable detection, CQDs were formulated into fluorescent ink and used with an inkjet printer to manufacture paper-based sensor arrays. A smartphone was used to collect the responses generated by the bacteria and platform. Diverse machine learning algorithms were utilized to discriminate bacterial types. Our findings showcase the platform's remarkable capability to differentiate among five bacterial strains, within a detection range spanning from 1.0 × 103 CFU/mL to 1.0 × 107 CFU/mL. Its practicality is further validated through the accurate identification of blind bacterial samples. With its cost-effectiveness, ease of fabrication, and high degree of integration, this platform holds significant promise for on-site detection of diverse bacteria.
Collapse
Affiliation(s)
- Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Minghui Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jing Qi
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
| | - Liang Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
| |
Collapse
|
12
|
Hu H, Tian J, Shu R, Liu H, Wang S, Yin X, Wang J, Zhang D. A cheaper substitute for HRP: ultra-small Cu-Au bimetallic enzyme mimics with infinitesimal steric hindrance to promote catalytic lateral flow immunodetection of clenbuterol. LAB ON A CHIP 2024; 24:2272-2279. [PMID: 38504660 DOI: 10.1039/d3lc01079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A highly sensitive lateral flow immunoassay (LFIA) is developed for the enzyme-catalyzed and double-reading determination of clenbuterol (CLE), in which a new type of probe was adopted through the direct electrostatic adsorption of ultra-small copper-gold bimetallic enzyme mimics (USCGs) and monoclonal antibodies. In the assay, based on the peroxidase activity of USCG, the chromogenic substrate TMB-H2O2 was introduced to trigger its color development, and the results were compared with those before catalysis. The detection sensitivity after catalysis is 0.03 ng mL-1 under optimal circumstances, which is 6-fold better than that of the traditional Au NPs-based LFIA and 2-fold greater than that before catalysis. This approach was successfully applied to the detection of CLE in milk, pork and mutton samples with an optimum assay time of 7 min and best catalytic time of 80 s, after which satisfactory recoveries of 98.53-117.79% were obtained. Cu-Au nanoparticles as a signal tag and the use of their nanozyme properties are the first applications in the field of LFIA. This work can be a promising exhibition for the application of a cheaper substitute for HRP, ultra-small bimetallic enzyme mimics, in LFIAs.
Collapse
Affiliation(s)
- Huilan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Jiaqi Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Huihui Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Economic and Technological Development Zone, 264006, Yantai, Shandong, China.
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Zhao J, Han H, Liu Z, Chen J, Liu X, Sun Y, Wang B, Zhao B, Pang Y, Xiao R. Portable fluorescent lateral flow assay for ultrasensitive point-of-care analysis of acute myocardial infarction related microRNA. Anal Chim Acta 2024; 1295:342306. [PMID: 38355230 DOI: 10.1016/j.aca.2024.342306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Point-of-care quantitative analysis of tracing microRNA disease-biomarkers remains a great challenge in the clinical diagnosis. In this paper, we developed a portable fluorescent lateral flow assay for ultrasensitive quantified detection of acute myocardial infarction related microRNAs in bio-samples. SiO2@DQD (bilayer quantum dots assembly with SiO2 core) based fluorescent lateral flow strip was fabricated as the analysis tool. In order to quantify the tracing microRNA in biosamples, a catalytic hairpin assembly and CRISPR/Cas12a cascade amplification method was performed and combined with the fabricated SiO2@DQD lateral flow strip. Thus, our platform gathered double advantages of portability and ultrasensitive quantification. Based on our strips, target myocardial biomarker microRNA-133a can be detected with a detection limit of 0.32 fM, which was almost 1000-fold sensitive compared with previous reported microRNAs-lateral flow strips. Significantly, this portable fluorescent strip can directly detect microRNAs in serum without any pretreatment and PCR amplification steps. When spiked in serum samples, a recovery of 99.65 %-102.38 % can be obtained. Therefore, our method offers a potential tool for ultrasensitive quantification of diseases related microRNA in the point-of-care diseases diagnosis field.
Collapse
Affiliation(s)
- Junnan Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Han Han
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Zhenzhen Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Xiaoxian Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yinuo Sun
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Bingwei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Yuanfeng Pang
- Department of Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, PR China.
| | - Rui Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.
| |
Collapse
|
14
|
Wang F, Li X, Liu Z, Zhao X, Zhao C, Hou G, Liu Q, Liu X. A Magnetic-Optical Triple-Mode Lateral Flow Immunoassay for Sensitive and Rapid Detection of Respiratory Adenovirus. Anal Chem 2024; 96:2059-2067. [PMID: 38258754 DOI: 10.1021/acs.analchem.3c04696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human respiratory adenovirus (ADV) is a highly infectious respiratory virus with potential for pandemics. There are currently no specific drugs to treat ADV worldwide, so early rapid detection of ADV infection is essential. In this study, we developed an innovative magnetic-optical triple-mode lateral flow immunoassay (LFIA) using magnetic quantum dots as immunomarkers. This novel approach addresses the need for rapid and accurate ADV detection, allowing for multimodal quantitative/semiquantitative analysis of magnetic, fluorescent, and visible signals within a mere 15 min. The lower limit of detection (LOD) for magnetic, fluorescent, and visual signals was determined to be 5.6 × 103, 1.2 × 103, and 1.95 × 104 copies/mL, respectively. The detection range for ADV using this approach was 1.2 × 103-5 × 107 copies/mL. Additionally, semiquantitative analysis, which is user-friendly and does not necessitate specialized equipment, was successfully implemented. Notably, seven respiratory viruses showed no cross-reactivity with the generated LFIA test strips. The intrabatch repeatability exhibited a coefficient of variation (CV) of less than 5%, while the interbatch repeatability had a CV of less than 15%. Furthermore, recovery values ranged from 95% to 106.8% for samples analyzed concurrently with dual signals at the same spiking concentration. The assay developed in this study boasts a wide detection range and exceptional sensitivity and specificity. This technique is exceptionally well-suited for on-site rapid detection, with the potential for personal self-testing and early ADV infection diagnosis. Its versatility extends to a broad array of application scenarios.
