1
|
Zhao H, Cuomo VD, Tian W, Romano C, Procter DJ. Light-assisted functionalization of aryl radicals towards metal-free cross-coupling. Nat Rev Chem 2025; 9:61-80. [PMID: 39548311 DOI: 10.1038/s41570-024-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
The many synthetic possibilities that arise when using radical intermediates, in place of their polar counterparts, make contemporary radical chemistry research an exhilarating field. The introduction of photocatalysis has helped tame aryl radicals, leading to a resurgence of interest in their chemistry, and an expansion of viable coupling partners and attainable transformations. These methods are more selective and safer than classical approaches, and they utilize new radical precursors. Given the importance of sustainability in current organic synthesis and our interest in light-assisted metal-free transformations, this Review focuses on recent advances in the use of aryl radicals in photoinduced cross-couplings that do not rely on metals for the crucial bond-forming event, and it is structured according to the key step that the aryl radicals engage in.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Wei Tian
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - David J Procter
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Li H, Sheng W, Chen J. Visible light-induced cascade sulfonylation/annulation of ortho-allyloxy chalcones with sodium sulfinates for the synthesis of sulfonated chromane derivatives. Org Biomol Chem 2024; 22:8827-8831. [PMID: 39397714 DOI: 10.1039/d4ob01319k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A visible-light-induced radical cascade reaction for the synthesis of structurally diverse sulfonated chromanes is described. The protocol involves the addition of sulfonyl radicals to ortho-allyloxy chalcones and intramolecular Michael addition reactions in the presence of eosin Y as a photocatalyst. Additionally, this protocol shows that it is also an effective method to construct seven-membered oxygen-containing heterocycles. The method features a wide substrate scope, the use of easily accessible materials and excellent functional group tolerance with high to excellent yields. Control experiments and mechanistic studies indicate that a visible light-induced radical cascade process is involved in the transformation.
Collapse
Affiliation(s)
- Huimin Li
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wenli Sheng
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Junmin Chen
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
3
|
Tang LJ, Zhu WC, Deng HH, Jiang YF, Liu XY, Rao W, Shen SS, Song P, Wang SY. Visible Light-Catalyzed Reactions of Polysulfide (DBSPS) with Aryldiazonium. Chem Asian J 2024:e202400086. [PMID: 38676953 DOI: 10.1002/asia.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Indexed: 04/29/2024]
Abstract
A visible light-catalyzed radical coupling reaction of polysulfide reagents with aryldiazonium was developed, which gave thiosulfonates under mild conditions. In this reaction, the thiosulfonates were isolated in good yields with a broad tolerance to functional groups. And the synthesis of diaryl monosulfides were achieved through a step-by-step reaction of two molecular aryldiazonium with DBSPS, where the sulfur source was provided by DBSPS. It was worth noting that the reaction of this monosulfides could also be achieved by a one pot two-step process. The described polysulfide reagents were able to produce three new radicals: sulfonyl radicals, sulfur-sulfonyl radicals and sulfur-sulfur-sulfonyl radicals.
Collapse
Affiliation(s)
- Ling-Juan Tang
- Analysis and Testing Center, Nantong University, No.1 Nanhai Road, Nantong, 226019, People's Republic of China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Hong-He Deng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210000, People's Republic of China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou, 215000, People's Republic of China
| | - Ping Song
- Analysis and Testing Center, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215000, People's Republic of China
| |
Collapse
|
4
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
5
|
Antolinc K, Brodnik H, Grošelj U, Štefane B, Petek N, Svete J. Catalytic Photoredox C-H Arylation of 4-Oxo-4 H-pyrido[1,2- a]pyrimidine-3-diazonium Tetrafluoroborates and Related Heteroaryl Diazonium Salts. J Org Chem 2023; 88:13934-13945. [PMID: 37676813 PMCID: PMC10563132 DOI: 10.1021/acs.joc.3c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/09/2023]
Abstract
Irradiation of mixtures of title diazonium salts and heteroarenes with green light (510 nm) in the presence of eosin Y disodium salt (EY-Na2) as a photocatalyst furnished the corresponding arylation products in 8-63% yields. The proposed photocatalytic cycle is analogous to that proposed previously for closely related photoredox C-H arylations with aryl diazonium salts as aryl radical sources. This method has a broad substrate scope and represents a metal-free alternative for the synthesis of 3-heteroaryl-substituted 4H-quinolizin-4-ones and azino- and azolo-fused pyrimidones with a bridgehead nitrogen atom.
