1
|
Bannantine JP, Etienne G, Lemassu A, Cochard T, Ganneau C, Melo S, Conde C, Marrakchi H, Bay S, Biet F. Genome Mining and Chemistry-Driven Discovery of a Cell Wall Lipopeptide Signature for Mycobacterium avium subsp. paratuberculosis Ancestral Lineage. ACS Infect Dis 2025. [PMID: 40397513 DOI: 10.1021/acsinfecdis.5c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) causes Johne's disease (JD), a chronic infection responsible for considerable economic losses to dairy industries worldwide. Genetically clonal, Map has evolved into three distinct genetic lineages designated CII, for bovine strains, and SI and SIII, for ovine strains. Previous studies have established that Map does not produce glycopeptidolipids, characteristic of the cell wall surface of mycobacteria belonging to the M. avium complex, but rather sugar-free lipopeptide compounds synthesized by nonribosomal peptide synthetases. In this study, we combined genomic, machine learning, (bio)chemical, and analytical approaches to identify the metabolites biosynthesized by NRPS in the most ancestral SI strains of Map. We thus characterized a lipotripeptide (L3P-2) signature for the SI genetic lineage, demonstrating that the evolution of this Map subspecies has been accompanied by a diversification of the cell wall lipopeptides. Finally, L3P-2 shows promise for improved serological diagnosis of JD.
Collapse
Affiliation(s)
- John P Bannantine
- USDA─Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, United States
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR-5089, CNRS/Université Toulouse, Toulouse 31000, France
| | - Anne Lemassu
- Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR-5089, CNRS/Université Toulouse, Toulouse 31000, France
| | - Thierry Cochard
- INRAE, UMR ISP 1282, Université de Tours, Nouzilly 37380, France
| | - Christelle Ganneau
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Chimie des Biomolécules, Chem4Life, Paris 75015, France
| | - Sandrine Melo
- INRAE, UMR ISP 1282, Université de Tours, Nouzilly 37380, France
| | - Cyril Conde
- INRAE, UMR ISP 1282, Université de Tours, Nouzilly 37380, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale (IPBS) UMR-5089, CNRS/Université Toulouse, Toulouse 31000, France
| | - Sylvie Bay
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Chimie des Biomolécules, Chem4Life, Paris 75015, France
| | - Franck Biet
- INRAE, UMR ISP 1282, Université de Tours, Nouzilly 37380, France
| |
Collapse
|
2
|
Zhong L, Boopathi S, Wang X, Chen H, Bai X, Shi X, Yang Q, Bian X, Zhang Y. Expanding the Horizon of Natural Products: The Role of Starter Units in Nonribosomal Lipopeptide Biosynthesis. ACS Synth Biol 2025; 14:1336-1351. [PMID: 40238931 DOI: 10.1021/acssynbio.4c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nonribosomal lipopeptides (NRLPs) are structurally complex natural products that play crucial ecological and biological roles. They are also valuable sources and lead structures for developing new pharmaceuticals. These compounds are typically synthesized using a molecular assembly machinery known as nonribosomal peptide synthetases (NRPSs) or hybrid polyketide synthases-NRPSs. Unlike conventional NRPS, NRLPs are characterized by a starter module that loads lipid chains and a substrate synthesis pathway that supplies the necessary substrates during the initiation stages. Unique lipid chains are critical determinants of the biological activity of NRLPs. Therefore, modifying these lipid chains through combinatorial biosynthesis holds great promise for unlocking their full therapeutic potential. Herein, we use the term "Starter Unit" to refer to the initial modules and lipoinitiation pathway involved in the lipid chain initiation process of NRLPs. This Review provides a comprehensive summary of recent advances in the combinatorial biosynthesis of starter units and offers insights into future directions for further development.
Collapse
Affiliation(s)
- Lin Zhong
- Institute of Synthetic Biology Industry, Hunan University of Arts and Science, Changde 415000, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Seenivasan Boopathi
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Hanna Chen
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Xingxing Shi
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Qingsheng Yang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Youming Zhang
- Institute of Synthetic Biology Industry, Hunan University of Arts and Science, Changde 415000, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| |
Collapse
|
3
|
Muangkaew P, Prasad D, De Roo V, Verleysen Y, Zhou L, De Mot R, Höfte M, Madder A, Geudens N, Martins JC. Breaking Cycles: Saponification-Enhanced NMR Fingerprint Matching for the Identification and Stereochemical Evaluation of Cyclic Lipodepsipeptides from Natural Sources. Chemistry 2024; 30:e202400667. [PMID: 38647356 DOI: 10.1002/chem.202400667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
We previously described NMR based fingerprint matching with peptide backbone resonances as a fast and reliable structural dereplication approach for Pseudomonas cyclic lipodepsipeptides (CLiPs). In combination with total synthesis of a small library of configurational CLiP congeners this also allows unambiguous determination of stereochemistry, facilitating structure-activity relationship studies and enabling three-dimensional structure determination. However, the on-resin macrocycle formation in the synthetic workflow brings considerable burden and limits universal applicability. This drawback is here removed altogether by also transforming the native CLiP into a linearized analogue by controlled saponification of the ester bond. This eliminates the need for macrocycle formation, limiting the synthesis effort to linear peptide analogues. NMR fingerprints of such linear peptide analogues display a sufficiently distinctive chemical shift fingerprint to act as effective discriminators. The approach is developed using viscosin group CLiPs and subsequently demonstrated on putisolvin, leading to a structural revision, and tanniamide from Pseudomonas ekonensis COR58, a newly isolated lipododecapeptide that defines a new group characterized by a ten-residue large macrocycle, the largest to date in the Pseudomonas CLiP portfolio. These examples demonstrate the effectiveness of the saponification- enhanced approach that broadens applicability of NMR fingerprint matching for the determination of the stereochemistry of CLiPs.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - Durga Prasad
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - Vic De Roo
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - Yentl Verleysen
