1
|
Sivokhin A, Orekhov D, Kazantsev O, Otopkova K, Sivokhina O, Chuzhaykin I, Ovchinnikov A, Zamyshlyayeva O, Pavlova I, Ozhogina O, Chubenko M. Amide-Containing Bottlebrushes via Continuous-Flow Photoiniferter Reversible Addition-Fragmentation Chain Transfer Polymerization: Micellization Behavior. Polymers (Basel) 2023; 16:134. [PMID: 38201799 PMCID: PMC10780833 DOI: 10.3390/polym16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Herein, a series of ternary amphiphilic amide-containing bottlebrushes were synthesized by photoiniferter (PI-RAFT) polymerization of macromonomers in continuous-flow mode using trithiocarbonate as a chain transfer agent. Visible light-mediated polymerization of macromonomers under mild conditions enabled the preparation of thermoresponsive copolymers with low dispersity and high yields in a very short time, which is not typical for the classical reversible addition-fragmentation chain transfer process. Methoxy oligo(ethylene glycol) methacrylate and alkoxy(C12-C14) oligo(ethylene glycol) methacrylate were used as the basic monomers providing amphiphilic and thermoresponsive properties. The study investigated how modifying comonomers, acrylamide (AAm), methacrylamide (MAAm), and N-methylacrylamide (-MeAAm) affect the features of bottlebrush micelle formation, their critical micelle concentration, and loading capacity for pyrene, a hydrophobic drug model. The results showed that the process is scalable and can produce tens of grams of pure copolymer per day. The unmodified copolymer formed unimolecular micelles at temperatures below the LCST in aqueous solutions, as revealed by DLS and SLS data. The incorporation of AAm, MAAm, and N-MeAAm units resulted in an increase in micelle aggregation numbers. The resulting bottlebrushes formed uni- or bimolecular micelles at extremely low concentrations. These micelles possess a high capacity for loading pyrene, making them a promising choice for targeted drug delivery.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Dmitry Orekhov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Oleg Kazantsev
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Ksenia Otopkova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Nizhegorodskaya obl., Russia
| | - Ilya Chuzhaykin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Alexey Ovchinnikov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Zamyshlyayeva
- Department of High Molecular Compounds and Colloidal Chemistry, Faculty of Chemistry, Lobachevsky State University, Gagarina pr. 23, 603950 Nizhny Novgorod, Russia
| | - Irina Pavlova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Ozhogina
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Maria Chubenko
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Fortenberry AW, Jankoski PE, Stacy EK, McCormick CL, Smith AE, Clemons TD. A Perspective on the History and Current Opportunities of Aqueous RAFT Polymerization. Macromol Rapid Commun 2022; 43:e2200414. [PMID: 35822936 PMCID: PMC10697073 DOI: 10.1002/marc.202200414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Indexed: 02/06/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization has proven itself as a powerful polymerization technique affording facile control of molecular weight, molecular weight distribution, architecture, and chain end groups - while maintaining a high level of tolerance for solvent and monomer functional groups. RAFT is highly suited to water as a polymerization solvent, with aqueous RAFT now utilized for applications such as controlled synthesis of ultra-high molecular weight polymers, polymerization induced self-assembly, and biocompatible polymerizations, among others. Water as a solvent represents a non-toxic, cheap, and environmentally friendly alternative to organic solvents traditionally utilized for polymerizations. This, coupled with the benefits of RAFT polymerization, makes for a powerful combination in polymer science. This perspective provides a historical account of the initial developments of aqueous RAFT polymerization at the University of Southern Mississippi from the McCormick Research Group, details practical considerations for conducting aqueous RAFT polymerizations, and highlights some of the recent advances aqueous RAFT polymerization can provide. Finally, some of the future opportunities that this versatile polymerization technique in an aqueous environment can offer are discussed, and it is anticipated that the aqueous RAFT polymerization field will continue to realize these, and other exciting opportunities into the future.