Collapse
Affiliation(s)
- Kris Antolinc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Helena Brodnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Uroš Grošelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Nejc Petek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Lee J, An S, Jang M, Jung HM, Lee S. Recyclable and dual active catalyst of copper nanocluster-bound graphitic carbon nitride for the photo-induced synthesis of arylsulfones. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Das P, Das S, Jana R. Aryldiazonium Salts and DABSO: a Versatile Combination for Three-Component Sulfonylative Cross-Coupling Reactions. Chem Asian J 2022; 17:e202200085. [PMID: 35366373 DOI: 10.1002/asia.202200085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/31/2022] [Indexed: 11/09/2022]
Abstract
A combination of aryldiazonium salts and DABSO provides a unique opportunity for sulfonylative multicomponent cross-coupling reactions. Here, a copper-catalyzed three-component cross-coupling of aryldiazonium salts, DABSO with arylboronic acids to obtain medicinally relevant unsymmetrical diarylsulfones is disclosed. Interestingly, a catalyst-free approach for the synthesis of arylvinylsulfones from the corresponding vinyl boronic acid or vinyl halides is explored under basic condition. Tethered aryldiazonium salts provided the corresponding annulated alkylvinylsulfones via alkene difunctionalization under the same transition metal-free condition. Mechanistically, these multicomponent reactions proceed through a single electron pathway by the formation of arylsulfonyl radical as a key intermediate.
Collapse
Affiliation(s)
- Pritha Das
- CSIR-IICB: Indian Institute of Chemical Biology CSIR, Organic and Medicinal Chemistry Division, INDIA
| | - Subhodeep Das
- CSIR-IICB: Indian Institute of Chemical Biology CSIR, Organic and Medicinal Chemistry Division, INDIA
| | - Ranjan Jana
- Indian Institute of Chemical Biology CSIR, Chemistry Division, 4, Raja S. C. Mullick Road, Jadavpur, 700032, Kolkata, INDIA
| |
Collapse
|
8
|
Lu H, Lu Z, Shang M. Organic Sulfinic Acids and Salts in Visible Light-Induced Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1671-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractSulfinic acids and their salts are a useful source of sulfur-containing structures. Photocatalysis of these compounds with visible light enables to achieve various transformations under mild conditions. This review summarizes visible-light-induced reactions of sulfinic acids and their salts. It is organized by reaction type and brief discussions on plausible reaction mechanisms for typical transformations are presented.1 Introduction2 Sulfonylation Reactions2.1 Sulfonylation of Alkenes2.2 Sulfonylation of Alkynes2.3 Sulfonylation of Arenes2.4 sp3 C–H Functionalization3 Desulfonylation Reactions4 Sulfenylation Reactions4.1 Sulfenylation of Heteroarenes4.2 Sulfenylation of Carbonyl Chlorides5 Conclusions
Collapse
Affiliation(s)
- Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University
| | - Zheng Lu
- School of Pharmacy, Jiangsu University
| | - Mingzhou Shang
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University
| |
Collapse
|
9
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Xu X, Yan L, Wang S, Wang P, Yang AX, Li X, Lu H, Cao ZY. Selective synthesis of sulfoxides and sulfones via controllable oxidation of sulfides with N-fluorobenzenesulfonimide. Org Biomol Chem 2021; 19:8691-8695. [PMID: 34581382 DOI: 10.1039/d1ob01632f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A practical and mild method for the switchable synthesis of sulfoxides or sulfones via selective oxidation of sulfides using cheap N-fluorobenzenesulfonimide (NFSI) as the oxidant has been developed. These highly chemoselective transformations were simply achieved by varying the NFSI loading with H2O as the green solvent and oxygen source without any additives. The good functional group tolerance makes the strategy valuable.
Collapse
Affiliation(s)
- Xiaobo Xu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Leyu Yan
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Shengqiang Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - A-Xiu Yang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Xiaolong Li
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Hao Lu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
11
|
Ye X, Wu X, Guo SR, Huang D, Sun X. Recent advances of sodium sulfinates in radical reactions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Lam LY, Ma C. Chan-Lam-Type C-S Coupling Reaction by Sodium Aryl Sulfinates and Organoboron Compounds. Org Lett 2021; 23:6164-6168. [PMID: 34292759 DOI: 10.1021/acs.orglett.1c02299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Chan-Lam-type C-S coupling reaction using sodium aryl sulfinates has been developed to provide diaryl thioethers in up to 92% yields in the presence of a copper catalyst and potassium sulfite. Both electron-rich and electron-poor sodium aryl sulfinates and diverse organoboron compounds were tolerated for the synthesis of aryl and heteroaryl thioethers and dithioethers. The mechanistic study suggested that potassium sulfite was involved in the deoxygenation of sulfinate through a radical process.