Collapse
Affiliation(s)
- Fei Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, PR China
| | - Xiaoyan Li
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, PR China
| | - Zhining Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China
| | - Xin Zhao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China
| | - Changxu Zhao
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, PR China
| | - Guangzheng Hou
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, PR China
| | - Qiqi Liu
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, PR China
| | - Xin Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China
- Jinzhou Medical University Huludao Central Hospital Teaching Base, Huludao 125001,PR China
| |
Collapse
|
15
|
Yudin Kharismasari C, Irkham, Zein MIHL, Hardianto A, Nur Zakiyyah S, Umar Ibrahim A, Ozsoz M, Wahyuni Hartati Y. CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring. Bioelectrochemistry 2024; 155:108600. [PMID: 37956622 DOI: 10.1016/j.bioelechem.2023.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Each organism has a unique sequence of nitrogenous bases in in the form of DNA or RNA which distinguish them from other organisms. This characteristic makes nucleic acid-based detection extremely selective and compare to other molecular techniques. In recent years, several nucleic acid-based detection technology methods have been developed, one of which is the electrochemical biosensor. Electrochemical biosensors are known to have high sensitivity and accuracy. In addition, the ease of miniaturization of this electrochemical technique has garnered interest from many researchers. On the other hand, the CRISPR/Cas12 method has been widely used in detecting nucleic acids due to its highly selective nature. The CRISPR/Cas12 method is also reported to increase the sensitivity of electrochemical biosensors through the utilization of modified electrodes. The electrodes can be modified according to detection needs so that the biosensor's performance can be improved. This review discusses the application of CRISPR/Cas12-based electrochemical biosensors, as well as various electrode modifications that have been successfully used to improve the performance of these biosensors in the clinical and food monitoring fields.
Collapse
Affiliation(s)
- Clianta Yudin Kharismasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Muhammad Ihda H L Zein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey; Operational Research Centre in Healthcare, Near East University, Mersin 10, TRNC, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia.
| |
Collapse
|
16
|
Hu JX, Ding SN. In Situ Synthesis of Highly Fluorescent, Phosphorus-Doping Carbon-Dot-Functionalized, Dendritic Silica Nanoparticles Applied for Multi-Component Lateral Flow Immunoassay. SENSORS (BASEL, SWITZERLAND) 2023; 24:19. [PMID: 38202881 PMCID: PMC10780618 DOI: 10.3390/s24010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
The sensitivity of fluorescent lateral flow immunoassay (LFIA) test strips is compromised by the low fluorescence intensity of the signaling molecules. In this study, we synthesized novel phosphorus-doped carbon-dot-based dendritic mesoporous silica nanoparticles (DMSNs-BCDs) with a quantum yield as high as 93.7% to break this bottleneck. Meanwhile, the in situ growth method increased the loading capacity of carbon dots on dendritic mesoporous silica, effectively enhancing the fluorescence intensity of the composite nanospheres. Applied DMSNs-BCDs in LFIA can not only semi-quantitatively detect a single component in a short time frame (procalcitonin (PCT), within 15 min) but also detect the dual components with a low limit of detection (LOD) (carbohydrate antigen 199 (CA199) LOD: 1 U/mL; alpha-fetoprotein (AFP) LOD: 0.01 ng/mL). And the LOD of PCT detection (0.01 ng/mL) is lower by 1.7 orders of magnitude compared to conventional colloidal gold strips. For CA199, the LOD is reduced by a factor of four compared to LFIA using gold nanoparticles as substrates, and for AFP, the LOD is lowered by two orders of magnitude compared to colloidal gold LFIA. Furthermore, the coefficients of variation (CV) for intra-assay and inter-assay measurements are both less than 11%.
Collapse
Affiliation(s)
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
17
|
Gandla K, Kumar KP, Rajasulochana P, Charde MS, Rana R, Singh LP, Haque MA, Bakshi V, Siddiqui FA, Khan SL, Ganguly S. Fluorescent-Nanoparticle-Impregnated Nanocomposite Polymeric Gels for Biosensing and Drug Delivery Applications. Gels 2023; 9:669. [PMID: 37623124 PMCID: PMC10453855 DOI: 10.3390/gels9080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hyderabad 500075, India
| | - K. Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Government of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - P. Rajasulochana
- Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kanchipuram 602105, India
| | - Manoj Shrawan Charde
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad 415124, India
| | - Ritesh Rana
- Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur 177033, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Rohtas 821305, India
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Vasudha Bakshi
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - S. Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
18
|
Hu Y, Lu X, Shen L, Dong J, Liang Z, Xie J, Peng T, Yu X, Dai X. Difunctional Magnetic Nanoparticles Employed in Immunochromatographic Assay for Rapid and Quantitative Detection of Carcinoembryonic Antigen. Int J Mol Sci 2023; 24:12562. [PMID: 37628743 PMCID: PMC10454329 DOI: 10.3390/ijms241612562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Immunochromatographic assay (ICA) plays an important role in in vitro diagnostics because of its simpleness, convenience, fastness, sensitivity, accuracy, and low cost. The employment of magnetic nanoparticles (MNPs), possessing both excellent optical properties and magnetic separation functions, can effectively promote the performances of ICA. In this study, an ICA based on MNPs (MNP-ICA) has been successfully developed for the sensitive detection of carcinoembryonic antigen (CEA). The magnetic probes were prepared by covalently conjugating carboxylated MNPs with the specific monoclonal antibody against CEA, which were not only employed to enrich and extract CEA from serum samples under an external magnetic field but also used as a signal output with its inherent optical property. Under the optimal parameters, the limit of detection (LOD) for qualitative detection with naked eyes was 1.0 ng/mL, and the quantitative detection could be realized with the help of a portable optical reader, indicating that the ratio of optical signal intensity correlated well with CEA concentration ranging from 1.0 ng/mL to 64.0 ng/mL (R2 = 0.9997). Additionally, method comparison demonstrated that the magnetic probes were beneficial for sensitivity improvement due to the matrix effect reduction after magnetic separation, and the MNP-ICA is eight times higher sensitive than ICA based on colloidal gold nanoparticles. The developed MNP-ICA will provide sensitive, convenient, and efficient technical support for biomarkers rapid screening in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yalin Hu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Xin Lu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Liyue Shen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Jiahui Dong
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Zhanwei Liang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Jie Xie
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Tao Peng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| |
Collapse
|
19
|
Yu Q, Xia X, Xu C, Wang W, Zheng S, Wang C, Gu B, Wang C. Introduction of a multilayered fluorescent nanofilm into lateral flow immunoassay for ultrasensitive detection of Salmonella typhimurium in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37455653 DOI: 10.1039/d3ay00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Fast and sensitive identification of foodborne bacteria in complex samples is the key to the prevention and control of microbial infections. Herein, an ultrasensitive lateral flow assay (LFIA) based on multilayered fluorescent nanofilm (GO/DQD)-guided signal amplification was developed for the rapid and quantitative determination of Salmonella typhimurium (S. typhi). The film-like GO/DQD was prepared through the electrostatic mediated layer-by-layer assembly of numerous carboxylated CdSe/ZnS quantum dots (QDs) onto an ultrathin graphene oxide (GO) nanosheet, which possessed advantages including higher QD loading, larger surface areas, superior luminescence, and better stability, than traditional spherical nanomaterials. The antibody-modified GO/DQD can effectively attach onto a target bacterial cell to form a GO/DQD-bacteria immunocomplex containing almost ten thousand QDs, thus greatly improving the detection sensitivity of LFIA. The constructed GO/DQD-LFIA biosensor achieved the rapid and sensitive detection of S. typhi in 14 min with detection limits of as low as 9 cells/mL. Moreover, compared with traditional LFIA techniques for bacteria detection, the proposed assay exhibited excellent stability and accuracy in real food samples and enormously improved sensitivity (2-3 orders of magnitude), demonstrating its great potential in the field of rapid diagnosis.