Collapse
Affiliation(s)
| | - Penelope E Jankoski
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Evan K Stacy
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Charles L McCormick
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Adam E Smith
- Department of Chemical Engineering, The University of Mississippi, Oxford, MS, 38677, USA
| | - Tristan D Clemons
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
3
|
Visible light-triggered PET-RAFT polymerization by heterogeneous 2D porphyrin-based COF photocatalyst under aqueous condition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Gruber A, Navarro L, Klinger D. Dual-reactive nanogels for orthogonal functionalization of hydrophilic shell and amphiphilic network. SOFT MATTER 2022; 18:2858-2871. [PMID: 35348179 DOI: 10.1039/d2sm00116k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic nanogels (NGs) combine a soft, water-swollen hydrogel matrix with internal hydrophobic domains. While these domains can encapsulate hydrophobic cargoes, the amphiphilic particle surface can reduce colloidal stability and/or limit biological half-life. Therefore, a functional hydrophilic shell is needed to shield the amphiphilic network and tune interactions with biological systems. To adjust core and shell properties independently, we developed a synthetic strategy that uses preformed dual-reactive nanogels. In a first step, emulsion copolymerization of pentafluorophenyl methacrylate (PFPMA) and a reduction-cleavable crosslinker produced precursor particles for subsequent network modification. Orthogonal shell reactivity was installed by using an amphiphilic block copolymer (BCP) surfactant during this particle preparation step. Here, the hydrophilic block poly(polyethylene glycol methyl ether methacrylate) (PPEGMA) contains a reactive alkyne end group for successive functionalization. The hydrophobic block (P(PFPMA-co-MAPMA) contains random methacryl-amido propyl methacrylamide (MAPMA) units to covalently attach the surfactant to the growing PPFPMA network. In the second step, orthogonal modification of the core and shell was demonstrated. Network functionalization with combinations of hydrophilic (acidic, neutral, or basic) and hydrophobic (cholesterol) groups gave a library of pH- and redox-sensitive amphiphilic NGs. Stimuli-responsive properties were demonstrated by pH-dependent swelling and reduction-induced degradation via dynamic light scattering. Subsequently, copper-catalyzed azide-alkyne cycloaddition was used to attach azide-modified rhodamine as model compound to the shell (followed by UV-Vis). Overall, this strategy provides a versatile platform to develop multi-functional amphiphilic nanogels as carriers for hydrophobic cargoes.
Collapse
Affiliation(s)
- Alexandra Gruber
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| | - Lucila Navarro
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Chen K, Zhou Y, Han S, Liu Y, Chen M. Main-Chain Fluoropolymers with Alternating Sequence Control via Light-Driven Reversible-Deactivation Copolymerization in Batch and Flow. Angew Chem Int Ed Engl 2022; 61:e202116135. [PMID: 35023256 DOI: 10.1002/anie.202116135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Polymers with regulated alternating structures are attractive in practical applications, particularly for main-chain fluoropolymers. We for the first time enabled controlled fluoropolymer synthesis with alternating sequence regulation using a novel fluorinated xanthate agent via a light-driven process, which achieved on-demand copolymerization of chlorotrifluoroethylene and vinyl esters/amides under both batch and flow conditions at ambient pressure. This method creates a facile access to fluoropolymers with a broad fraction range of alternating units, low dispersities and high chain-end fidelity. Moreover, a two-step photo-flow platform was established to streamline the in-situ chain-extension toward unprecedented block copolymers continuously from fluoroethylene. Influences of structural control were illustrated with thermal and surface properties. We anticipate that this work will promote advanced material engineering with customized fluoropolymers.
Collapse
Affiliation(s)
- Kaixuan Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Shantao Han
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yinli Liu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
6
|
Chen M, Chen K, Zhou Y, Han S, Liu Y. Main‐Chain Fluoropolymers with Alternating Sequence Control via Light‐Driven Reversible‐Deactivation Copolymerization in Batch and Flow. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mao Chen
- Fudan University State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Yangpu, Handan Road 220, Yuejin Building 505 200433 Shanghai CHINA
| | - Kaixuan Chen
- Fudan University Department of Macromolecular Science CHINA
| | - Yang Zhou
- Fudan University Department of Macromolecular Science CHINA
| | - Shantao Han
- Fudan University Department of Macromolecular Science CHINA
| | - Yinli Liu
- Fudan University Department of Macromolecular Science CHINA
| |
Collapse
|
7
|
Jin Z, Wang H, Hu X, Liu Y, Hu Y, Zhao S, Zhu N, Fang Z, Guo K. Anionic polymerizations in a microreactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00360g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anionic polymerizations in a microreactor enable fast mixing, high-level control, and scale-up synthesis of polymers.