Collapse
Affiliation(s)
- Long Yin Lam
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Kim W, Kim HY, Oh K. Oxidation Potential-Guided Electrochemical Radical-Radical Cross-Coupling Approaches to 3-Sulfonylated Imidazopyridines and Indolizines. J Org Chem 2021; 86:15973-15991. [PMID: 34185997 DOI: 10.1021/acs.joc.1c00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation potential-guided electrochemical radical-radical cross-coupling reactions between N-heteroarenes and sodium sulfinates have been established. Thus, simple cyclic voltammetry measurement of substrates predicts the likelihood of successful radical-radical coupling reactions, allowing the simple and direct synthetic access to 3-sulfonylated imidazopyridines and indolizines. The developed electrochemical radical-radical cross-coupling reactions to sulfonylated N-heteroarenes boast the green synthetic nature of the reactions that are oxidant- and metal-free.
Collapse
Affiliation(s)
- Wansoo Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.,Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
14
|
Renzi P, Azzi E, Lanfranco A, Moro R, Deagostino A. Visible Light as the Key for the Formation of Carbon–Sulfur Bonds in Sulfones, Thioethers, and Sulfonamides: An Update. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1509-5541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis review summarizes the most relevant advancements made in the photocatalyzed synthesis of sulfones, thioethers, and sulfonamides from 2017 to the beginning of 2021. Synthetic strategies towards the construction of sulfur–carbon bonds are discussed together with the proposed reaction mechanisms. Interestingly, sulfur-based functional groups, which are of fundamental importance for the pharmaceutical field, can be assembled by photocatalysis in an easy and straightforward way under milder reaction conditions employing less toxic and expensive sulfur sources in comparison with common strategies.1 Introduction2 Sulfones2.1 Sodium Sulfinates and Sulfinic Acids2.2 Sulfonyl Halides2.3 Sulfonyl Hydrazones2.4 Sulfur Dioxide Surrogates2.5 Miscellaneous3 Thioethers4 Sulfonamides5 Conclusions
Collapse
|
15
|
Guo Z, Zhao Y, Wang Y, Xie M, Zhang J. Construction of 3-Sulfonyl Naphthalenes via Tandem Reaction of 1,4-Diyn-3-yl Esters with Sodium Sulfinates. J Org Chem 2021; 86:6247-6258. [PMID: 33874722 DOI: 10.1021/acs.joc.1c00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polysubstituted 3-sulfonyl naphthalenes were constructed in good to high yields by AlCl3-mediated tandem reaction of 1,4-diyn-3-yl esters and sodium sulfinates. This reaction proceeded under mild reaction conditions and tolerated a variety of functional groups. Moreover, the mechanistic studies indicated that the initial formation of allene under DBU from 1,4-diyn-3-yl ester and a sequence of nucleophilic addition of sodium sulfinate, the formation of allene, and intramolecular cyclization might be involved.
Collapse
Affiliation(s)
- Ziyi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yiming Zhao
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yu Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
16
|
Bosveli A, Montagnon T, Kalaitzakis D, Vassilikogiannakis G. Eosin: a versatile organic dye whose synthetic uses keep expanding. Org Biomol Chem 2021; 19:3303-3317. [PMID: 33899893 DOI: 10.1039/d1ob00301a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic dyes, which absorb light in the visible region of the electromagnetic spectrum, offer a lower cost, greener alternative to precious metals in photocatalysis. In this context, the organic dye eosin's uses are currently expanding at a significant rate. For a long time, its action as an energy transfer agent dominated, more recently, however, there has been a growing interest in its potential as an electron transfer agent. In this short review, we highlight some recent (from 2016 onwards) contributions to the field with a focus on the breadth of the reactions eosin can catalyse.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | | |
Collapse
|
17
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Joseph D, Idris MA, Chen J, Lee S. Recent Advances in the Catalytic Synthesis of Arylsulfonyl Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05690] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Muhammad Aliyu Idris
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiajia Chen
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, People’s Republic of China
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
19
|
Zhou W, Tian YP, Zhou HJ, Wang HJ, Ren Y, Liu XL. Synthesis of methanesulfone-containing tetrasubstituted carbon stereocenters. Org Biomol Chem 2021; 19:2269-2276. [PMID: 33624683 DOI: 10.1039/d1ob00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A methanesulfonylation reaction for the synthesis of sulfone-containing tetrasubstituted carbon stereocenters is described for the first time by simple treatment of indanedione-chromanone synthons with Et3N and easily accessible MsCl without any use of organometallic chemistry. This technology gave the corresponding valuable chromone-based 2-methanesulfonylated 1,3-indanediones in good yields (up to 89% yield) under mild conditions. The present work provides an attractive strategy for the construction of biologically interesting sulfone-containing tetrasubstituted carbon stereocenters, which might be valuable in medicinal chemistry.