Collapse
Affiliation(s)
- Qing Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Xuan Xia
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Changyue Xu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Wenqi Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Shuai Zheng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China.
| | - Chaoguang Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, PR China.
| |
Collapse
|
20
|
Shi C, Zhao Z, Zhu N, Yu Q. Magnetic nanoparticle-assisted colonization of synthetic bacteria on plant roots for improved phytoremediation of heavy metals. CHEMOSPHERE 2023; 329:138631. [PMID: 37030349 DOI: 10.1016/j.chemosphere.2023.138631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Phytoremediation is a facile strategy to remove environmental heavy metals by using metal-accumulating plants from the rhizosphere environment. However, its efficiency is frequently compromised by the weak activity of rhizosphere microbiomes. This study developed a magnetic nanoparticle-assisted root colonization technique of synthetic functional bacteria to regulate rhizosphere microbiome composition for enhanced phytoremediation of heavy metals. The iron oxide magnetic nanoparticles with the size of 15-20 nm were synthesized and grafted by chitosan, a natural bacterium-binding polymer. The synthetic Escherichia coli SynEc2, which highly exposed an artificial heavy metal-capturing protein, was then introduced with the magnetic nanoparticles to bind the Eichhornia crassipes plants. Confocal microscopy, scanning electron microscopy, and microbiome analysis revealed that the grafted magnetic nanoparticles strongly promoted colonization of the synthetic bacteria on the plant roots, leading to remarkable change of rhizosphere microbiome composition, with the increase in the abundance of Enterobacteriaceae, Moraxellaceae, and Sphingomonadaceae. Histological staining and biochemical analysis further showed that the combination of SynEc2 and the magnetic nanoparticles protected the plants from heavy metal-induced tissue damage, and increased plant weights from 29 g to 40 g. Consequently, the plants with the assistance of synthetic bacteria and the magnetic nanoparticles in combination exhibited much higher heavy metal-removing capacity than the plants treated by the synthetic bacteria or the magnetic nanoparticles alone, leading to the decrease in the heavy metal levels from 3 mg/L to 0.128 mg/L for cadmium, and to 0.032 mg/L for lead. This study provided a novel strategy to remodel rhizosphere microbiome of metal-accumulating plants by integrating synthetic microbes and nanomaterials for improving the efficiency of phytoremediation.
Collapse
Affiliation(s)
- Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
21
|
Younes N, Yassine HM, Kourentzi K, Tang P, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit Rev Food Sci Nutr 2023; 64:9910-9932. [PMID: 37350754 DOI: 10.1080/10408398.2023.2217921] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, Texas, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Jin B, Ma B, Mei Q, Xu S, Deng X, Hong Y, Li J, Xu H, Zhang M. Europium Nanoparticle-Based Lateral Flow Strip Biosensors Combined with Recombinase Polymerase Amplification for Simultaneous Detection of Five Zoonotic Foodborne Pathogens. BIOSENSORS 2023; 13:652. [PMID: 37367017 DOI: 10.3390/bios13060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
The five recognized zoonotic foodborne pathogens, namely, Listeria monocytogenes, Staphylococcus aureus, Streptococcus suis, Salmonella enterica and Escherichia coli O157:H7, pose a major threat to global health and social-economic development. These pathogenic bacteria can cause human and animal diseases through foodborne transmission and environmental contamination. Rapid and sensitive detection for pathogens is particularly important for the effective prevention of zoonotic infections. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) combined with recombinase polymerase amplification (RPA) were developed for the simultaneous quantitative detection of five foodborne pathogenic bacteria. Multiple T lines were designed in a single test strip for increasing the detection throughput. After optimizing the key parameters, the single-tube amplified reaction was completed within 15 min at 37 °C. The fluorescent strip reader recorded the intensity signals from the lateral flow strip and converted the data into a T/C value for quantification measurement. The sensitivity of the quintuple RPA-EuNP-LFSBs reached a level of 101 CFU/mL. It also exhibited good specificity and there was no cross-reaction with 20 non-target pathogens. In artificial contamination experiments, the recovery rate of the quintuple RPA-EuNP-LFSBs was 90.6-101.6%, and the results were consistent with those of the culture method. In summary, the ultrasensitive bacterial LFSBs described in this study have the potential for widespread application in resource-poor areas. The study also provides insights in respect to multiple detection in the field.
Collapse
Affiliation(s)
- Bei Jin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Qing Mei
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Shujuan Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Xin Deng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Yi Hong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China
| | - Hanyue Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
23
|
Chen J, Jiang J, Liang J, Wu H, Chen L, Xu Z, Lei H, Li X. Bifunctional magnetic ZnCdSe/ZnS quantum dots nanocomposite-based lateral flow immunoassay for ultrasensitive detection of streptomycin and dihydrostreptomycin in milk, muscle, liver, kidney, and honey. Food Chem 2023; 406:135022. [PMID: 36455313 DOI: 10.1016/j.foodchem.2022.135022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
In this study, bifunctional magnetic ZnCdSe/ZnS quantum dots nanocomposite (MQNs) were synthesized, and firstly used to develop a lateral flow immunoassay (LFIA) for streptomycin (STR) and dihydrostreptomycin (DHSTR) detection in milk, muscle, liver, kidney, and honey simultaneously. The fluorescence signal of MQNs was 9-fold stronger than that of the original quantum dots. The detection limits of the established MQNs-LFIA for STR and DHSTR in five samples were 0.08-1.78 μg/kg, the quantitation limits were 0.26-5.87 μg/kg, the recoveries were between 85.0% and 120.0%, and the coefficient of variations were between 0.8% and 19.3%, respectively. The sensitivity was up to 42-fold more sensitive than the reported LFIAs. The single blind test results of 25 samples were consistent with that of the confirmation method (R2 ≥ 0.99). Besides, a portable reader was self-developed and used for rapid quantification. Our study demonstrated MQNs as a promising signal-amplifying tag can be used for ultrasensitive detection of chemical contaminants in foods.
