1
|
Masud, Aftabuzzaman M, Zhou H, Kim S, Yi J, Park SS, Kim YS, Kim HK. Chemically synthesized poly(3,4-ethylenedioxythiophene) conducting polymer as a robust electrocatalyst for highly efficient dye-sensitized solar cells. NANOSCALE 2024; 16:13874-13884. [PMID: 38990512 DOI: 10.1039/d4nr00949e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Chemically synthesized PEDOT (poly(3,4-ethylenedioxythiophene)) nanomaterials, with various nanostructured morphologies as well as different intrinsic electrical conductivities and crystallinities, were compared as electrocatalysts for Co(III) reduction in dye-sensitized solar cells (DSSCs). Electrochemical parameters, charge transfer resistance toward the electrode/electrolyte interface, catalytic activity for Co(III)-reduction, and diffusion of cobalt redox species greatly depend on the morphology, crystallinity, and intrinsic electrical conductivity of the chemically synthesized PEDOTs and optimization of the fabrication procedure for counter electrodes. The PEDOT counter electrode, fabricated by spin coating a DMSO-dispersed PEDOT solution with an ordered 1D structure and nanosized fibers averaging 70 nm in diameter and an electrical conductivity of ∼16 S cm-1, exhibits the lowest charge transfer resistance, highest diffusion for a cobalt redox mediator and superior electrocatalytic performance compared to a traditional Pt-counter electrode. The photovoltaic performance of the DSSC using chemically synthesized PEDOT exceeds that of a Pt-electrode device because of the enhanced current density, which is directly related to the superior electrocatalytic ability of PEDOT for Co(III)-reduction. This simple spin-coated counter electrode prepared using cheap and scalable chemically synthesized PEDOT can be a potential alternative to the expensive Pt-counter electrode for cobalt and other redox electrolytes in DSSCs and various flexible electronic devices.
Collapse
Affiliation(s)
- Masud
- Global GET-Future Lab., Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Republic of Korea.
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu Pohang, Gyeongbuk, Republic of Korea.
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Md Aftabuzzaman
- Global GET-Future Lab., Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Republic of Korea.
| | - Haoran Zhou
- Global GET-Future Lab., Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Republic of Korea.
- Renewable Energy Materials Laboratory (REML), Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Saehyun Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu Pohang, Gyeongbuk, Republic of Korea.
| | - Jaekyung Yi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sarah S Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu Pohang, Gyeongbuk, Republic of Korea.
| | - Hwan Kyu Kim
- Global GET-Future Lab., Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Wang J, Wang H, Di Z, Liu M, Zong X, Li C, Sun Y, Liang M, Sun Z. Transparent PEDOT counter electrodes for bifacial dye-sensitized solar cells using a cobalt complex mediator. Chem Commun (Camb) 2023; 59:13482-13485. [PMID: 37881006 DOI: 10.1039/d3cc04037b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) aggregate-deposited counter electrodes (CEs) were applied to bifacial dye-sensitized solar cells with a cobalt complex electrolyte. The high transparency and excellent electrochemical activity of PEDOT CEs result in an impressive cell bifaciality of 0.92 under standard test conditions (AM 1.5G, 100 mW cm-2), and maximum power production of 11.3% under realistic conditions with an effective albedo of 50%.