Collapse
Affiliation(s)
- Zhao Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Huiyue Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Shuangfei Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| |
Collapse
|
8
|
Sivokhin A, Orekhov D, Kazantsev O, Sivokhina O, Orekhov S, Kamorin D, Otopkova K, Smirnov M, Karpov R. Random and Diblock Thermoresponsive Oligo(ethylene glycol)-Based Copolymers Synthesized via Photo-Induced RAFT Polymerization. Polymers (Basel) 2021; 14:137. [PMID: 35012157 PMCID: PMC8747269 DOI: 10.3390/polym14010137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 01/11/2023] Open
Abstract
Amphiphilic random and diblock thermoresponsive oligo(ethylene glycol)-based (co)polymers were synthesized via photoiniferter polymerization under visible light using trithiocarbonate as a chain transfer agent. The effect of solvent, light intensity and wavelength on the rate of the process was investigated. It was shown that blue and green LED light could initiate RAFT polymerization of macromonomers without an exogenous initiator at room temperature, giving bottlebrush polymers with low dispersity at sufficiently high conversions achieved in 1-2 h. The pseudo-living mechanism of polymerization and high chain-end fidelity were confirmed by successful chain extension. Thermoresponsive properties of the copolymers in aqueous solutions were studied via turbidimetry and laser light scattering. Random copolymers of methoxy- and alkoxy oligo(ethylene glycol) methacrylates of a specified length formed unimolecular micelles in water with a hydrophobic core consisting of a polymer backbone and alkyl groups and a hydrophilic oligo(ethylene glycol) shell. In contrast, the diblock copolymer formed huge multimolecular micelles.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Dmitry Orekhov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Oleg Kazantsev
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Russia;
| | - Sergey Orekhov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Denis Kamorin
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
- Chromatography Laboratory, Department of Production Control and Chromatography Methods, Lobachevsky State University of Nizhni Novgorod, Dzerzhinsk Branch, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia
| | - Ksenia Otopkova
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Michael Smirnov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Rostislav Karpov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| |
Collapse
|
9
|
Li CY, Yu SS. Efficient Visible-Light-Driven RAFT Polymerization Mediated by Deep Eutectic Solvents under an Open-to-Air Environment. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chia-Yu Li
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- Core Facility Center, National Cheng Kung University, Tainan 70101, Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
10
|
Controlled Radical Polymerization: from Oxygen Inhibition and Tolerance to Oxygen Initiation. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2597-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Chen G, Zhang Z, Zhang W, Xia L, Nie X, Huang W, Wang X, Wang L, Hong C, Zhang Z, You Y. Photopolymerization performed under dark conditions using long-stored electrons in carbon nitride. MATERIALS HORIZONS 2021; 8:2018-2024. [PMID: 34846478 DOI: 10.1039/d1mh00412c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In nature, the chemical energy and electrons stored in ATP and NADPH generated during irradiation can facilitate biochemical reactions under dark conditions. However, in artificial photoreaction systems, it is still very difficult to perform photoreactions under dark conditions due to the fact that the photogenerated charge pairs can recombine immediately upon ceasing the irradiation. Preventing the recombination of photogenerated charge pairs still constitutes a major challenge at present. Here, it is reported that functionalized carbon nitride nanomaterials having many heptazine rings with a positive charge distribution, which can tightly trap photogenerated electrons, efficiently prevent the recombination of photogenerated charges. These stored charges are exceedingly long-lived (up to months) and can drive photopolymerization without light irradiation, even after one month. The system introduced here demonstrates a new approach for storing light energy as long-lived radicals, enabling photoreactions under dark conditions.