Collapse
Affiliation(s)
- Jiayi Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Jiang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinxuan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Han Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liping Chen
- Shenzhen Zhenrui Biological Technology Co., Ltd., Shenzhen 518109, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
CdTe QDs-sensitized TiO 2 nanocomposite for magnetic-assisted photoelectrochemical immunoassay of SARS-CoV-2 nucleocapsid protein. Bioelectrochemistry 2023; 150:108358. [PMID: 36580690 PMCID: PMC9783190 DOI: 10.1016/j.bioelechem.2022.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
A sensitive, reliable, and cost-effective detection for SARS-CoV-2 was urgently needed due to the rapid spread of COVID-19. Here, a "signal-on" magnetic-assisted PEC immunosensor was constructed for the quantitative detection of SARS-CoV-2 nucleocapsid (N) protein based on Z-scheme heterojunction. Fe3O4@SiO2@Au was used to connect the capture antibody to act as a capture probe (Fe3O4@SiO2@Au/Ab1). It can extract target analytes selectively in complex samples and multiple electrode rinsing and assembly steps were avoided effectively. CdTe QDs sensitized TiO2 coated on the surface of SiO2 spheres to form Z-scheme heterojunction (SiO2@TiO2@CdTe QDs), which broadened the optical absorption range and inhibited the quick recombination of photogenerated electron/hole of the composite. With fascinating photoelectric conversion performance, SiO2@TiO2@CdTe QDs were utilized as a signal label, thus further realizing signal amplification. The migration mechanism of photogenerated electrons was further deduced by active material quenching experiment and electron spin resonance (ESR) measurement. The elaborated immunosensor can detect SARS-CoV-2 N protein in the linear range of 0.005-50 ng mL-1 with a low detection limit of 1.8 pg mL-1 (S/N = 3). The immunosensor displays extraordinary sensitivity, strong anti-interference, and high reproducibility in detecting SARS-CoV-2 N protein, which envisages its potential application in the clinical diagnosis of COVID-19.
Collapse
|
25
|
Chen Y, Ma J, Yin X, Deng Z, Liu X, Yang D, Zhao L, Sun J, Wang J, Zhang D. Joint-detection of Salmonella typhimurium and Escherichia coli O157:H7 by an immersible amplification dip-stick immunoassay. Biosens Bioelectron 2023; 224:115075. [PMID: 36641877 DOI: 10.1016/j.bios.2023.115075] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
To explore the superiority of multifunctional nanocomposites and realize the joint-detection of foodborne pathogens, an immersible amplification dip-stick immunoassay (DSIA) was exploited for the sensitive detection of Salmonella typhimurium (S. typhi) and Escherichia coli O157:H7 (E. coli O157:H7). Saving for the basic colorimetric performance, the reporter molecule of CoFe2O4 (CFO) possesses multivalent elements (Co2+/3+, Fe2+/3+) as well as multifunction of superior catalase-like activity and magnetic properties. By dint of the catalytic activity of CFO, a directly immersible amplification can be simply achieved to endure the DSIA with an intensive signal and a dual-visible mode for the determination of S. typhi and E. coli O157:H7. In virtue of the magnetic separation and enrichment capability of the CFO, the DSIA can perform a matrix-interference-free detection and obtain a dynamic detection range of 102-108 CFU/mL and a low assay limit of 102 CFU/mL. Moreover, the DSIA has reasonable recovery rates for contamination monitoring of two target bacteria in milk and beef samples. Our research provides a persuasive supplement for the application of multifunctional nanocomposites in the ongoing dip-stick immunoassay and an alternative strategy for the efficient detection of foodborne pathogens.
Collapse
Affiliation(s)
- Yaqian Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Ziai Deng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaojing Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Di Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lei Zhao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
26
|
Zhang J, Zhou M, Li X, Fan Y, Li J, Lu K, Wen H, Ren J. Recent advances of fluorescent sensors for bacteria detection-A review. Talanta 2023; 254:124133. [PMID: 36459871 DOI: 10.1016/j.talanta.2022.124133] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Bacterial infections have become a global public health problem. Rapid and sensitive bacterial detection is of great importance for human health. Among various sensor systems, fluorescence sensor is rapid, portable, multiplexed, and cost-efficient. Herein, we reviewed the current trends of fluorescent sensors for bacterial detection from three aspects (response materials, target and recognition way). The fluorescent materials have the advantages of high fluorescent strength, high stability, and good biocompatibility. They provide a new path for bacterial detection. Several recent fluorescent nanomaterials for bacterial detection, including semiconductor quantum dots (QDs), carbon dots (CDs), up-conversion nanoparticles (UCNPs) and metal organic frameworks (MOFs), were introduced. Their optical properties and detection mechanisms were analyzed and compared. For different response targets in the detection process, we studied the fluorescence strategy using DNA, bacteria, and metabolites as the response target. In addition, we classified the recognition way between nanomaterial and target, including specific recognition methods based on aptamers, antibodies, bacteriophages, and non-specific recognition methods based on biological functional materials. The characteristics of different recognition methods were summarized. Finally, the weaknesses and future development of bacterial fluorescence sensor were discussed. This review provides new insights into the application of fluorescent sensing systems as an important tool for bacterial detection.
Collapse
Affiliation(s)
- Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Ming Zhou
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Xin Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Yaqi Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jinhui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Kangqiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Herui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, PR China.
| |
Collapse
|
27
|
Shen W, Li J, Jiang B, Nie Y, Pang Y, Wang C, Xiao R, Hao R. Electrostatic Adsorption of Dense AuNPs onto Silica Core as High-Performance SERS Tag for Sensitive Immunochromatographic Detection of Streptococcus pneumoniae. Pathogens 2023; 12:pathogens12020327. [PMID: 36839599 PMCID: PMC9965993 DOI: 10.3390/pathogens12020327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a prominent pathogen of bacterial pneumonia and its rapid and sensitive detection in complex biological samples remains a challenge. Here, we developed a simple but effective immunochromatographic assay (ICA) based on silica-Au core-satellite (SiO2@20Au) SERS tags to sensitively and quantitatively detect S. pneumoniae. The high-performance SiO2@20Au tags with superior stability and SERS activity were prepared by one-step electrostatic adsorption of dense 20 nm AuNPs onto 180 nm SiO2 core and introduced into the ICA method to ensure the high sensitivity and accuracy of the assay. The detection limit of the proposed SERS-ICA reached 46 cells/mL for S. pneumoniae and was 100-fold more sensitive than the traditional AuNPs-based colorimetric ICA method. Further, considering its good stability, specificity, reproducibility, and easy operation, the SiO2@20Au-SERS-ICA developed here has great potential to meet the demands of on-site and accurate detection of respiratory pathogens.