Collapse
Affiliation(s)
- Yiming Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Jing Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Hao Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Zhichao Di
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Mingyan Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Xueping Zong
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, P. R. China
| | - Yan Sun
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, P. R. China
| | - Mao Liang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Zhe Sun
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| |
Collapse
|
3
|
Zhou H, Lee HJ, Masud, Aftabuzzaman M, Kang SH, Kim CH, Kim HM, Kim HK. Synergistic Effect of Size-Tailored Structural Engineering and Postinterface Modification for Highly Efficient and Stable Dye-Sensitized Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43835-43844. [PMID: 37695216 DOI: 10.1021/acsami.3c09228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Despite significant progress in device performance, dye-sensitized solar cells (DSSCs) continue to fall short of their theoretical potential. Moreover, research in recent years needs to pay more attention to improving the device fabrication process. To achieve the theoretical efficiency limit, it is crucial to optimize the interface between the dye and TiO2 nanoparticles in the entire device stack. Our study indicates that optimizing the structure or size of the coadsorbents and implementing a monolayer adsorption process can be an effective strategy to reduce charge recombination and enhance light-harvesting properties. Our research aims to develop a surface-coating adsorbent plan that controls the TiO2 nanoparticle interface to achieve the radiative limit of power conversion efficiency (PCE). Specifically, we utilized 2-thiophenecarboxylic acid (THCA) or chenodeoxycholic acid (CDCA) as postinterfacial surface-coating adsorbents. Our results demonstrate that this approach effectively achieves the desired PCE limit. Combined with the coadsorbent structure engineering and interface optimization, the device increased the packing area on the TiO2 nanoparticles' surface, reaching an improved PCE of over 13.17% under simulated sunlight (1.5G), which is the highest efficiency of a porphyrin single dye-based DSSC. In particular, this practical approach was also applied to a large-area DSSC with an area of 3 cm2, yielding a remarkable PCE of 9.04%. Furthermore, when applied to a polymer gel electrolyte, this novel approach recorded the highest PCE of 11.16% with a long-term operational stability of up to 1000 h for the quasi-solid-state DSSCs. Our research findings provide a promising avenue for achieving high-performance DSSCs with ease of access and demonstrate practical applications as alternatives to conventional power sources.
Collapse
Affiliation(s)
- Haoran Zhou
- Global GET-Future Lab. & Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
- Renewable Energy Materials Laboratory (REML), Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Korea
| | - Hyun Jae Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| | - Masud
- Global GET-Future Lab. & Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| | - Mohammad Aftabuzzaman
- Global GET-Future Lab. & Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| | - Sung Ho Kang
- Renewable Energy Materials Laboratory (REML), Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| | - Hyung Mun Kim
- Global GET-Future Lab. & Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| | - Hwan Kyu Kim
- Global GET-Future Lab. & Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| |
Collapse
|
4
|
Ding S, Yang C, Yuan J, Li H, Yuan X, Li M. An overview of the preparation and application of counter electrodes for DSSCs. RSC Adv 2023; 13:12309-12319. [PMID: 37091618 PMCID: PMC10114283 DOI: 10.1039/d3ra00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Dye-sensitized solar cells (DSSCs) are potential products for the next generation of photovoltaic technology, which is one of the research hotspots in photovoltaics. The counter electrode in DSSCs collects electron in the external circuit and catalyzes the reduction of the redox electrolyte and hole transport in the solid electrolyte. Thus, it undoubtedly has an important impact on the photovoltaic performance, long-term stability, and cost of DSSCs. In this work, the materials of counter electrodes are classified into metals, carbon materials, conductive polymers, and inorganic compounds. The preparation, mechanism, conversion efficiency, and properties of counter electrodes are reviewed.
Collapse
Affiliation(s)
- Shuang Ding
- College of Environmental and Chemical Engineering, Dalian University Dalian 116622 Liaoning China
| | - Chaoqiao Yang
- College of Environmental and Chemical Engineering, Dalian University Dalian 116622 Liaoning China
| | - Jie Yuan
- School of Chemistry and Materials Engineering, Liupanshui Normal University Liupanshui 553004 Guizhou China
| | - Huijin Li
- College of Environmental and Chemical Engineering, Dalian University Dalian 116622 Liaoning China
| | - Xianli Yuan
- College of Environmental and Chemical Engineering, Dalian University Dalian 116622 Liaoning China
| | - Min Li
- School of Chemistry and Materials Engineering, Liupanshui Normal University Liupanshui 553004 Guizhou China
| |
Collapse
|
5
|
Duan L, Wang C, Zhang W, Ma B, Deng Y, Li W, Zhao D. Interfacial Assembly and Applications of Functional Mesoporous Materials. Chem Rev 2021; 121:14349-14429. [PMID: 34609850 DOI: 10.1021/acs.chemrev.1c00236] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.
