1
|
Escobar EE, Seeley EH, Serrano-Negrón JE, Vocadlo DJ, Brodbelt JS. In Situ Imaging of O-Linked β-N-Acetylglucosamine Using On-Tissue Hydrolysis and MALDI Mass Spectrometry. Cancers (Basel) 2023; 15:1224. [PMID: 36831567 PMCID: PMC9954453 DOI: 10.3390/cancers15041224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Post-translational O-glycosylation of proteins via the addition of N-acetylglucosamine (O-GlcNAc) is a regulator of many aspects of cellular physiology. Processes driven by perturbed dynamics of O-GlcNAcylation modification have been implicated in cancer development. Variability in O-GlcNAcylation is emerging as a metabolic biomarker of many cancers. Here, we evaluate the use of MALDI-mass spectrometry imaging (MSI) to visualize the location of O-GlcNAcylated proteins in tissue sections by mapping GlcNAc that has been released by the enzymatic hydrolysis of glycoproteins using an O-GlcNAc hydrolase. We use this strategy to monitor O-GlcNAc within hepatic VX2 tumor tissue. We show that increased O-GlcNAc is found within both viable tumor and tumor margin regions, implicating GlcNAc in tumor progression.
Collapse
Affiliation(s)
- Edwin E. Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erin H. Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - David J. Vocadlo
- Department of Molecular Biology and Biochemistry, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Wang J, Cao W, Zhang W, Dou B, Zeng X, Su S, Cao H, Ding X, Ma J, Li X. Ac 34FGlcNAz is an effective metabolic chemical reporter for O-GlcNAcylated proteins with decreased S-glyco-modification. Bioorg Chem 2023; 131:106139. [PMID: 36610251 DOI: 10.1016/j.bioorg.2022.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023]
Abstract
O-GlcNAcylation is a ubiquitous post-translational modification governing vital biological processes in cancer, diabetes and neurodegeneration. Metabolic chemical reporters (MCRs) containing bio-orthogonal groups such as azido or alkyne, are widely used for labeling of interested proteins. However, most MCRs developed for O-GlcNAc modification are not specific and always lead to unexpected side reactions termed S-glyco-modification. Here, we attempt to develop a new MCR of Ac34FGlcNAz that replacing the 4-OH of Ac4GlcNAz with fluorine, which is supposed to abolish the epimerization of GALE and enhance the selectivity. The discoveries demonstrate that Ac34FGlcNAz is a powerful MCR for O-GlcNAcylation with high efficiency and the process of this labeling is conducted by the two enzymes of OGT and OGA. Most importantly, Ac34FGlcNAz is predominantly incorporated intracellular proteins in the form of O-linkage and leads to negligible S-glyco-modification, indicating it is a selective MCR for O-GlcNAcylation. Therefore, we reason that Ac34FGlcNAz developed here is a well characterized MCR of O-GlcNAcylation, which provides more choice for label and enrichment of O-GlcNAc associated proteins.
Collapse
Affiliation(s)
- Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Wei Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Wei Zhang
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng 475000, China
| | - Biao Dou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Xueke Zeng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Shihao Su
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng 475000, China
| | - Hongtai Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Xin Ding
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China
| | - Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng 475000, China.
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475000, China.
| |
Collapse
|
3
|
Kufleitner M, Haiber LM, Wittmann V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chem Soc Rev 2023; 52:510-535. [PMID: 36537135 DOI: 10.1039/d2cs00764a] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are involved in numerous biological recognition events. Being secondary gene products, their labeling by genetic methods - comparable to GFP labeling of proteins - is not possible. To overcome this limitation, metabolic glycoengineering (MGE, also known as metabolic oligosaccharide engineering, MOE) has been developed. In this approach, cells or organisms are treated with synthetic carbohydrate derivatives that are modified with a chemical reporter group. In the cytosol, the compounds are metabolized and incorporated into newly synthesized glycoconjugates. Subsequently, the reporter groups can be further derivatized in a bioorthogonal ligation reaction. In this way, glycans can be visualized or isolated. Furthermore, diverse targeting strategies have been developed to direct drugs, nanoparticles, or whole cells to a desired location. This review summarizes research in the field of MGE carried out in recent years. After an introduction to the bioorthogonal ligation reactions that have been used in in connection with MGE, an overview on carbohydrate derivatives for MGE is given. The last part of the review focuses on the many applications of MGE starting from mammalian cells to experiments with animals and other organisms.
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Lisa Maria Haiber
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
4
|
Yin R, Wang X, Li C, Gou Y, Ma X, Liu Y, Peng J, Wang C, Zhang Y. Mass Spectrometry for O-GlcNAcylation. Front Chem 2021; 9:737093. [PMID: 34938717 PMCID: PMC8685217 DOI: 10.3389/fchem.2021.737093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) at proteins with low-abundance expression level and species diversity, shows important roles in plenty of biological processes. O-GlcNAcylations with abnormal expression levels are associated with many diseases. Systematically profiling of O-GlcNAcylation at qualitative or quantitative level is vital for their function understanding. Recently, the combination of affinity enrichment, metabolic labeling or chemical tagging with mass spectrometry (MS) have made significant contributions to structure-function mechanism elucidating of O-GlcNAcylations in organisms. Herein, this review provides a comprehensive update of MS-based methodologies for quali-quantitative characterization of O-GlcNAcylation.