Collapse
Affiliation(s)
- Wanzhu Shen
- School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jiaxuan Li
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Bo Jiang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - You Nie
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuanfeng Pang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (C.W.); (R.X.); (R.H.)
| | - Rui Xiao
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Correspondence: (C.W.); (R.X.); (R.H.)
| | - Rongzhang Hao
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: (C.W.); (R.X.); (R.H.)
| |
Collapse
|
28
|
Recent progress on lateral flow immunoassays in foodborne pathogen detection. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
29
|
Wen CY, Zhao LJ, Wang Y, Wang K, Li HW, Li X, Zi M, Zeng JB. Colorimetric and photothermal dual-mode lateral flow immunoassay based on Au-Fe 3O 4 multifunctional nanoparticles for detection of Salmonella typhimurium. Mikrochim Acta 2023; 190:57. [PMID: 36652031 PMCID: PMC9847459 DOI: 10.1007/s00604-023-05645-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Au-Fe3O4 multifunctional nanoparticles (NPs) were synthesized and integrated with lateral flow immunoassay (LFIA) for dual-mode detection of Salmonella typhimurium. The Au-Fe3O4 NPs not only combined excellent local surface plasmon resonance characteristics and superparamagnetic properties, but also exhibited good photothermal effect. In the detection, antibody-conjugated Au-Fe3O4 NPs first captured S. typhimurium from complex matrix, which was then loaded on the LFIA strip and trapped by the T-line. By observing the color bands with the naked eyes, qualitative detection was performed free of instrument. By measuring the photothermal signal, quantification was achieved with a portable infrared thermal camera. The introduction of magnetic separation achieved the enrichment and purification of target bacteria, thus enhancing the detection sensitivity and reducing interference. This dual-mode LFIA achieved a visual detection limit of 5 × 105 CFU/mL and a photothermal detection limit of 5 × 104 CFU/mL. Compared with traditional Au-based LFIA, this dual-mode LFIA increased the detection sensitivity by 2 orders of magnitude and could be directly applied to unprocessed milk sample. Besides, this dual-mode LFIA showed good reproducibility and specificity. The intra-assay and inter-assay variation coefficients were 3.0% and 7.9%, and with this dual-mode LFIA, other bacteria hardly produced distinguishable signals. Thus, the Au-Fe3O4 NPs-based LFIA has potential to increase the efficiency of pandemic prevention and control. Au-Fe3O4 nanoparticle proved to be a promising alternative reporter for LFIA, achieving multifunctions: target purification, target enrichment, visual qualitation, and instrumental quantification, which improved the limitations of traditional LFIA.
Collapse
Affiliation(s)
- Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Ling-Jin Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Kun Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Hui-Wen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Min Zi
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Jing-Bin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|
30
|
Rink S, Baeumner AJ. Progression of Paper-Based Point-of-Care Testing toward Being an Indispensable Diagnostic Tool in Future Healthcare. Anal Chem 2023; 95:1785-1793. [PMID: 36608282 DOI: 10.1021/acs.analchem.2c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Point-of-care (POC) diagnostics in particular focuses on the timely identification of harmful conditions close to the patients' needs. For future healthcare these diagnostics could be an invaluable tool especially in a digitalized or telemedicine-based system. However, while paper-based POC tests, with the most prominent example being the lateral flow assay (LFA), have been especially successful due to their simplicity and timely response, the COVID-19 pandemic highlighted their limitations, such as low sensitivity and ambiguous responses. This perspective discusses strategies that are currently being pursued to evolve such paper-based POC tests toward a superior diagnostic tool that provides high sensitivities, objective result interpretation, and multiplexing options. Here, we pinpoint the challenges with respect to (i) measurability and (ii) public applicability, exemplified with select cases. Furthermore, we highlight promising endeavors focused on (iii) increasing the sensitivity, (iv) multiplexing capability, and (v) objective evaluation to also ready the technology for integration with machine learning into digital diagnostics and telemedicine. The status quo in academic research and industry is outlined, and the likely highly relevant role of paper-based POC tests in future healthcare is suggested.
Collapse
Affiliation(s)
- Simone Rink
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
31
|
Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Xie Z, Feng S, Pei F, Xia M, Hao Q, Liu B, Tong Z, Wang J, Lei W, Mu X. Magnetic/fluorescent dual-modal lateral flow immunoassay based on multifunctional nanobeads for rapid and accurate SARS-CoV-2 nucleocapsid protein detection. Anal Chim Acta 2022; 1233:340486. [PMID: 36283777 PMCID: PMC9544234 DOI: 10.1016/j.aca.2022.340486] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
Abstract
The SARS-CoV-2 pandemic has posed a huge challenge to rapid and accurate diagnosis of SARS-CoV-2 in the early stage of infection. In this work, we developed a novel magnetic/fluorescent dual-modal lateral flow immunoassay (LFIA) based on multifunctional nanobeads for rapid and accurate determination of SARS-CoV-2 nucleocapsid protein (NP). The multifunctional nanobeads were fabricated by using polyethyleneimine (PEI) as a mediate shell to combine superparamagnetic Fe3O4 core with dual quantum dot shells (MagDQD). The core-shell structure of MagDQD label with high loading density of quantum dots (QDs) and superior magnetic content realized LFIA with dual quantitative analysis modal from the assemblies of individual single nanoparticles. The LFIA integrated the advantages of magnetic signal and fluorescent signal, resulting excellent accuracy for quantitative analysis and high elasticity of the overall detection. In addition, magnetic signal and fluorescent signal both had high sensitivity with the limit of detection (LOD) as 0.235 ng mL-1 and 0.012 ng mL-1, respectively. The recovery rates of the methods in simulated saliva samples were 91.36%-103.60% (magnetic signal) and 94.39%-104.38% (fluorescent signal). The results indicate the method has a considerable potential to be an effective tool for diagnose SARS-CoV-2 in the early stage of infection.