- Organic Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - René De Mot
- Centre for Microbial and Plant Genetics, Faculty of Bioscience Engineering, KULeuven, Kasteelpark Arenberg 20, 3001, Leuven, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Annemieke Madder
- Organic Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4bis, 9000, Ghent, Belgium
| |
Collapse
|
4
|
Sanchez LRS, Untiveros DPM, Tengco MTT, Cao EP. Genome assembly, characterization, and mining of biosynthetic gene clusters (BGCs) from Chlorogloeopsis sp. ULAP02 isolated from Mt. Ulap, Itogon, Benguet, Philippines. Front Genet 2024; 15:1422274. [PMID: 39280101 PMCID: PMC11392904 DOI: 10.3389/fgene.2024.1422274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Libertine Rose S Sanchez
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Danica Pearl M Untiveros
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Maria Theresa T Tengco
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ernelea P Cao
- Plant Molecular Biology and Genetics Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
5
|
Ren H, Huang C, Pan Y, Dommaraju SR, Cui H, Li M, Gadgil MG, Mitchell DA, Zhao H. Non-modular fatty acid synthases yield distinct N-terminal acylation in ribosomal peptides. Nat Chem 2024; 16:1320-1329. [PMID: 38528101 PMCID: PMC11321927 DOI: 10.1038/s41557-024-01491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Recent efforts in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs) have expanded the diversity of post-translational modification chemistries. However, RiPPs are rarely reported as hybrid molecules incorporating biosynthetic machinery from other natural product families. Here we report lipoavitides, a class of RiPP/fatty-acid hybrid lipopeptides that display a unique, putatively membrane-targeting 4-hydroxy-2,4-dimethylpentanoyl (HMP)-modified N terminus. The HMP is formed via condensation of isobutyryl-coenzyme A (isobutyryl-CoA) and methylmalonyl-CoA catalysed by a 3-ketoacyl-(acyl carrier protein) synthase III enzyme, followed by successive tailoring reactions in the fatty acid biosynthetic pathway. The HMP and RiPP substructures are then connected by an acyltransferase exhibiting promiscuous activity towards the fatty acyl and RiPP substrates. Overall, the discovery of lipoavitides contributes a prototype of RiPP/fatty-acid hybrids and provides possible enzymatic tools for lipopeptide bioengineering.
Collapse
Affiliation(s)
- Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chunshuai Huang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuwei Pan
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shravan R Dommaraju
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Haiyang Cui
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Maolin Li
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mayuresh G Gadgil
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Ren H, Huang C, Pan Y, Cui H, Dommaraju SR, Mitchell DA, Zhao H. Non-modular Fatty Acid Synthases Yield Unique Acylation in Ribosomal Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564083. [PMID: 37961664 PMCID: PMC10634828 DOI: 10.1101/2023.10.25.564083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Recent efforts in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs) have expanded the diversity of post-translational modification chemistries 1, 2 . However, RiPPs are rarely reported as hybrid molecules incorporating biosynthetic machineries from other natural product families 3-8 . Here, we report lipoavitides, a class of RiPP/fatty acid hybrid lipopeptides that display a unique, membrane-targeting 4-hydroxy-2,4-dimethylpentanoyl (HMP)-modified N -terminus. The HMP is formed via condensation of isobutyryl-CoA and methylmalonyl-CoA catalyzed by a 3-ketoacyl-ACP synthase III enzyme, followed by successive tailoring reactions in the fatty acid biosynthetic pathway. The HMP and RiPP substructures are then connected by an acyltransferase exhibiting promiscuous activity towards the fatty acyl and RiPP substrates. Overall, the discovery of lipoavitides contributes a prototype of RiPP/fatty acid hybrids and provides possible enzymatic tools for lipopeptide bioengineering.
Collapse
|
7
|
Pflanze S, Mukherji R, Ibrahim A, Günther M, Götze S, Chowdhury S, Reimer L, Regestein L, Stallforth P. Nonribosomal peptides protect Pseudomonas nunensis 4A2e from amoebal and nematodal predation. Chem Sci 2023; 14:11573-11581. [PMID: 37886094 PMCID: PMC10599466 DOI: 10.1039/d3sc03335j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
The rhizosphere is a highly competitive environment forcing bacteria to evolve strategies to oppose their enemies. The production of toxic secondary metabolites allows bacteria to counteract predators. In this study, we describe the anti-predator armamentarium of the soil-derived bacterium Pseudomonas nunensis 4A2e. Based on a genome mining approach, we identified several biosynthetic gene clusters coding for nonribosomal peptide synthetases. Generation of gene deletion mutants of the respective clusters shows a loss of defense capabilities. We isolated the novel lipopeptides keanumycin D and nunapeptins B and C, and fully elucidated their structures by a combination of in-depth mass spectrometry experiments, stable isotope labelling, and chemical synthesis. Additionally, investigation of the quorum sensing-dependent biosynthesis allowed us to elucidate parts of the underlying regulation of the biosynthetic machinery. Ecology-inspired bioassays highlight the role of these peptides as a defence strategy against protozoans and led us to find a previously unknown function against the bacterivorous nematode Oscheius myriophilus.
Collapse
Affiliation(s)
- Sebastian Pflanze
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Ruchira Mukherji
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Anan Ibrahim
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Markus Günther
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Sebastian Götze
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Lisa Reimer
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Leibniz-HKI Beutenbergstrasse 11a 07745 Jena Germany
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University (FSU) Jena Germany
| |
Collapse
|
8
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
9
|
Vicente-Garcia C, Colomer I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 2023; 7:710-731. [PMID: 37726383 DOI: 10.1038/s41570-023-00532-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly - into micelles, vesicles, nanotubes, fibres or nanobelts - leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA-Nanociencia, Madrid, Spain.