Collapse
Affiliation(s)
- Wei Zhou
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - You-Ping Tian
- College of Pharmaceutical Sciences, Guizhou University of Chinese Medicine, Guiyang, Guizhou 550025, P. R. China
| | - Hao-Jie Zhou
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Hui-Juan Wang
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Yan Ren
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| |
Collapse
|
20
|
Reddy RJ, Kumari AH. Synthesis and applications of sodium sulfinates (RSO 2Na): a powerful building block for the synthesis of organosulfur compounds. RSC Adv 2021; 11:9130-9221. [PMID: 35423435 PMCID: PMC8695481 DOI: 10.1039/d0ra09759d] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the preparation of sodium sulfinates (RSO2Na) and their multifaceted synthetic applications. Substantial progress has been made over the last decade in the utilization of sodium sulfinates emerging as sulfonylating, sulfenylating or sulfinylating reagents, depending on reaction conditions. Sodium sulfinates act as versatile building blocks for preparing many valuable organosulfur compounds through S-S, N-S, and C-S bond-forming reactions. Remarkable advancement has been made in synthesizing thiosulfonates, sulfonamides, sulfides, and sulfones, including vinyl sulfones, allyl sulfones, and β-keto sulfones. The significant achievement of developing sulfonyl radical-triggered ring-closing sulfonylation and multicomponent reactions is also thoroughly discussed. Of note, the most promising site-selective C-H sulfonylation, photoredox catalytic transformations and electrochemical synthesis of sodium sulfinates are also demonstrated. Holistically, this review provides a unique and comprehensive overview of sodium sulfinates, which summarizes 355 core references up to March 2020. The chemistry of sodium sulfinate salts is divided into several sections based on the classes of sulfur-containing compounds with some critical mechanistic insights that are also disclosed.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| |
Collapse
|
21
|
Babu SS, Muthuraja P, Yadav P, Gopinath P. Aryldiazonium Salts in Photoredox Catalysis – Recent Trends. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sakamuri Sarath Babu
- Department of Chemistry Indian Institute of Science Education and Research Tirupati Tirupati, A.P. India
| | - P. Muthuraja
- Department of Chemistry Indian Institute of Science Education and Research Tirupati Tirupati, A.P. India
| | - Pooja Yadav
- Department of Chemistry Indian Institute of Science Education and Research Tirupati Tirupati, A.P. India
| | - Purushothaman Gopinath
- Department of Chemistry Indian Institute of Science Education and Research Tirupati Tirupati, A.P. India
| |
Collapse
|
22
|
Firoozi S, Hosseini-Sarvari M. Nanosized CdS as a Reusable Photocatalyst: The Study of Different Reaction Pathways between Tertiary Amines and Aryl Sulfonyl Chlorides through Visible-Light-Induced N-Dealkylation and C-H Activation Processes. J Org Chem 2021; 86:2117-2134. [PMID: 33464894 DOI: 10.1021/acs.joc.0c02263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It has been found that the final products of the reaction of sulfonyl chlorides and tertiary amines in the presence of cadmium sulfide nanoparticles under visible light irradiation are highly dependent on the applied reaction conditions. Interestingly, with the change of a reaction condition, different pathways were conducted (visible-light-induced N-dealkylation or sp3 and sp2 C-H activation) that lead to different products such as secondary amines and various sulfonyl compounds. Remarkably, all of these reactions were performed under visible light irradiation and an air atmosphere without any additive or oxidant in benign solvents or under solvent-free conditions. During this study, the CdS nanoparticles as affordable, heterogeneous, and recyclable photocatalysts were designed, successfully synthesized, and fully characterized and applied for these protocols. During these studies, intermediates resulting from the oxidation of tertiary amines are trapped during the photoinduced electron transfer (PET) process. The reaction was carried out efficiently with a variety of substrates to give the corresponding products at relatively short times in good to excellent yields in parallel with the use of the visible light irradiation as a renewable energy source. Most of these processes are novel or are superior in terms of cost-effectiveness, safety, and simplicity to published reports.
