1
|
Ohsato H, Kawauchi K, Yamada S, Konno T. Diverse Synthetic Transformations Using 4-Bromo-3,3,4,4-tetrafluorobut-1-ene and Its Applications in the Preparation of CF 2 CF 2 -Containing Sugars, Liquid Crystals, and Light-Emitting Materials. CHEM REC 2023; 23:e202300080. [PMID: 37140105 DOI: 10.1002/tcr.202300080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Indexed: 05/05/2023]
Abstract
Organic molecules with fluoroalkylene scaffolds, especially a tetrafluoroethylene (CF2 CF2 ) moiety, in their molecular structures exhibit unique biological activities, or can be applied to functional materials such as liquid crystals and light-emitting materials. Although several methods for the syntheses of CF2 CF2 -containing organic molecules have been reported to date, they have been limited to methods using explosives and fluorinating agents. Therefore, there is an urgent need to develop simple and efficient approaches to synthesize CF2 CF2 -containing organic molecules from readily available fluorinated substrates using carbon-carbon bond formation reactions. This personal account summarizes the simple and efficient transformation of functional groups at both ends of 4-bromo-3,3,4,4-tetrafluorobut-1-ene and discusses its synthetic applications to biologically active fluorinated sugars and functional materials, such as liquid crystals and light-emitting molecules.
Collapse
Affiliation(s)
- Haruka Ohsato
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kazuma Kawauchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tsutomu Konno
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
2
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Chodkiewicz M, Pawlędzio S, Woińska M, Woźniak K. Fragmentation and transferability in Hirshfeld atom refinement. IUCRJ 2022; 9:298-315. [PMID: 35371499 PMCID: PMC8895009 DOI: 10.1107/s2052252522000690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Hirshfeld atom refinement (HAR) is one of the most effective methods for obtaining accurate structural parameters for hydrogen atoms from X-ray diffraction data. Unfortunately, it is also relatively computationally expensive, especially for larger molecules due to wavefunction calculations. Here, a fragmentation approach has been tested as a remedy for this problem. It gives an order of magnitude improvement in computation time for larger organic systems and is a few times faster for metal-organic systems at the cost of only minor differences in the calculated structural parameters when compared with the original HAR calculations. Fragmentation was also applied to polymeric and disordered systems where it provides a natural solution to problems that arise when HAR is applied. The concept of fragmentation is closely related to the transferable aspherical atom model (TAAM) and allows insight into possible ways to improve TAAM. Hybrid approaches combining fragmentation with the transfer of atomic densities between chemically similar atoms have been tested. An efficient handling of intermolecular interactions was also introduced for calculations involving fragmentation. When applied in fragHAR (a fragmentation approach for polypeptides) as a replacement for the original approach, it allowed for more efficient calculations. All of the calculations were performed with a locally modified version of Olex2 combined with a development version of discamb2tsc and ORCA. Care was taken to efficiently use the power of multicore processors by simple implementation of load-balancing, which was found to be very important for lowering computational time.
Collapse
Affiliation(s)
- Michał Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Magdalena Woińska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
4
|
Tremblay T, Alcée JB, Giguère D. Protecting-group-free synthesis of clevudine ( l-FMAU), a treatment of the hepatitis B virus. Org Biomol Chem 2022; 20:8859-8863. [DOI: 10.1039/d2ob01814d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new strategy for the synthesis of unnatural 2′-deoxy-2′-fluoro-l-nucleoside is described.
Collapse
Affiliation(s)
- Thomas Tremblay
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, Canada G1V 0A6
| | - Jessica B. Alcée
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, Canada G1V 0A6
| | - Denis Giguère
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, Canada G1V 0A6
| |
Collapse
|
5
|
Hamala V, Červenková Šťastná L, Kurfiřt M, Cuřínová P, Dračínský M, Karban J. Synthesis of multiply fluorinated N-acetyl-D-glucosamine and D-galactosamine analogs via the corresponding deoxyfluorinated glucosazide and galactosazide phenyl thioglycosides. Beilstein J Org Chem 2021; 17:1086-1095. [PMID: 34093878 PMCID: PMC8144920 DOI: 10.3762/bjoc.17.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Multiple fluorination of glycostructures has emerged as an attractive way of modulating their protein affinity, metabolic stability, and lipophilicity. Here we described the synthesis of a series of mono-, di- and trifluorinated N-acetyl-ᴅ-glucosamine and ᴅ-galactosamine analogs. The key intermediates are the corresponding multiply fluorinated glucosazide and galactosazide thioglycosides prepared from deoxyfluorinated 1,6-anhydro-2-azido-β-ᴅ-hexopyranose precursors by ring-opening reaction with phenyl trimethylsilyl sulfide. Nucleophilic deoxyfluorination at C4 and C6 by reaction with DAST, thioglycoside hydrolysis and azide/acetamide transformation completed the synthesis.
Collapse
Affiliation(s)
- Vojtěch Hamala
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Lucie Červenková Šťastná
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
| | - Martin Kurfiřt
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Petra Cuřínová
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
| | - Martin Dračínský
- NMR Spectroscopy group, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, 16000 Praha, Czech Republic
| | - Jindřich Karban
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic
| |
Collapse
|
6
|
Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chemistry 2020; 27:2240-2253. [DOI: 10.1002/chem.202003135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences University of Basel, Pharmazentrum Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
7
|
Keenan T, Parmeggiani F, Malassis J, Fontenelle CQ, Vendeville JB, Offen W, Both P, Huang K, Marchesi A, Heyam A, Young C, Charnock SJ, Davies GJ, Linclau B, Flitsch SL, Fascione MA. Profiling Substrate Promiscuity of Wild-Type Sugar Kinases for Multi-fluorinated Monosaccharides. Cell Chem Biol 2020; 27:1199-1206.e5. [DOI: 10.1016/j.chembiol.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
|