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain.
| |
Collapse
|
10
|
Matsukawa N, Tsumori C, Ohnishi K, Kai K. Discovery of Cyclic Lipopeptides Ralstopeptins A and B from Ralstonia solanacearum Species Complex and Analysis of Biosynthetic Gene Evolution. ACS Chem Biol 2023; 18:572-582. [PMID: 36811556 DOI: 10.1021/acschembio.2c00907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) strains are plant pathogens that produce lipopeptides (ralstonins and ralstoamides) by the polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) enzyme hybrid. Recently, ralstonins were found to be key molecules in the parasitism of RSSC to other hosts, Aspergillus and Fusarium fungi. The PKS-NRPS genes of RSSC strains in the GenBank database suggest the production of additional lipopeptides, although it has not been confirmed to date. Here, we report the genome-driven and mass-spectrometry-guided discovery, isolation, and structural elucidation of ralstopeptins A and B from strain MAFF 211519. Ralstopeptins were found to be cyclic lipopeptides with two amino acid residues less than ralstonins. The partial deletion of the gene encoding PKS-NRPS obliterated the production of ralstopeptins in MAFF 211519. Bioinformatic analyses suggested possible evolutionary events of the biosynthetic genes of RSSC lipopeptides, where intragenomic recombination may have occurred within the PKS-NRPS genes, reducing the gene size. The chlamydospore-inducing activities of ralstopeptins A and B, ralstonins A and B, and ralstoamide A in the fungus Fusarium oxysporum indicated a structural preference for ralstonins. Altogether, we propose a model for the evolutionary processes that contribute to the chemical diversity of RSSC lipopeptides and its relation to the endoparasitism of RSSC in fungi.
Collapse
Affiliation(s)
- Nao Matsukawa
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chiaki Tsumori
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
11
|
Götze S, Vij R, Burow K, Thome N, Urbat L, Schlosser N, Pflanze S, Müller R, Hänsch VG, Schlabach K, Fazlikhani L, Walther G, Dahse HM, Regestein L, Brunke S, Hube B, Hertweck C, Franken P, Stallforth P. Ecological Niche-Inspired Genome Mining Leads to the Discovery of Crop-Protecting Nonribosomal Lipopeptides Featuring a Transient Amino Acid Building Block. J Am Chem Soc 2023; 145:2342-2353. [PMID: 36669196 PMCID: PMC9897216 DOI: 10.1021/jacs.2c11107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/22/2023]
Abstract
Investigating the ecological context of microbial predator-prey interactions enables the identification of microorganisms, which produce multiple secondary metabolites to evade predation or to kill the predator. In addition, genome mining combined with molecular biology methods can be used to identify further biosynthetic gene clusters that yield new antimicrobials to fight the antimicrobial crisis. In contrast, classical screening-based approaches have limitations since they do not aim to unlock the entire biosynthetic potential of a given organism. Here, we describe the genomics-based identification of keanumycins A-C. These nonribosomal peptides enable bacteria of the genus Pseudomonas to evade amoebal predation. While being amoebicidal at a nanomolar level, these compounds also exhibit a strong antimycotic activity in particular against the devastating plant pathogen Botrytis cinerea and they drastically inhibit the infection of Hydrangea macrophylla leaves using only supernatants of Pseudomonas cultures. The structures of the keanumycins were fully elucidated through a combination of nuclear magnetic resonance, tandem mass spectrometry, and degradation experiments revealing an unprecedented terminal imine motif in keanumycin C extending the family of nonribosomal amino acids by a highly reactive building block. In addition, chemical synthesis unveiled the absolute configuration of the unusual dihydroxylated fatty acid of keanumycin A, which has not yet been reported for this lipodepsipeptide class. Finally, a detailed genome-wide microarray analysis of Candida albicans exposed to keanumycin A shed light on the mode-of-action of this potential natural product lead, which will aid the development of new pharmaceutical and agrochemical antifungals.
Collapse
Affiliation(s)
- Sebastian Götze
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Raghav Vij
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Katja Burow
- Research
Centre for Horticultural Crops (FGK), Fachhochschule
Erfurt, Kühnhäuser
Straße 101, 99090 Erfurt, Germany
| | - Nicola Thome
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Lennart Urbat
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Nicolas Schlosser
- Bio
Pilot Plant, Leibniz Institute for Natural Product Research and Infection
Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sebastian Pflanze
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Rita Müller
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Veit G. Hänsch
- Department
of Biomolecular Chemistry, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Kevin Schlabach
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Leila Fazlikhani
- Research
Centre for Horticultural Crops (FGK), Fachhochschule
Erfurt, Kühnhäuser
Straße 101, 99090 Erfurt, Germany
| | - Grit Walther
- National
Reference Center for Invasive Fungal Infections, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Hans-Martin Dahse
- Department
of Infection Biology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Lars Regestein
- Bio
Pilot Plant, Leibniz Institute for Natural Product Research and Infection
Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sascha Brunke
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Department
of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural
Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department
of Biomolecular Chemistry, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Philipp Franken
- Research
Centre for Horticultural Crops (FGK), Fachhochschule
Erfurt, Kühnhäuser
Straße 101, 99090 Erfurt, Germany
- Molecular
Phytopathology, Friedrich Schiller University, 07745 Jena, Germany
| | - Pierre Stallforth
- Department
of Paleobiotechnology, Leibniz Institute for Natural Product Research
and Infection Biology, Hans Knöll
Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, Humboldtstraße 10, 07743 Jena, Germany
| |
Collapse
|
12
|
Pérez-Victoria I, Crespo G, Reyes F. Expanding the utility of Marfey's analysis by using HPLC-SPE-NMR to determine the C β configuration of threonine and isoleucine residues in natural peptides. Anal Bioanal Chem 2022; 414:8063-8070. [PMID: 36194241 DOI: 10.1007/s00216-022-04339-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/01/2022]
Abstract
The determination of amino acid chirality in natural peptides is typically addressed by Marfey's analysis. This approach relies on the complete hydrolysis of the peptide followed by the reaction of the resulting amino acid pool with Marfey's reagent, a chiral derivatizing agent which turns amino acid enantiomers into diastereomeric pairs which can be resolved by conventional reversed-phase HPLC. However, for certain amino acids possessing a second chiral centre at Cβ, the discrimination between the two possible epimers may still be challenging due to the lack of chromatographic resolution. Such is the case of isoleucine and threonine which can also be found in natural nonribosomal peptides as their allo-diastereomers. We describe a new approach based on the extension of Marfey's analysis using HPLC-SPE-NMR to sort out this challenge. Marfey's derivatives of these epimeric amino acids at Cβ can be differentiated by their distinct NMR spectra. Thus, simple comparison of the NMR spectra of trapped HPLC peaks with the corresponding spectra of standards enables the unambiguous assignment of the absolute configuration at the second chiral centre in such cases. The general applicability of this approach is showcased for two model cyclic peptides bearing L-Ile and L-Thr.