Collapse
Affiliation(s)
- Zihao Xie
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shasha Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,Corresponding author
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China,Corresponding author
| |
Collapse
|
33
|
Morphology design and synthesis of magnetic microspheres as highly efficient reusable catalyst for organic dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Tu Z, Yang X, Dong H, Yu Q, Zheng S, Cheng X, Wang C, Rong Z, Wang S. Ultrasensitive Fluorescence Lateral Flow Assay for Simultaneous Detection of Pseudomonas aeruginosa and Salmonella typhimurium via Wheat Germ Agglutinin-Functionalized Magnetic Quantum Dot Nanoprobe. BIOSENSORS 2022; 12:942. [PMID: 36354451 PMCID: PMC9687718 DOI: 10.3390/bios12110942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Point-of-care testing methods for the rapid and sensitive screening of pathogenic bacteria are urgently needed because of the high number of outbreaks of microbial infections and foodborne diseases. In this study, we developed a highly sensitive and multiplex lateral flow assay (LFA) for the simultaneous detection of Pseudomonas aeruginosa and Salmonella typhimurium in complex samples by using wheat germ agglutinin (WGA)-modified magnetic quantum dots (Mag@QDs) as a universal detection nanoprobe. The Mag@QDs-WGA tag with a 200 nm Fe3O4 core and multiple QD-formed shell was introduced into the LFA biosensor for the universal capture of the two target bacteria and provided the dual amplification effect of fluorescence enhancement and magnetic enrichment for ultra-sensitivity detection. Meanwhile, two antibacterial antibodies were separately sprayed onto the two test lines of the LFA strip to ensure the specific identification of P. aeruginosa and S. typhimurium through one test. The proposed LFA exhibited excellent analytical performance, including high capture rate (>80%) to the target pathogens, low detection limit (<30 cells/mL), short testing time (<35 min), and good reproducibility (relative standard deviation < 10.4%). Given these merits, the Mag@QDs-WGA-based LFA has a great potential for the on-site and real-time diagnosis of bacterial samples.
Collapse
Affiliation(s)
- Zhijie Tu
- Beijing Institute of Microbiology and Epidemiology, Beijing 100089, China
- Medical Technology School, Xuzhou Medical University, Xuzhou 221004, China
| | - Xingsheng Yang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100089, China
| | - Hao Dong
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230036, China
| | - Qing Yu
- Beijing Institute of Microbiology and Epidemiology, Beijing 100089, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Shuai Zheng
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230036, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Cheng
- Beijing Institute of Microbiology and Epidemiology, Beijing 100089, China
| | - Chongwen Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100089, China
- Medical Technology School, Xuzhou Medical University, Xuzhou 221004, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhen Rong
- Beijing Institute of Microbiology and Epidemiology, Beijing 100089, China
| | - Shengqi Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100089, China
| |
Collapse
|
35
|
Wang W, Yang X, Rong Z, Tu Z, Zhang X, Gu B, Wang C, Wang S. Introduction of graphene oxide-supported multilayer-quantum dots nanofilm into multiplex lateral flow immunoassay: A rapid and ultrasensitive point-of-care testing technique for multiple respiratory viruses. NANO RESEARCH 2022; 16:3063-3073. [PMID: 36312892 PMCID: PMC9589541 DOI: 10.1007/s12274-022-5043-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED A lateral flow immunoassay (LFA) biosensor that allows the sensitive and accurate identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other common respiratory viruses remains highly desired in the face of the coronavirus disease 2019 pandemic. Here, we propose a multiplex LFA method for the on-site, rapid, and highly sensitive screening of multiple respiratory viruses, using a multilayered film-like fluorescent tag as the performance enhancement and signal amplification tool. This film-like three-dimensional (3D) tag was prepared through the layer-by-layer assembly of highly photostable CdSe@ZnS-COOH quantum dots (QDs) onto the surfaces of monolayer graphene oxide nanosheets, which can provide larger reaction interfaces and specific active surface areas, higher QD loads, and better luminescence and dispersibility than traditional spherical fluorescent microspheres for LFA applications. The constructed fluorescent LFA biosensor can simultaneously and sensitively quantify SARS-CoV-2, influenza A virus, and human adenovirus with low detection limits (8 pg/mL, 488 copies/mL, and 471 copies/mL), short assay time (15 min), good reproducibility, and high accuracy. Moreover, our proposed assay has great potential for the early diagnosis of respiratory virus infections given its robustness when validated in real saliva samples. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (Section S1 Experimental section, Section S2 Calculation of the maximum number of QDs on the GO@TQD nanofilm, Section S3 Optimization of the LFA method, and Figs. S1-S17 mentioned in the main text) is available in the online version of this article at 10.1007/s12274-022-5043-6.
Collapse
Affiliation(s)
- Wenqi Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Xingsheng Yang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
| | - Zhen Rong
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
| | - Zhijie Tu
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
| | - Xiaochang Zhang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000 China
| | - Chongwen Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000 China
| | - Shengqi Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850 China
| |
Collapse
|
36
|
Sensitive and simultaneous detection of ractopamine and salbutamol using multiplex lateral flow immunoassay based on polyethyleneimine-mediated SiO2@QDs nanocomposites: Comparison and application. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Chatterjee S, Mukhopadhyay S. Recent advances of lateral flow immunoassay components as “point of need”. J Immunoassay Immunochem 2022; 43:579-604. [DOI: 10.1080/15321819.2022.2122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Susraba Chatterjee
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C.R.Avenue, Kolkata 700073, West Bengal
| | - Sumi Mukhopadhyay
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C.R.Avenue, Kolkata 700073, West Bengal
| |
Collapse
|
38
|
Wu T, Li J, Zheng S, Yu Q, Qi K, Shao Y, Wang C, Tu J, Xiao R. Magnetic Nanotag-Based Colorimetric/SERS Dual-Readout Immunochromatography for Ultrasensitive Detection of Clenbuterol Hydrochloride and Ractopamine in Food Samples. BIOSENSORS 2022; 12:bios12090709. [PMID: 36140094 PMCID: PMC9496078 DOI: 10.3390/bios12090709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 12/29/2022]
Abstract
Direct and sensitive detection of multiple illegal additives in complex food samples is still a challenge in on-site detection. In this study, an ultrasensitive immunochromatographic assay (ICA) using magnetic Fe3O4@Au nanotags as a capture/detection difunctional tool was developed for the direct detection of β2-adrenoceptor agonists in real samples. The Fe3O4@Au tag is composed of a large magnetic core (~160 nm), a rough Au nanoshell, dense surface-modified Raman molecules, and antibodies, which cannot only effectively enrich targets from complex solutions to reduce the matrix effects of food samples and improve detection sensitivity, but also provide strong colorimetric/surface-enhanced Raman scattering (SERS) dual signals for ICA testing. The dual readout signals of the proposed ICA can meet the detection requirements in different environments. Specifically, the colorimetric signal allows for rapid visual detection of the analyte, and the SERS signal is used for the sensitive and quantitative detection modes. The proposed dual-signal ICA can achieve the simultaneous determination of two illegal additives, namely, clenbuterol hydrochloride and ractopamine. The detection limits for the two targets via colorimetric and SERS signals were down to ng mL−1 and pg mL−1 levels, respectively. Moreover, the proposed assay has demonstrated high accuracy and stability in real food samples.