Collapse
Affiliation(s)
- Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Changyao Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Bing Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Yonghui Deng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
6
|
Ji JM, Kim CK, Kim HK. Well-dispersed Te-doped mesoporous carbons as Pt-free counter electrodes for high-performance dye-sensitized solar cells. Dalton Trans 2021; 50:9399-9409. [PMID: 34223586 DOI: 10.1039/d0dt04372a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tellurium-doped carbon nanomaterial (Te-MC(P)) was newly developed by the soft-templated carbonization of the PAN-b-PBA copolymer with poly(3-hexyltellurophene). Te-MC(P) was characterized with various characterization methods, including the nitrogen sorption isotherm measurement (BET), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS), which reveal that the Te atoms are homogeneously dispersed in the three-dimensional hierarchical, graphite-like mesoporous carbon matrix with a Te doping level of 0.27 atom %. Based on the characterization results, the electrocatalytic ability of Te-MC(P) was evaluated by using a symmetrical dummy cell test with both Co(bpy)32+/3+ (bpy = 2,2'-bipyridine) and I-/I3- redox electrolytes as counter electrodes (CEs). The Te-MC(P) CEs showed remarkably lower charge-transfer resistance (Rct) values by approximately 10 times in the electrochemical impedance spectroscopy (EIS) measurement, compared to the counterpart platinum (Pt) and the tellurium-based material (Te-MC(A)), prepared with a telluric acid precursor that has a lower Te doping level of 0.15 at%. As a result, the excellent electrocatalytic ability of Te-MC(P) resulted in the improvement of photovoltaic performance. The power conversion efficiencies (PCEs) of Te-MC(P)-based dye-sensitized solar cells (DSSCs) were 12.69% for the Co(bpy)32+/3+ redox electrolyte with the SGT-021 porphyrin dye and 9.73% for the I-/I3- redox electrolyte with the N719 ruthenium dye. Furthermore, Te- MC(P) CEs exhibited remarkable electrochemical stability in the two redox electrolytes. These results could suggest that the Te-MC(P) CE is one of the best promising alternatives to Pt CEs as a low-cost, highly stable and efficient electrocatalytic CE for practical applications.
Collapse
Affiliation(s)
- Jung-Min Ji
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Chang Ki Kim
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Hwan Kyu Kim
- Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| |
Collapse
|
7
|
Aftabuzzaman M, Lu C, Kim HK. Recent progress on nanostructured carbon-based counter/back electrodes for high-performance dye-sensitized and perovskite solar cells. NANOSCALE 2020; 12:17590-17648. [PMID: 32820785 DOI: 10.1039/d0nr04112b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) favor minimal environmental impact and low processing costs, factors that have prompted intensive research and development. In both cases, rare, expensive, and less stable metals (Pt and Au) are used as counter/back electrodes; this design increases the overall fabrication cost of commercial DSSC and PSC devices. Therefore, significant attempts have been made to identify possible substitutes. Carbon-based materials seem to be a favorable candidate for DSSCs and PSCs due to their excellent catalytic ability, easy scalability, low cost, and long-term stability. However, different carbon materials, including carbon black, graphene, and carbon nanotubes, among others, have distinct properties, which have a significant role in device efficiency. Herein, we summarize the recent advancement of carbon-based materials and review their synthetic approaches, structure-function relationship, surface modification, heteroatoms/metal/metal oxide incorporation, fabrication process of counter/back electrodes, and their effects on photovoltaic efficiency, based on previous studies. Finally, we highlight the advantages, disadvantages, and design criteria of carbon materials and fabrication challenges that inspire researchers to find low cost, efficient and stable counter/back electrodes for DSSCs and PSCs.
Collapse
Affiliation(s)
- M Aftabuzzaman
- Global GET-Future Lab & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Korea.
| | | | | |
Collapse
|
8
|
Wu C, Li R, Wang Y, Lu S, Lin J, Liu Y, Zhang X. Strong metal-support interactions enable highly transparent Pt-Mo 2C counter electrodes of bifacial dye-sensitized solar cells. Chem Commun (Camb) 2020; 56:10046-10049. [PMID: 32729584 DOI: 10.1039/d0cc03744c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly transparent and active Pt-Mo2C counter electrodes were successfully fabricated by the strong metal-support interaction, with high dispersity of Pt nanoclusters on Mo2C support, which endowed bifacial dye-sensitized solar cells with a rear-to-front efficiency ratio as high as 0.75.
Collapse
Affiliation(s)
- Chunxia Wu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
| | | | | | | | | | | | | |
Collapse
|