Collapse
Affiliation(s)
- Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016, Armilla, Granada, Spain.
| | - Gloria Crespo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016, Armilla, Granada, Spain
| |
Collapse
|
13
|
De Roo V, Verleysen Y, Kovács B, De Vleeschouwer M, Muangkaew P, Girard L, Höfte M, De Mot R, Madder A, Geudens N, Martins JC. An Nuclear Magnetic Resonance Fingerprint Matching Approach for the Identification and Structural Re-Evaluation of Pseudomonas Lipopeptides. Microbiol Spectr 2022; 10:e0126122. [PMID: 35876524 PMCID: PMC9431178 DOI: 10.1128/spectrum.01261-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/26/2022] [Indexed: 01/21/2023] Open
Abstract
Cyclic lipopeptides (CLiPs) are secondary metabolites secreted by a range of bacterial phyla. CLiPs from Pseudomonas in particular, display diverse structural variations in terms of the number of amino acid residues, macrocycle size, amino acid identity, and stereochemistry (e.g., d- versus l-amino acids). Reports detailing the discovery of novel or already characterized CLiPs from new sources appear regularly in literature. Increasingly, however, the lack of detailed characterization threatens to cause considerable confusion, especially if configurational heterogeneity is present for one or more amino acids. Using Pseudomonas CLiPs from the Bananamide, Orfamide, and Xantholysin groups as test cases, we demonstrate and validate that the combined 1H and 13C Nuclear Magnetic Resonance (NMR) chemical shifts of CLiPs constitute a spectral fingerprint that is sufficiently sensitive to differentiate between possible diastereomers of a particular sequence even when they only differ in a single d/l configuration. Rapid screening, involving simple matching of the NMR fingerprint of a newly isolated CLiP with that of a reference CLiP of known stereochemistry, can then be applied to resolve dead-ends in configurational characterization and avoid the much more cumbersome chemical characterization protocols. Even when the stereochemistry of a particular reference CLiP remains to be established, its spectral fingerprint allows to quickly verify whether a newly isolated CLiP is novel or already present in the reference collection. We show NMR fingerprinting leads to a simple approach for early on dereplication which should become more effective as more fingerprints are collected. To benefit research involving CLiPs, we have made a publicly available data repository accompanied by a 'knowledge base' at https://www.rhizoclip.be, where we present an overview of published NMR fingerprint data of characterized CLiPs, together with literature data on the originally determined structures. IMPORTANCE Pseudomonas CLiPs are ubiquitous specialized metabolites, impacting the producer's lifestyle and interactions with the (a)biotic environment. Consequently, they generate interest for agricultural and clinical applications. Establishing structure-activity relationships as a premise to their development is hindered because full structural characterization including stereochemical information requires labor-intensive analyses, without guarantee for success. Moreover, increasing use of superficial comparison with previously characterized CLiPs introduces or propagates erroneous attributions, clouding further scientific progress. We provide a generally applicable characterization methodology based on matching NMR spectral fingerprints of newly isolated CLiPs to natural and synthetic reference compounds with (un)known stereochemistry. In addition, NMR fingerprinting is shown to provide a suitable basis for structural dereplication. A publicly available reference compound repository promises to facilitate participation of the lipopeptide research community in structural assessment and dereplication of newly isolated CLiPs, which should also support further developments in genome mining for novel CLiPs.
