1
|
Hao Y, Zhu G. The Latest Advances in Mechanically Robust Self-Healing Polyurea Based on Dynamic Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414788. [PMID: 40245274 DOI: 10.1002/advs.202414788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/14/2025] [Indexed: 04/19/2025]
Abstract
Polyureas are widely used in many fields such as civil, industry, and defense due to their excellent performance and structural adjustable properties. The development of self-healing polyurea materials with high strength and toughness, key connotations of their advanced applications, is both fascinating and challenging because these properties are associated with conflicting structural features, making it difficult to optimize these contradictory properties in a single material. In this review, the relationship between polyurea structure and performance is discussed, and the design strategy of self-healing polyurea networks based on dynamic interactions that allow for balancing high mechanical performance and repairability is delineated from a molecular design point of view. Lastly, a summary of the potential applications of polyurea in the fields of sensing, protective coatings, and recycling, as well as possible future challenges, is presented.
Collapse
Affiliation(s)
- Yujia Hao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Guangming Zhu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
2
|
Li X, Ning N, Yu B, Tian M. Recyclable Millable Polyurethane based on Enaminone Bonds With Upcycled Mechanical Performance. Macromol Rapid Commun 2025; 46:e2400858. [PMID: 39803848 DOI: 10.1002/marc.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Indexed: 03/28/2025]
Abstract
Thermoplastic polyurethane (TPU) exhibits re-processable properties, but the properties of TPU is deteriorated during the reprocessing for the oxidation and degradation of polymer chains. Meanwhile, although thermoset polyurethane exhibits excellent mechanical properties, it cannot be recycled for permanent crosslinking. Hence, it's still a challenge to obtain PU which exhibits the balance between the recyclability and mechanical properties. In this work, a new dynamic bond obtained from the reaction between enaminone and isocyanate is used to prepare re-processable millable polyurethane, and the morphology of network can be tuned via the dissociation of the cross-linked sites of PU. Interestingly, the cross-linked network can transform into a linear polymer by adding the amine which can be used when reacted with isocyanate to generate new re-crosslinked PU. This process can be carried out in a Haake mixer without any solvents. The mechanical properties of the re-crosslinked polyurethane can be tuned via the controlling of the amine and isocyanate addition, and the maximum tensile strength increase by 178.4% after processing for four times, realizing mechanical reinforcement after recycling. This kind of recycling achieves through one-step melting method in solvent-free conditions provides a feasible way to prepare recyclable PU with good mechanical performance and customizable properties.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
da Silva MM, Proença MP, Covas JA, Paiva MC. Shape-Memory Polymers Based on Carbon Nanotube Composites. MICROMACHINES 2024; 15:748. [PMID: 38930718 PMCID: PMC11205355 DOI: 10.3390/mi15060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
For the past two decades, researchers have been exploring the potential benefits of combining shape-memory polymers (SMP) with carbon nanotubes (CNT). By incorporating CNT as reinforcement in SMP, they have aimed to enhance the mechanical properties and improve shape fixity. However, the remarkable intrinsic properties of CNT have also opened up new paths for actuation mechanisms, including electro- and photo-thermal responses. This opens up possibilities for developing soft actuators that could lead to technological advancements in areas such as tissue engineering and soft robotics. SMP/CNT composites offer numerous advantages, including fast actuation, remote control, performance in challenging environments, complex shape deformations, and multifunctionality. This review provides an in-depth overview of the research conducted over the past few years on the production of SMP/CNT composites with both thermoset and thermoplastic matrices, with a focus on the unique contributions of CNT to the nanocomposite's response to external stimuli.