Collapse
Affiliation(s)
- Somayeh Firoozi
- Department of Chemistry, Shiraz University, Shiraz 7194684795, Islamic Republic of Iran
| | - Mona Hosseini-Sarvari
- Department of Chemistry, Shiraz University, Shiraz 7194684795, Islamic Republic of Iran
| |
Collapse
|
23
|
Zhang X, Mei Y, Li Y, Hu J, Huang D, Bi Y. Visible‐Light‐Mediated Functionalization of Aryl Diazonium Salts. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yaoyao Mei
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yangyang Li
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Jingang Hu
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yicheng Bi
- Qingdao University of Science & Technology
| |
Collapse
|
24
|
Chawla R, Jaiswal S, Dutta PK, Yadav LDS. A photocatalyst-free visible-light-mediated solvent-switchable route to stilbenes/vinyl sulfones from β-nitrostyrenes and arylazo sulfones. Org Biomol Chem 2021; 19:6487-6492. [PMID: 34241618 DOI: 10.1039/d1ob01028j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalyst-free visible-light-mediated reactions, based on the presence of a visible-light-absorbing functional group in the starting material itself in order to exclude the often costly, hazardous, degradable and difficult to remove or recover photoredox catalysts, have been gaining momentum recently. We have employed this approach to develop a denitrative photocatalyst-free visible-light-mediated protocol for the arylation/sulfonylation of β-nitrostyrenes employing arylazo sulfones (bench-stable photolabile compounds) in a switchable solvent-controlled manner. Arylazo sulfones served as the aryl and sulfonyl radical precursors under blue LED irradiation for the synthesis of trans-stilbenes and (E)-vinyl sulfones in CH3CN and dioxane/H2O 2 : 1, respectively. The absence of any metal, photocatalyst and additive; excellent selectivity (E-stereochemistry) and solvent-switchability; and the use of visible light and ambient temperature are the prime assets of the developed method. Moreover, we report the first photocatalyst-free visible light-driven route to synthesize stilbenes and vinyl sulfones from readily available β-nitrostyrenes.
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Shefali Jaiswal
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - P K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Lal Dhar S Yadav
- Green Synthesis Lab, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
25
|
Bugaenko DI, Volkov AA, Karchava AV, Yurovskaya MA. Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arylation methods based on the generation and use of aryl radicals have been a rapidly growing field of research in recent years and currently represent a powerful strategy for carbon – carbon and carbon – heteroatom bond formation. The progress in this field is related to advances in the methods for generation of aryl radicals. The currently used aryl radical precursors include aryl halides, aryldiazonium and diaryliodonium salts, arylcarboxylic acids and their derivatives, arylboronic acids, arylhydrazines, organosulfur(II, VI) compounds and some other compounds. Aryl radicals are generated under mild conditions by single electron reduction or oxidation of precursors induced by conventional reagents, visible light or electric current. A crucial role in the development of the radical arylation methodology belongs to photoredox processes either catalyzed by transition metal complexes or organic dyes or proceeding without catalysts. Unlike the conventional transition metal-catalyzed arylation methods, radical arylation reactions proceed very often at room temperature and have high functional group tolerance. Without claiming to be exhaustive, this review covers the most important advances of the current decade in the generation and synthetic applications of (het)aryl radicals. Examples of reactions are given and mechanistic insights are highlighted.
The bibliography includes 341 references.