Collapse
Affiliation(s)
- Vic De Roo
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Yentl Verleysen
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Benjámin Kovács
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Matthias De Vleeschouwer
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Penthip Muangkaew
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Léa Girard
- Centre for Microbial and Plant Genetics, Faculty of Bioscience Engineering, KULeuven, Heverlee-Leuven, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent, Belgium
| | - René De Mot
- Centre for Microbial and Plant Genetics, Faculty of Bioscience Engineering, KULeuven, Heverlee-Leuven, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Unit, Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| |
Collapse
|
14
|
Zhang B, Xu L, Ding J, Wang M, Ge R, Zhao H, Zhang B, Fan J. Natural antimicrobial lipopeptides secreted by Bacillus spp. and their application in food preservation, a critical review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Abstract
Biologically active peptides are a major growing class of drugs, but their therapeutic potential is constrained by several limitations including bioavailability and poor pharmacokinetics. The attachment of functional groups like lipids has proven to be a robust and effective strategy for improving their therapeutic potential. Biochemical and bioactivity-guided screening efforts have identified the cyanobactins as a large class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that are modified with lipids. These lipids are attached by the F superfamily of peptide prenyltransferase enzymes that utilize 5-carbon (prenylation) or 10-carbon (geranylation) donors. The chemical structures of various cyanobactins initially showed isoprenoid attachments on Ser, Thr, or Tyr. Biochemical characterization of the F prenyltransferases from the corresponding clusters shows that the different enzymes have different acceptor residue specificities but are otherwise remarkably sequence tolerant. Hence, these enzymes are well suited for biotechnological applications. The crystal structure of the Tyr O-prenyltransferase PagF reveals that the F enzyme shares a domain architecture reminiscent of a canonical ABBA prenyltransferase fold but lacks secondary structural elements necessary to form an enclosed active site. Binding of either cyclic or linear peptides is sufficient to close the active site to allow for productive catalysis, explaining why these enzymes cannot use isolated amino acids as substrates.Almost all characterized isoprenylated cyanobactins are modified with 5-carbon isoprenoids. However, chemical characterization demonstrates that the piricyclamides are modified with a 10-carbon geranyl moiety, and in vitro reconstitution of the corresponding PirF shows that the enzyme is a geranyltransferase. Structural analysis of PirF shows an active site nearly identical with that of the PagF prenyltransferase but with a single amino acid substitution. Of note, mutation at this residue in PagF or PirF can completely switch the isoprenoid donor specificity of these enzymes. Recent efforts have resulted in significant expansion of the F family with enzymes identified that can carry out C-prenylations of Trp, N-prenylations of Trp, and bis-N-prenylations of Arg. Additional genome-guided efforts based on the sequence of F enzymes identify linear cyanobactins that are α-N-prenylated and α-C-methylated by a bifunctional prenyltransferase/methyltransferase fusion and a bis-α-N- and α-C-prenylated linear peptide. The discovery of these different classes of prenyltransferases with diverse acceptor residue specificities expands the biosynthetic toolkit for enzymatic prenylation of peptide substrates.In this Account, we review the current knowledge scope of the F family of peptide prenyltransferases, focusing on the biochemical, structure-function, and chemical characterization studies that have been carried out in our laboratories. These enzymes are easily amenable for diversity-oriented synthetic efforts as they can accommodate substrate peptides of diverse sequences and are thus attractive catalysts for use in synthetic biology approaches to generate high-value peptidic therapeutics.
Collapse
Affiliation(s)
- Yiwu Zheng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ying Cong
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Saurav K, Caso A, Urajová P, Hrouzek P, Esposito G, Delawská K, Macho M, Hájek J, Cheel J, Saha S, Divoká P, Arsin S, Sivonen K, Fewer DP, Costantino V. Fatty Acid Substitutions Modulate the Cytotoxicity of Puwainaphycins/Minutissamides Isolated from the Baltic Sea Cyanobacterium Nodularia harveyana UHCC-0300. ACS OMEGA 2022; 7:11818-11828. [PMID: 35449984 PMCID: PMC9016887 DOI: 10.1021/acsomega.1c07160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/15/2022] [Indexed: 05/08/2023]
Abstract
Puwainaphycins (PUW) and minutissamides (MIN) are structurally homologous cyclic lipopeptides that exhibit high structural variability and possess antifungal and cytotoxic activities. While only a minor variation can be found in the amino acid composition of the peptide cycle, the fatty acid (FA) moiety varies largely. The effect of FA functionalization on the bioactivity of PUW/MIN chemical variants is poorly understood. A rapid and selective liquid chromatography-mass spectrometry-based method led us to identify 13 PUW/MIN (1-13) chemical variants from the benthic cyanobacterium Nodularia harveyana strain UHCC-0300 from the Baltic Sea. Five new variants identified were designated as PUW H (1), PUW I (2), PUW J (4), PUW K (10), and PUW L (13) and varied slightly in the peptidic core composition, but a larger variation was observed in the oxo-, chloro-, and hydroxy-substitutions on the FA moiety. To address the effect of FA substitution on the cytotoxic effect, the major variants (3 and 5-11) together with four other PUW/MIN variants (14-17) previously isolated were included in the study. The data obtained showed that hydroxylation of the FA moiety abolishes the cytotoxicity or significantly reduces it when compared with the oxo-substituted C18-FA (compounds 5-8). The oxo-substitution had only a minor effect on the cytotoxicity of the compound when compared to variants bearing no substitution. The activity of PUW/MIN variants with chlorinated FA moieties varied depending on the position of the chlorine atom on the FA chain. This study also shows that variation in the amino acids distant from the FA moiety (position 4-8 of the peptide cycle) does not play an important role in determining the cytotoxicity of the compound. These findings confirmed that the lipophilicity of FA is essential to maintain the cytotoxicity of PUW/MIN lipopeptides. Further, a 63 kb puwainaphycin biosynthetic gene cluster from a draft genome of the N. harveyana strain UHCC-0300 was identified. This pathway encoded two specific lipoinitiation mechanisms as well as enzymes needed for the modification of the FA moiety. Examination on biosynthetic gene clusters and the structural variability of the produced PUW/MIN suggested different mechanisms of fatty-acyl-AMP ligase cooperation with accessory enzymes leading to a new set of PUW/MIN variants bearing differently substituted FA.