Collapse
Affiliation(s)
- Ruoting Yin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Cheng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuhan Gou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xuecheng Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yongzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jianfang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Chao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Ying Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Wang J, Dou B, Zheng L, Cao W, Dong P, Chen Y, Zeng X, Wen Y, Pan W, Ma J, Chen J, Li X. The Metabolic Chemical Reporter Ac 46AzGal Could Incorporate Intracellular Protein Modification in the Form of UDP-6AzGlc Mediated by OGT and Enzymes in the Leloir Pathway. Front Chem 2021; 9:708306. [PMID: 34712646 PMCID: PMC8546251 DOI: 10.3389/fchem.2021.708306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Galactose is a naturally occurring monosaccharide used to build complex glycans that has not been targeted for labeling as a metabolic reporter. Here, we characterize the cellular modification of proteins by using Ac46AzGal in a dose- and time-dependent manner. It is noted that a vast majority of this labeling of Ac46AzGal occurs intracellularly in a range of mammalian cells. We also provided evidence that this labeling is dependent on not only the enzymes of OGT responsible for O-GlcNAcylation but also the enzymes of GALT and GALE in the Leloir pathway. Notably, we discover that Ac46AzGal is not the direct substrate of OGT, and the labeling results may attribute to UDP-6AzGlc after epimerization of UDP-6AzGal via GALE. Together, these discoveries support the conclusion that Ac46AzGal as an analogue of galactose could metabolically label intracellular O-glycosylation modification, raising the possibility of characterization with impaired functions of the galactose metabolism in the Leloir pathway under certain conditions, such as galactosemias.
Collapse
Affiliation(s)
- Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China.,State Key Laboratory of Medicinal Chemical Biology, Haihe Education Park, Nankai University, Tianjin, China
| | - Biao Dou
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Lu Zheng
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Wei Cao
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Peiyu Dong
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Yingyi Chen
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Xueke Zeng
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Yinhang Wen
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Wenxuan Pan
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jingying Chen
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Wang J, Dou B, Zheng L, Cao W, Zeng X, Wen Y, Ma J, Li X. Synthesis of Na 2S 2O 4 mediated cleavable affinity tag for labeling of O-GlcNAc modified proteins via azide-alkyne cycloaddition. Bioorg Med Chem Lett 2021; 48:128244. [PMID: 34229054 DOI: 10.1016/j.bmcl.2021.128244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/22/2023]
Abstract
A facile and convergent procedure for the synthesis of azobenzene-based probe was reported, which could selectively release interested proteins conducted with sodium dithionite. Besides, the cleavage efficiency is closely associated with the structural features, in which an ortho-hydroxyl substituent is necessary for reactivity. In addition, the azobenzene tag applied in the Ac4GlcNAz-labled proteins demonstrated high efficiency and selectivity in comparison with Biotin-PEG4-Alkyne, which provides a useful platform for enrichment of any desired bioorthogonal proteomics.
Collapse
Affiliation(s)
- Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Biao Dou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Lu Zheng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Wei Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Xueke Zeng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Yinhang Wen
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, 475004 Kaifeng, China.
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China.
| |
Collapse
|
7
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
8
|
Wang P, Xue T, Sheng A, Cheng L, Zhang J. Application of Chemoselective Ligation in Biosensing. Crit Rev Anal Chem 2020; 52:170-193. [DOI: 10.1080/10408347.2020.1791044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pei Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
- Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai, P. R. China
| | - Tianxiang Xue
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Anzhi Sheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Liangfen Cheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|
9
|
Escobar EE, King DT, Serrano-Negrón JE, Alteen MG, Vocadlo DJ, Brodbelt JS. Precision Mapping of O-Linked N-Acetylglucosamine Sites in Proteins Using Ultraviolet Photodissociation Mass Spectrometry. J Am Chem Soc 2020; 142:11569-11577. [PMID: 32510947 DOI: 10.1021/jacs.0c04710] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite its central importance as a regulator of cellular physiology, identification and precise mapping of O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification (PTM) sites in proteins by mass spectrometry (MS) remains a considerable technical challenge. This is due in part to cleavage of the glycosidic bond occurring prior to the peptide backbone during collisionally activated dissociation (CAD), which leads to generation of characteristic oxocarbenium ions and impairs glycosite localization. Herein, we leverage CAD-induced oxocarbenium ion generation to trigger ultraviolet photodissociation (UVPD), an alternate high-energy deposition method that offers extensive fragmentation of peptides while leaving the glycosite intact. Upon activation using UV laser pulses, efficient photodissociation of glycopeptides is achieved with production of multiple sequence ions that enable robust and precise localization of O-GlcNAc sites. Application of this method to tryptic peptides originating from O-GlcNAcylated proteins TAB1 and Polyhomeotic confirmed previously reported O-GlcNAc sites in TAB1 (S395 and S396) and uncovered new sites within both proteins. We expect this strategy will complement existing MS/MS methods and be broadly useful for mapping O-GlcNAcylated residues of both proteins and proteomes.
Collapse
Affiliation(s)
- Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dustin T King
- Department of Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jesús E Serrano-Negrón
- Department of Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|