Collapse
|
26
|
Dong D, Han Q, Yang S, Song J, Li N, Wang Z, Xu X. Recent Progress in Sulfonylation via Radical Reaction with Sodium Sulfinates, Sulfinic Acids, Sulfonyl Chlorides or Sulfonyl Hydrazides. ChemistrySelect 2020. [DOI: 10.1002/slct.202003650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dao‐Qing Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Qing‐Qing Han
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Shao‐Hui Yang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Jing‐Cheng Song
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Zu‐Li Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Xin‐Ming Xu
- College ofChemistry and Chemical Engineering Yantai University Yantai 264005 P.R. China
| |
Collapse
|
27
|
Kapoor R, Chawla R, Yadav LDS. Denitrative thiocyanation of β-nitrostyrenes through visible light photoredox catalysis: An easy access to (E)-vinyl thiocyanates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Mulina OM, Ilovaisky AI, Parshin VD, Terent'ev AO. Oxidative Sulfonylation of Multiple Carbon‐Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Vadim D. Parshin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
29
|
Mohamadighader N, Saraei M, Nematollahi D, Goljani H. Electrochemical study of 4-chloroaniline in a water/acetonitrile mixture. A new method for the synthesis of 4-chloro-2-(phenylsulfonyl)aniline and N-(4-chlorophenyl)benzenesulfonamide. RSC Adv 2020; 10:31563-31569. [PMID: 35520680 PMCID: PMC9056402 DOI: 10.1039/d0ra05680d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022] Open
Abstract
The electrochemical oxidation of 4-chloroaniline as a model compound in a water/acetonitrile mixture was investigated by cyclic voltammetry and differential pulse voltammetry. It was established that one-electron oxidation of 4-chloroaniline followed by disproportionation reaction affords unstable (4-iminocyclohexa-2,5-dien-1-ylidene)chloronium. In water/acetonitrile mixtures and in the absence of nucleophiles, the most likely reaction on produced chloronium is hydrolysis and p-quinoneimine formation. The electrochemical oxidation of 4-chloroaniline in the presence of arylsulfinic acids was also investigated in a water/acetonitrile mixture at a glassy carbon electrode. It was established that under these conditions, the anodically generated chloronium reacts with benzenesulfinic acid to produce the corresponding diaryl sulfone and N-phenylbenzenesulfonamide derivatives. In addition, Gaussian 09W was applied for prediction of the possible product by the calculation of natural charge, LUMO orbital energies and thermodynamic stability of intermediates and products. Electrochemical oxidation pathway of p-chloroaniline (PCA) in the presence of benzenesulfinic acid (BSA).![]()
Collapse
Affiliation(s)
| | - Mahnaz Saraei
- Department of Chemistry, Payame Noor University Tehran Iran
| | | | - Hamed Goljani
- Faculty of Chemistry, Bu-Ali Sina University Hamedan 65174 Iran
| |
Collapse
|
30
|
Photocatalyst-free visible light driven synthesis of (E)-vinyl sulfones from cinnamic acids and arylazo sulfones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Zhu D, Wu Q, Li H, Li H, Lang J. Hantzsch Ester as a Visible‐Light Photoredox Catalyst for Transition‐Metal‐Free Coupling of Arylhalides and Arylsulfinates. Chemistry 2020; 26:3484-3488. [DOI: 10.1002/chem.201905281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Da‐Liang Zhu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Hai‐Yan Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Hong‐Xi Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Jian‐Ping Lang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
32
|
Wang H, Lian P, Zheng Y, Li J, Wan X. Cross coupling of sulfonyl radicals with silver-based carbenes: a simple approach to β-carbonyl arylsulfones. Org Biomol Chem 2020; 18:2163-2169. [DOI: 10.1039/d0ob00091d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A radical–carbene coupling reaction of sulfonyl radicals and silver-based carbenes has been well established, which provides an efficient approach to various β-carbonyl arylsulfones.
Collapse
Affiliation(s)
- Hanghang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jingjing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
33
|
Cheng Z, Sun P, Tang A, Jin W, Liu C. Switchable Synthesis of Aryl Sulfones and Sulfoxides through Solvent-Promoted Oxidation of Sulfides with O 2/Air. Org Lett 2019; 21:8925-8929. [PMID: 31675240 DOI: 10.1021/acs.orglett.9b03192] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical and switchable method for the synthesis of aryl sulfones and sulfoxides via sulfide oxidation was developed. The chemoselectivities of products were simply controlled by reaction temperature using O2/air as the terminal oxidant and oxygen source. The broad substrate scope, easy realization of gram-scale production, and the simplification of a sulfide oxidation system render the strategy attractive and valuable.
Collapse
Affiliation(s)
- Zhen Cheng
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , P.R. China
| | - Pengchao Sun
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , P.R. China
| | - Ailing Tang
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , P.R. China
| | - Weiwei Jin
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , P.R. China
| | - Chenjiang Liu
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , P.R. China
| |
Collapse
|
34
|
Cavedon C, Seeberger PH, Pieber B. Photochemical Strategies for Carbon–Heteroatom Bond Formation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901173] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Cristian Cavedon
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
35
|
K2S2O8-mediated decarboxylative oxysulfonylation of cinnamic acids: A transition-metal-free synthesis of β-keto sulfones. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|