Collapse
Affiliation(s)
- Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- ,
| | - Alessia Caso
- TheBlue
Chemistry Lab, Università Degli Studi
di Napoli “Federico II”, task Force “BigFed2”, Napoli 80131, Italy
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Pavel Hrouzek
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Germana Esposito
- TheBlue
Chemistry Lab, Università Degli Studi
di Napoli “Federico II”, task Force “BigFed2”, Napoli 80131, Italy
| | - Kateřina Delawská
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- Faculty
of Science, University of South Bohemia, Branišovská 1760 České Budějovice, Czech Republic
| | - Markéta Macho
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
- Faculty
of Science, University of South Bohemia, Branišovská 1760 České Budějovice, Czech Republic
| | - Jan Hájek
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - José Cheel
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Subhasish Saha
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Petra Divoká
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Sila Arsin
- Department
of Microbiology, Viikki Biocenter, University
of Helsinki, FI-00014 Helsinki, Finland
| | - Kaarina Sivonen
- Department
of Microbiology, Viikki Biocenter, University
of Helsinki, FI-00014 Helsinki, Finland
| | - David P. Fewer
- Department
of Microbiology, Viikki Biocenter, University
of Helsinki, FI-00014 Helsinki, Finland
| | - Valeria Costantino
- TheBlue
Chemistry Lab, Università Degli Studi
di Napoli “Federico II”, task Force “BigFed2”, Napoli 80131, Italy
| |
Collapse
|
17
|
Hubrich F, Bösch NM, Chepkirui C, Morinaka BI, Rust M, Gugger M, Robinson SL, Vagstad AL, Piel J. Ribosomally derived lipopeptides containing distinct fatty acyl moieties. Proc Natl Acad Sci U S A 2022; 119:e2113120119. [PMID: 35027450 PMCID: PMC8784127 DOI: 10.1073/pnas.2113120119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Lipopeptides represent a large group of microbial natural products that include important antibacterial and antifungal drugs and some of the most-powerful known biosurfactants. The vast majority of lipopeptides comprise cyclic peptide backbones N-terminally equipped with various fatty acyl moieties. The known compounds of this type are biosynthesized by nonribosomal peptide synthetases, giant enzyme complexes that assemble their products in a non-gene-encoded manner. Here, we report the genome-guided discovery of ribosomally derived, fatty-acylated lipopeptides, termed selidamides. Heterologous reconstitution of three pathways, two from cyanobacteria and one from an arctic, ocean-derived alphaproteobacterium, allowed structural characterization of the probable natural products and suggest that selidamides are widespread over various bacterial phyla. The identified representatives feature cyclic peptide moieties and fatty acyl units attached to (hydroxy)ornithine or lysine side chains by maturases of the GCN5-related N-acetyltransferase superfamily. In contrast to nonribosomal lipopeptides that are usually produced as congener mixtures, the three selidamides are selectively fatty acylated with C10, C12, or C16 fatty acids, respectively. These results highlight the ability of ribosomal pathways to emulate products with diverse, nonribosomal-like features and add to the biocatalytic toolbox for peptide drug improvement and targeted discovery.
Collapse
Affiliation(s)
- Florian Hubrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Nina M Bösch
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Brandon I Morinaka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Department of Pharmacy, National University of Singapore, 117543 Singapore, Singapore
| | - Michael Rust
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Muriel Gugger
- Collection of Cyanobacteria, Institut Pasteur, 75724 Paris, France
| | - Serina L Robinson
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland;
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland;
| |
Collapse
|
18
|
Transporter Gene-mediated Typing for Detection and Genome Mining of Lipopeptide-producing Pseudomonas. Appl Environ Microbiol 2021; 88:e0186921. [PMID: 34731056 PMCID: PMC8788793 DOI: 10.1128/aem.01869-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas lipopeptides (LPs) are involved in diverse ecological functions and have biotechnological application potential associated with their antimicrobial and/or antiproliferative activities. They are synthesized by multimodular nonribosomal peptide synthetases which, together with transport and regulatory proteins, are encoded by large biosynthetic gene clusters (BGCs). These secondary metabolites are classified in distinct families based on the sequence and length of the oligopeptide and size of the macrocycle, if present. The phylogeny of PleB, the MacB-like transporter that is part of a dedicated ATP-dependent tripartite efflux system driving export of Pseudomonas LPs, revealed a strong correlation with LP chemical diversity. As each LP BGC carries its cognate pleB, PleB is suitable as a diagnostic sequence for genome mining, allowing assignment of the putative metabolite to a particular LP family. In addition, pleB proved to be a suitable target gene for an alternative PCR method for detecting LP-producing Pseudomonas sp. and did not rely on amplification of catalytic domains of the biosynthetic enzymes. Combined with amplicon sequencing, this approach enabled typing of Pseudomonas strains as potential producers of a LP belonging to one of the known LP families, underscoring its value for strain prioritization. This finding was validated by chemical characterization of known LPs from three different families secreted by novel producers isolated from the rice or maize rhizosphere, namely, the type strains of Pseudomonas fulva (putisolvin), Pseudomonas zeae (tensin), and Pseudomonas xantholysinigenes (xantholysin). In addition, a new member of the Bananamide family, prosekin, was discovered in the type strain of Pseudomonas prosekii, which is an Antarctic isolate. IMPORTANCEPseudomonas spp. are ubiquitous bacteria able to thrive in a wide range of ecological niches, and lipopeptides often support their lifestyle but also their interaction with other micro- and macro-organisms. Therefore, the production of lipopeptides is widespread among Pseudomonas strains. Consequently, Pseudomonas lipopeptide research not only affects chemists and microbiologists but also touches a much broader audience, including biochemists, ecologists, and plant biologists. In this study, we present a reliable transporter gene-guided approach for the detection and/or typing of Pseudomonas lipopeptide producers. Indeed, it allows us to readily assess the lipopeptide diversity among sets of Pseudomonas isolates and differentiate strains likely to produce known lipopeptides from producers of potentially novel lipopeptides. This work provides a valuable tool that can also be integrated in a genome mining strategy and adapted for the typing of other specialized metabolites.