Collapse
Affiliation(s)
- Ting Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Jiaxuan Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Shuai Zheng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Qing Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chongwen Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| | - Rui Xiao
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| |
Collapse
|
39
|
Xiao F, Li W, Xu H. Advances in magnetic nanoparticles for the separation of foodborne pathogens: Recognition, separation strategy, and application. Compr Rev Food Sci Food Saf 2022; 21:4478-4504. [PMID: 36037285 DOI: 10.1111/1541-4337.13023] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/28/2023]
Abstract
Foodborne pathogens contamination is one of the main sources of food safety problems. Although the existing detection methods have been developed for a long time, the complexity of food samples is still the main factor affecting the detection time and sensitivity, and the rapid separation and enrichment of pathogens is still an objective to be studied. Magnetic separation strategy based on magnetic nanoparticles (MNPs) is considered to be an effective tool for rapid separation and enrichment of foodborne pathogens in food. Therefore, this study comprehensively reviews the development of MNPs in the separation of foodborne pathogens over the past decade. First, various biorecognition reagents for identification of foodborne pathogens and their modifications on the surface of MNPs are introduced. Then, the factors affecting the separation of foodborne pathogens, including the size of MNPs, modification methods, separation strategies and separation forms are discussed. Finally, the application of MNPs in integrated detection methods is reviewed. Moreover, current challenges and prospects of MNPs for the analysis of foodborne pathogens are discussed. Further research should focus on the design of multifunctional MNPs, the processing of large-scale samples, the simultaneous analysis of multiple targets, and the development of all-in-one small analytical device with separation and detection.
Collapse
Affiliation(s)
- Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
40
|
Wang C, Wang C, Li J, Tu Z, Gu B, Wang S. Ultrasensitive and multiplex detection of four pathogenic bacteria on a bi-channel lateral flow immunoassay strip with three-dimensional membrane-like SERS nanostickers. Biosens Bioelectron 2022; 214:114525. [DOI: 10.1016/j.bios.2022.114525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
|
41
|
Huang LL, Wang ZJ, Xie HY. Photoluminescent inorganic nanoprobe-based pathogen detection. Chem Asian J 2022; 17:e202200475. [PMID: 35758547 DOI: 10.1002/asia.202200475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Indexed: 11/05/2022]
Abstract
Pathogens are serious threats to human health, and traditional detection techniques suffer from various limitations. The unique optical properties of photoluminescent inorganic nanomaterials, such as high photoluminescence quantum yields, good photostability, and tunable spectrum, make them ideal tools for the detection of pathogens with high specificity and sensitivity. In this review, the design strategies, working mechanisms, and applications of photoluminescent inorganic nanomaterial-based probes in pathogen detection are introduced. In particular, the design and construction of stimuli-responsive nanoprobes and their potential in these fields are highlighted.
Collapse
Affiliation(s)
- Li-Li Huang
- Beijing Institute of Technology, School of Medical Technology, , 100081, , CHINA
| | - Zhong-Jie Wang
- Beijing Institute of Technology, School of Medical Technology, CHINA
| | - Hai-Yan Xie
- Beijing Institute Of Technology School of Life Science, School of Life science, south 5 zhongguancun street, 100081, Beijing, CHINA
| |
Collapse
|
42
|
Yi M, He P, Li J, Zhang J, Lin L, Wang L, Zhao L. A portable toolbox based on time-resolved fluoroimmunoassay and immunomagnetic separation for Cronobacter sakazakii on-site detection in dairy. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Xu LD, Zhu J, Ding SN. Highly-fluorescent carbon dots grown onto dendritic silica nanospheres for anthrax protective antigen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1836-1840. [PMID: 35521778 DOI: 10.1039/d2ay00623e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Direct synthesis of carbon dots on uniform mesoporous nanospheres is an ideal way to impart fluorescence properties to the nanomaterials and retain its original uniformity. Carbon dot-based nanospheres with high quantum yield (aqueous solution, 89.3%) were synthesized by the one-step hydrothermal treatment of sodium citrate and dendritic silica spheres grafted with N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane. Its excellent chemical properties such as fluorescence, stability, homogeneity and dispersion enable it to achieve a sensitive, specific, rapid and low-cost detection of anthrax protective antigen when used as a signal for immunochromatography.
Collapse
Affiliation(s)
- Lai-Di Xu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
44
|
Chai F, Wang D, Zhu L, Zheng W, Jiang X. Dual Gold Nanoparticle/Chemiluminescent Immunoassay for Sensitive Detection of Multiple Analytes. Anal Chem 2022; 94:6628-6634. [PMID: 35452227 DOI: 10.1021/acs.analchem.2c01177] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple antibiotics and mycotoxins usually simultaneously exist in foods, which poses a serious threat to human health. How to detect them in one test with high sensitivity and fidelity is challenging. In this study, we develop a dual readout lateral flow immunodetection platform that can quantitatively detect five kinds of antibiotics and five kinds of mycotoxins within one sample. The platform is composed of a chip and a portable readout instrument where gold nanoparticle (AuNP)-based and chemiluminescence immunoassays could be performed to reach a maximum throughput of 220 analytes in one setting. For a rapid screen, qualitative analysis by detecting the color change of the deposited AuNPs on the chip could be realized. For quantitative results, chemiluminescence imaging and analysis can be completed within 15 min. Apart from the high throughput and high efficiency, this platform has a high detection sensitivity. For instance, the limit of detection (LOD) for thiamphenicol (a representative antibiotic) and fumonisins B1 (a representative mycotoxin) is 8 times and 40 times lower than those of the previously reported methods, respectively. Thus, this dual readout immunodetection platform is promising as a universal device for rapid and quantitative detection of multiple analytes with high throughput, high sensitivity, and high fidelity.