Collapse
Affiliation(s)
- Guang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang H, Lu Z, Fu X, Li Q, Xiao L, Zhao R, Zhao Y, Hou L. Multipath oxygen-mediated PET-RAFT polymerization by a conjugated organic polymer photocatalyst under red LED irradiation. Polym Chem 2021. [DOI: 10.1039/d1py01058a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
TCPP-DMTA-COP has been synthesized and serves as a heterogeneous photocatalyst in a multipath aerobic-mediated reductive quenching pathway (O-RQP) for a PET-RAFT polymerization process.
Collapse
Affiliation(s)
- Hongjie Yang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Zhen Lu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Qiuyu Li
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Rukai Zhao
- School of Materials Science and Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| |
Collapse
|
13
|
Yee EH, Kim S, Sikes HD. Experimental validation of eosin-mediated photo-redox polymerization mechanism and implications for signal amplification applications. Polym Chem 2021. [DOI: 10.1039/d1py00413a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
When eosin-mediated, photo-redox polymerization is used to amplify signals in biosensing, oxygen has dual, opposing roles.
Collapse
Affiliation(s)
- Emma H. Yee
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Seunghyeon Kim
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Hadley D. Sikes
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Program in Polymers and Soft Matter
| |
Collapse
|
14
|
Continuous flow photoinduced phenothiazine derivatives catalyzed atom transfer radical polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Li F, Yang W, Li M, Zhou L, Lei L. Cationic quaternary ammonium salt-catalyzed LED-induced living radical polymerization with in situhalogen exchange. Polym Chem 2020. [DOI: 10.1039/d0py00474j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cationic quaternary ammonium salts were employed as organocatalysts for light-emitting diode (LED)-induced living radical polymerization (LRP) with thein situhalogen exchange of methacrylate monomers.
Collapse
Affiliation(s)
- Feifei Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Wanting Yang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Mengmeng Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Lin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Lin Lei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
16
|
Rolland M, Whitfield R, Messmer D, Parkatzidis K, Truong NP, Anastasaki A. Effect of Polymerization Components on Oxygen-Tolerant Photo-ATRP. ACS Macro Lett 2019; 8:1546-1551. [PMID: 35619380 DOI: 10.1021/acsmacrolett.9b00855] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photo-ATRP has recently emerged as a powerful technique that allows for oxygen-tolerant polymerizations and the preparation of polymers with low dispersity and high end-group fidelity. However, the effect of various photo-ATRP components on oxygen consumption and polymerization remains elusive. Herein, we employ an in situ oxygen probe and UV-vis spectroscopy to elucidate the effects of ligand, initiator, monomer, and solvent on oxygen consumption. We found that the choice of photo-ATRP components significantly impacts the rate at which the oxygen is consumed and can subsequently affect both the polymerization time and the dispersity of the resulting polymer. Importantly, we discovered that using the inexpensive ligand TREN results in the fastest oxygen consumption and shortest polymerization time, even though no appreciable reduction of CuBr2 is observed. This work provides insight into oxygen consumption in photo-ATRP and serves as a guideline to the judicious selection of photo-ATRP components for the preparation of well-defined polymers.
Collapse
Affiliation(s)
- Manon Rolland
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Richard Whitfield
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Daniel Messmer
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Marathianos A, Liarou E, Anastasaki A, Whitfield R, Laurel M, Wemyss AM, Haddleton DM. Photo-induced copper-RDRP in continuous flow without external deoxygenation. Polym Chem 2019. [DOI: 10.1039/c9py00945k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photo-induced Cu-RDRP of acrylates in a continuous flow reactor without the need for deoxygenation or externally added reagents.
Collapse
Affiliation(s)
| | - Evelina Liarou
- Department of Chemistry
- University of Warwick Library Road
- Coventry
- UK
| | | | | | - Matthew Laurel
- Department of Chemistry
- University of Warwick Library Road
- Coventry
- UK
| | - Alan M. Wemyss
- Department of Chemistry
- University of Warwick Library Road
- Coventry
- UK
| | | |
Collapse
|