Collapse
Affiliation(s)
- Mariana Martins da Silva
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| | - Mariana Paiva Proença
- ISOM and Departamento de Electrónica Física, Universidad Politécnica de Madrid, Ava. Complutense 30, E-28040 Madrid, Spain;
| | - José António Covas
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| | - Maria C. Paiva
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| |
Collapse
|
4
|
Paez-Amieva Y, Martín-Martínez JM. Dynamic Non-Covalent Exchange Intrinsic Self-Healing at 20 °C Mechanism of Polyurethane Induced by Interactions among Polycarbonate Soft Segments. Polymers (Basel) 2024; 16:924. [PMID: 38611182 PMCID: PMC11013852 DOI: 10.3390/polym16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Two polyurethanes (PUs) were similarly synthesized by reacting a cycloaliphatic isocyanate with 1,4-butanediol and two polyols of different nature (polyester, polycarbonate diol) with molecular weights of 1000 Da. Only the PU synthesized with polycarbonate diol polyol (YCD) showed intrinsic self-healing at 20 °C. For assessing the mechanism of intrinsic self-healing of YCD, a structural characterization by molecular weights determination, infrared and X-ray photoelectronic spectroscopies, differential scanning calorimetry, X-ray diffraction, thermal gravimetric analysis, and dynamic mechanical thermal analysis was carried out. The experimental evidence concluded that the self-healing at 20 °C of YCD was due to dynamic non-covalent exchange interactions among the polycarbonate soft segments. Therefore, the chemical nature of the polyol played a key role in developing PUs with intrinsic self-healing at 20 °C.
Collapse
|
5
|
Tavasolikejani S, Farazin A. Explore the most recent advancements in the domain of self-healing intelligent composites specifically designed for use in dentistry. J Mech Behav Biomed Mater 2023; 147:106123. [PMID: 37742596 DOI: 10.1016/j.jmbbm.2023.106123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
Dental composites are commonly utilized in dental treatments because they have the ability to preserve the natural appearance of teeth, are minimally invasive and conservative, and enhance the overall physical and mechanical attributes. Dental composites can experience damage, like small cracks, due to factors like temperature changes and physical strain, which can reduce their effectiveness. Detecting these tiny cracks in dental composites can be quite challenging, and in certain situations, it may even be impossible. In addition, it is not possible to repair these damages in situ by using conventional materials and methods. Therefore, the self-healing ability in dental composites is necessary. In recent years, the spontaneous repair of damages such as micro-cracking in dental composite materials has been developed without any type of human intervention and the replacement of new components. The most widely used approach to create self-healing dental composites involves encapsulating a healing agent within polymer shells and dispersing these microcapsules within the acrylate matrix of the dental composite. To assess the self-healing abilities of these composites, researchers can examine changes in their fracture toughness before and after the healing process using a test called the Single Edge V-notch beam test. In the present article we reviewed the latest findings in the field of self-healing intelligent composites for application in dentistry, and also in the present study, the studies on self-healing smart dental composites will be reviewed.
Collapse
Affiliation(s)
| | - Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran.
| |
Collapse
|
6
|
Noh Y, Son E, Cha C. Exploring stimuli-responsive elastin-like polypeptide for biomedicine and beyond: potential application as programmable soft actuators. Front Bioeng Biotechnol 2023; 11:1284226. [PMID: 37965051 PMCID: PMC10642932 DOI: 10.3389/fbioe.2023.1284226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
With the emergence of soft robotics, there is a growing need to develop actuator systems that are lightweight, mechanically compliant, stimuli-responsive, and readily programmable for precise and intelligent operation. Therefore, "smart" polymeric materials that can precisely change their physicomechanical properties in response to various external stimuli (e.g., pH, temperature, electromagnetic force) are increasingly investigated. Many different types of polymers demonstrating stimuli-responsiveness and shape memory effect have been developed over the years, but their focus has been mostly placed on controlling their mechanical properties. In order to impart complexity in actuation systems, there is a concerted effort to implement additional desired functionalities. For this purpose, elastin-like polypeptide (ELP), a class of genetically-engineered thermoresponsive polypeptides that have been mostly utilized for biomedical applications, is being increasingly investigated for stimuli-responsive actuation. Herein, unique characteristics and biomedical applications of ELP, and recent progress on utilizing ELP for programmable actuation are introduced.