Collapse
|
19
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
20
|
The Ever-Expanding Pseudomonas Genus: Description of 43 New Species and Partition of the Pseudomonas putida Group. Microorganisms 2021; 9:microorganisms9081766. [PMID: 34442845 PMCID: PMC8401041 DOI: 10.3390/microorganisms9081766] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
The genus Pseudomonas hosts an extensive genetic diversity and is one of the largest genera among Gram-negative bacteria. Type strains of Pseudomonas are well known to represent only a small fraction of this diversity and the number of available Pseudomonas genome sequences is increasing rapidly. Consequently, new Pseudomonas species are regularly reported and the number of species within the genus is constantly evolving. In this study, whole genome sequencing enabled us to define 43 new Pseudomonas species and provide an update of the Pseudomonas evolutionary and taxonomic relationships. Phylogenies based on the rpoD gene and whole genome sequences, including, respectively, 316 and 313 type strains of Pseudomonas, revealed sixteen groups of Pseudomonas and, together with the distribution of cyclic lipopeptide biosynthesis gene clusters, enabled the partitioning of the P. putida group into fifteen subgroups. Pairwise average nucleotide identities were calculated between type strains and a selection of 60 genomes of non-type strains of Pseudomonas. Forty-one strains were incorrectly assigned at the species level and among these, 19 strains were shown to represent an additional 13 new Pseudomonas species that remain to be formally classified. This work pinpoints the importance of correct taxonomic assignment and phylogenetic classification in order to perform integrative studies linking genetic diversity, lifestyle, and metabolic potential of Pseudomonas spp.
Collapse
|
21
|
Takeuchi A, Itoh H, Inoue M. 18 O/ 16 O-Encoding Strategy for Microscale Stereochemical Determination of Peptidic Natural Products. Chem Asian J 2021; 16:2447-2452. [PMID: 34190394 DOI: 10.1002/asia.202100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 06/27/2021] [Indexed: 11/09/2022]
Abstract
The demand for more efficient methods of establishing the undetermined stereochemistries of peptidic natural products continues unabated. A new method for microscale stereochemical determination was devised by integrating solid-phase synthesis, split-and-mix randomization, 18 O/16 O-encoding of d/l-configurations, tandem mass spectrometry, and biological evaluation. Here we applied gramicidin A as the molecule for a blind test. Gramicidin A and its 31 diastereomers were randomly prepared in microgram scale with 18 O/16 O-stereochemical encoding and subjected to MS/MS-structural determination and cytotoxicity assay. Only the parent gramicidin A was selected from among the 32 stereoisomers, validating the high reliability of the present strategy.
Collapse
Affiliation(s)
- Aoi Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
22
|
Karongo R, Jiao J, Gross H, Lämmerhofer M. Direct enantioselective gradient reversed-phase ultra-high performance liquid chromatography tandem mass spectrometry method for 3-hydroxy alkanoic acids in lipopeptides on an immobilized 1.6 μm amylose-based chiral stationary phase. J Sep Sci 2021; 44:1875-1883. [PMID: 33666325 DOI: 10.1002/jssc.202100104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
3-Hydroxy fatty acids are important chiral building blocks of lipopeptides and metabolic intermediates of fatty acid oxidation, respectively. The analysis of the stereochemistry of such biomolecules has significant practical impact to elucidate and assign the enzymatic specificity of the biosynthesis machinery. In this work, a new mass spectrometry compatible direct chiral ultra high performance liquid chromatography separation method for 3-hydroxy fatty acids without derivatization is presented. The application of amylose tris(3,5-dimethylphenyl carbamate) based polysaccharide chiral stationary phase immobilized on 1.6 μm silica particles (CHIRALPAK IA-U) allows the enantioseparation of 3-hydroxy fatty acids under generic electrospray ionization mass spectrometry friendly reversed phase gradient elution conditions. Adequate separation factors were achieved with both acetonitrile and methanol as organic modifiers, covering hydrocarbon chain lengths between C6 and C14 . Elution orders were derived from rhamnolipid (R-95) of which enantiomerically pure or enriched (R)-3-hydroxy fatty acids were recovered after ester hydrolysis. The S-configured acids consistently eluted before the respective R-enantiomers. The method was successfully applied for the elucidation of the absolute configuration of 3-hydroxy fatty acids originating from a novel lipopeptide with unknown structure. The work furthermore demonstrates that gradient elution is a viable option also in enantioselective (ultra)high performance liquid chromatography, even for analytes with modest separation factors, although less commonly exploited.
Collapse
Affiliation(s)
- Ryan Karongo
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, Tübingen, 72076, Germany
| | - Junjing Jiao
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, Tübingen, 72076, Germany
| | - Harald Gross
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, Tübingen, 72076, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, Tübingen, 72076, Germany
| |
Collapse
|
23
|
Pérez-Victoria I. Co-occurring Congeners Reveal the Position of Enantiomeric Amino Acids in Nonribosomal Peptides. Chembiochem 2021; 22:2087-2092. [PMID: 33440038 DOI: 10.1002/cbic.202000805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/11/2021] [Indexed: 11/09/2022]
Abstract
The absolute configuration of the constituent amino acids in microbial nonribosomal peptides is typically determined by Marfey's method after total hydrolysis of the peptide. A challenge to structure elucidation arises when both d and l enantiomeric configurations of an amino acid are present. Determining the actual position of each amino acid enantiomer within the peptide sequence typically requires laborious approaches based on peptide partial hydrolysis or even total synthesis of the possible diastereomers. Herein, an alternative solution is discussed based on the homogeneous backbone chirality that governs all peptides biosynthesized by a common nonribosomal peptide synthetase. The information on configuration provided by Marfey's analysis of co-occurring minor congeners can reveal unequivocally the stereochemical sequence of the whole peptide family.