Collapse
Affiliation(s)
- Fengli Chai
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.,Beijing Engineering Research Center for BioNanotechnology, CAS key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China
| | - Dou Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Lina Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
45
|
Xiong J, Zhang H, Qin L, Zhang S, Cao J, Jiang H. Magnetic Fluorescent Quantum Dots Nanocomposites in Food Contaminants Analysis: Current Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms23084088. [PMID: 35456904 PMCID: PMC9028821 DOI: 10.3390/ijms23084088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
The presence of food contaminants can cause foodborne illnesses, posing a severe threat to human health. Therefore, a rapid, sensitive, and convenient method for monitoring food contaminants is eagerly needed. The complex matrix interferences of food samples and poor performance of existing sensing probes bring significant challenges to improving detection performances. Nanocomposites with multifunctional features provide a solution to these problems. The combination of the superior characteristics of magnetic nanoparticles (MNPs) and quantum dots (QDs) to fabricate magnetic fluorescent quantum dots (MNPs@QDs) nanocomposites are regarded as an ideal multifunctional probe for food contaminants analysis. The high-efficiency pretreatment and rapid fluorescence detection are concurrently integrated into one sensing platform using MNPs@QDs nanocomposites. In this review, the contemporary synthetic strategies to fabricate MNPs@QDs, including hetero-crystalline growth, template embedding, layer-by-layer assembly, microemulsion technique, and one-pot method, are described in detail, and their advantages and limitations are discussed. The recent advances of MNPs@QDs nanocomposites in detecting metal ions, foodborne pathogens, toxins, pesticides, antibiotics, and illegal additives are comprehensively introduced from the perspectives of modes and detection performances. The review ends with current challenges and opportunities in practical applications and prospects in food contaminants analysis, aiming to promote the enthusiasm for multifunctional sensing platform research.
Collapse
Affiliation(s)
- Jincheng Xiong
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Huixia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Linqian Qin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Shuai Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
- Correspondence: ; Tel.: +86-010-6273-4478; Fax: +86-010-6273-1032
| |
Collapse
|
46
|
Xu Y, He P, Ahmad W, Hassan MM, Ali S, Li H, Chen Q. Catalytic hairpin activated gold-magnetic/gold-core-silver-shell rapid self-assembly for ultrasensitive Staphylococcus aureus sensing via PDMS-based SERS platform. Biosens Bioelectron 2022; 209:114240. [PMID: 35447597 DOI: 10.1016/j.bios.2022.114240] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus (S. aureus) has been identified as a marker of food contamination, closely associated with human health. This work designs a sensitive and rapid bio-detection strategy for S. aureus based on hybridization chain reaction-assisted surface enhanced Raman scattering (HCR-assisted-SERS) signal amplification. In this approach, the interaction between the aptamer (Apt) and its partial complementary DNA strands (cDNA) fabricated on the surface of gold-assisted magnetic nanoparticles (Au-MNPs) and the subsequent detachment of the cDNA results in the activation of the HCR process. In the HCR, a pair of hairpin structured DNA probes (H1 and H2) with sticky ends self-assembles to form a long DNA polymer. Subsequently, the output and amplification of the SERS signal were performed by conjugating 4-ATP modified Au@Ag NPs with the obtained DNA polymer via a specific Ag-S bond, and further collected through a self-administered polydimethylsiloxane (PDMS) cone-shaped support array. The precise quantification of S. aureus was performed in the concentration range of 28 to 2.8 × 106 cfu/mL, achieving a detection limit of 0.25 cfu/mL. This strategy was further applied to S. aureus detection in spiked milk samples with good recoveries (91-102%) and the relative standard deviation (4.35-8.41%). The sensing platform also showed satisfactory validation results (p > 0.05) using the traditional plate counting method. The proposed HCR-assisted SERS probe can be extended to other foodborne pathogenic bacteria types via engineering appropriate Apt and DNA initiators, thus, inspiring widespread applications in food safety and biomedical research.
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Peihuan He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
47
|
Advances in nanomaterial-based microfluidic platforms for on-site detection of foodborne bacteria. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Han H, Wang C, Yang X, Zheng S, Cheng X, Liu Z, Zhao B, Xiao R. Rapid field determination of SARS-CoV-2 by a colorimetric and fluorescent dual-functional lateral flow immunoassay biosensor. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 351:130897. [PMID: 34658530 PMCID: PMC8500848 DOI: 10.1016/j.snb.2021.130897] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/12/2021] [Accepted: 10/07/2021] [Indexed: 05/06/2023]
Abstract
The rapid and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the early stage of virus infection can effectively prevent the spread of the virus and control the epidemic. Here, a colorimetric and fluorescent dual-functional lateral flow immunoassay (LFIA) biosensor was developed for the rapid and sensitive detection of spike 1 (S1) protein of SARS-CoV-2. A novel dual-functional immune label was fabricated by coating a single-layer shell formed by mixing 20 nm Au nanoparticles (Au NPs) and quantum dots (QDs) on SiO2 core to produce strong colorimetric and fluorescence signals and ensure good monodispersity and high stability. The colorimetric signal was used for visual detection and rapid screening of suspected SARS-CoV-2 infection on sites. The fluorescence signal was utilized for sensitive and quantitative detection of virus infection at the early stage. The detection limits of detecting S1 protein via colorimetric and fluorescence functions of the biosensor were 1 and 0.033 ng/mL, respectively. Furthermore, we evaluated the performance of the biosensor for analyzing real samples. The novel biosensor developed herein had good repeatability, specificity and accuracy, which showed great potential as a tool for rapidly detecting SARS-CoV-2.
Collapse
Affiliation(s)
- Han Han
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Chongwen Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Xingsheng Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Shuai Zheng
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiaodan Cheng
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhenzhen Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| |
Collapse
|
49
|
Tran HV, Ngo NM, Medhi R, Srinoi P, Liu T, Rittikulsittichai S, Lee TR. Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:503. [PMID: 35057223 PMCID: PMC8779542 DOI: 10.3390/ma15020503] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023]
Abstract
Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.
Collapse
Affiliation(s)
- Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Nhat M. Ngo
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Riddhiman Medhi
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Pannaree Srinoi
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Tingting Liu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Supparesk Rittikulsittichai
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| |
Collapse
|
50
|
Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. SMALL METHODS 2022; 6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The development of the lateral flow assay (LFA) has received much attention in both academia and industry because of their broad applications to food safety, environmental monitoring, clinical diagnosis, and so forth. The user friendliness, low cost, and easy operation are the most attractive advantages of the LFA. In recent years, quantitative detection has become another focus of LFA development. Here, the most recent studies of quantitative LFAs are reviewed. First, the principles and corresponding formats of quantitative LFAs are introduced. In the biomaterial and nanomaterial sections, the detection, capture, and signal amplification biomolecules and the optical, fluorescent, luminescent, and magnetic labels used in LFAs are described. The invention of dedicated strip readers has drawn further interest in exploiting the better performance of LFAs. Therefore, next, the development of dedicated reader devices is described and the usefulness and specifications of these devices for LFAs are discussed. Finally, the applications of LFAs in the detection of metal ions, biotoxins, pathogenic microorganisms, veterinary drugs, and pesticides in the fields of food safety and environmental health and the detection of nucleic acids, biomarkers, and viruses in clinical analyses are summarized.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, No. 11, Baiwanzhuang Street, Beijing, 100037, P. R. China
| |
Collapse
|