Collapse
Affiliation(s)
- Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016, Armilla, Granada, Spain
| |
Collapse
|
24
|
Komatsu S, Tsumori C, Ohnishi K, Kai K. Genome- and Mass Spectrometry-Guided Discovery of Ralstoamides A and B from Ralstonia solanacearum Species Complex. ACS Chem Biol 2020; 15:2860-2865. [PMID: 33112588 DOI: 10.1021/acschembio.0c00605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strains of Ralstonia solanacearum species complex (RSSC) are devastating plant pathogens distributed globally with a wide host range and genetic diversity. Many RSSC strains harbor the polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrid gene rmyA/rmyB for ralstonin production. We report that ralstoamides A (1) and B (2), which are ralstonin-like but shorter lipopeptides, were discovered from the Japanese strains using accumulated RSSC genome data and LC/MS-based metabolite analysis. Their structures, including absolute configurations, were elucidated by spectroscopic analysis and chemical techniques. ramA, a PKS-NRPS gene for ralstoamide production, was identified from the producer strains by genome sequencing and gene-deletion experiments. Based on the analysis of biosynthetic genes of ralstoamides and ralstonins, we suggest the occurrence of NRPS-module reduction of rmyA/rmyB genes in some RSSC strains. This possible molecular evolution changed not only the structures, but also the biological activity of RSSC lipopeptides.
Collapse
Affiliation(s)
- Shoko Komatsu
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Sakai, Osaka 599-8531, Japan
| | - Chiaki Tsumori
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Sakai, Osaka 599-8531, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
25
|
Shurpik DN, Akhmedov AA, Cragg PJ, Plemenkov VV, Stoikov II. Progress in the Chemistry of Macrocyclic Meroterpenoids. PLANTS 2020; 9:plants9111582. [PMID: 33203180 PMCID: PMC7696033 DOI: 10.3390/plants9111582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/26/2023]
Abstract
In the last decade, the chemistry of meroterpenoids—conjugated molecules formed from isoprenyl fragments through biosynthetic pathways—has developed rapidly. The class includes some natural metabolites and fully synthetic fragments formed through nonbiological synthesis. In the field of synthetic receptors, a range of structures can be achieved by combining fragments of different classes of organic compounds into one hybrid macrocyclic platform which retains the properties of these fragments. This review discusses the successes in the synthesis and practical application of both natural and synthetic macrocycles. Among the natural macrocyclic meroterpenoids, special attention is paid to isoprenylated flavonoids and phenols, isoprenoid lipids, prenylated amino acids and alkaloids, and isoprenylpolyketides. Among the synthetic macrocyclic meroterpenoids obtained by combining the “classical” macrocyclic platforms, those based on cyclodextrins, together with meta- and paracyclophanes incorporating terpenoid fragments, and meroterpenoids obtained by macrocyclization of several terpene derivatives are considered. In addition, issues related to biomedical activity, processes of self-association and aggregation, and the formation of host–guest complexes of various classes of macrocyclic merotenoids are discussed in detail.
Collapse
Affiliation(s)
- Dmitriy N. Shurpik
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.N.S.); (A.A.A.); (V.V.P.)
| | - Alan A. Akhmedov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.N.S.); (A.A.A.); (V.V.P.)
| | - Peter J. Cragg
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb Brighton, East Sussex BN2 4GJ, UK;
| | - Vitaliy V. Plemenkov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.N.S.); (A.A.A.); (V.V.P.)
| | - Ivan I. Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.N.S.); (A.A.A.); (V.V.P.)
- Correspondence: ; Tel.: +7-8432-337463
| |
Collapse
|
26
|
Schalk F, Um S, Guo H, Kreuzenbeck NB, Görls H, de Beer ZW, Beemelmanns C. Targeted Discovery of Tetrapeptides and Cyclic Polyketide-Peptide Hybrids from a Fungal Antagonist of Farming Termites. Chembiochem 2020; 21:2991-2996. [PMID: 32470183 PMCID: PMC7689812 DOI: 10.1002/cbic.202000331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Herein, we report the targeted isolation and characterization of four linear nonribosomally synthesized tetrapeptides (pseudoxylaramide A-D) and two cyclic nonribosomal peptide synthetase-polyketide synthase-derived natural products (xylacremolide A and B) from the termite-associated stowaway fungus Pseudoxylaria sp. X187. The fungal strain was prioritized for further metabolic analysis based on its taxonomical position and morphological and bioassay data. Metabolic data were dereplicated based on high-resolution tandem mass spectrometry data and global molecular networking analysis. The structure of all six new natural products was elucidated based on a combination of 1D and 2D NMR analysis, Marfey's analysis and X-ray crystallography.
Collapse
Affiliation(s)
- Felix Schalk
- Chemical Biology of Microbe – Host InteractionsInstitution Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Soohyun Um
- Chemical Biology of Microbe – Host InteractionsInstitution Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Huijuan Guo
- Chemical Biology of Microbe – Host InteractionsInstitution Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Nina B. Kreuzenbeck
- Chemical Biology of Microbe – Host InteractionsInstitution Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Helmar Görls
- Institute for Inorganic and Analytical ChemistryFriedrich-Schiller-UniversityLessingstrasse 807743JenaGermany
| | - Z. Wilhelm de Beer
- Department of Biochemistry, Genetics and MicrobiologyForestry and Agricultural Biotechnology Institute (FABI)University of Pretoria Hatfield0002PretoriaSouth Africa
| | - Christine Beemelmanns
- Chemical Biology of Microbe – Host InteractionsInstitution Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| |
Collapse
|