Collapse
Affiliation(s)
| | | | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
7
|
Slobodinyuk D, Slobodinyuk A, Strelnikov V, Kiselkov D. Simple and Efficient Synthesis of Oligoetherdiamines: Hardeners of Epoxyurethane Oligomers for Obtaining Coatings with Shape Memory Effect. Polymers (Basel) 2023; 15:polym15112450. [PMID: 37299247 DOI: 10.3390/polym15112450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, new polymers with a shape memory effect for self-healing coatings based on oligomers with terminal epoxy groups, synthesized from oligotetramethylene oxide dioles of various molecular weights, were developed. For this purpose, a simple and efficient method for the synthesis of oligoetherdiamines with a high yield of the product, close to 94%, was developed. Oligodiol was treated with acrylic acid in the presence of a catalyst, followed by the reaction of the reaction product with aminoethylpiperazine. This synthetic route can easily be upscaled. The resulting products can be used as hardeners for oligomers with terminal epoxy groups synthesized from cyclic and cycloaliphatic diisocyanates. The effect of the molecular weight of newly synthesized diamines on the thermal and mechanical properties of urethane-containing polymers has been studied. Elastomers synthesized from isophorone diisocyanate showed excellent shape fixity and shape recovery ratios of >95% and >94%, respectively.
Collapse
Affiliation(s)
- Daria Slobodinyuk
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
| | - Alexey Slobodinyuk
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
- Department of Chemical Engineering, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| | - Vladimir Strelnikov
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
| | - Dmitriy Kiselkov
- Institute of Technical Chemistry Ural Branch of the Russian Academy of Sciences, Academic Korolev 3, 614130 Perm, Russia
- Department of Chemical Engineering, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| |
Collapse
|
8
|
Zou Y, Guo J, Liu Y, Du Y, Pu Y, Wang D. Process intensified synthesis of luminescent poly(9,9-dioctylfluorene- alt-benzothiadiazole) and polyvinyl alcohol based shape memory polymeric nanocomposite sensors toward cold chain logistics information monitoring. Polym Chem 2023. [DOI: 10.1039/d2py01588a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Luminescent shape memory polymeric nanocomposite sensors prepared using poly(9,9-dioctylfluorene-alt-benzothiadiazole) and polyvinyl alcohol for cold chain logistics information monitoring.
Collapse
Affiliation(s)
- Yuanzuo Zou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingzhou Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yinglu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yudi Du
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Pu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Aiswarya S, Awasthi P, Banerjee SS. Self-healing thermoplastic elastomeric materials: Challenges, opportunities and new approaches. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Shape Memory Polymers as Smart Materials: A Review. Polymers (Basel) 2022; 14:polym14173511. [PMID: 36080587 PMCID: PMC9460797 DOI: 10.3390/polym14173511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Polymer smart materials are a broad class of polymeric materials that can change their shapes, mechanical responses, light transmissions, controlled releases, and other functional properties under external stimuli. A good understanding of the aspects controlling various types of shape memory phenomena in shape memory polymers (SMPs), such as polymer structure, stimulus effect and many others, is not only important for the preparation of new SMPs with improved performance, but is also useful for the optimization of the current ones to expand their application field. In the present era, simple understanding of the activation mechanisms, the polymer structure, the effect of the modification of the polymer structure on the activation process using fillers or solvents to develop new reliable SMPs with improved properties, long lifetime, fast response, and the ability to apply them under hard conditions in any environment, is considered to be an important topic. Moreover, good understanding of the activation mechanism of the two-way shape memory effect in SMPs for semi-crystalline polymers and liquid crystalline elastomers is the main key required for future investigations. In this article, the principles of the three basic types of external stimuli (heat, chemicals, light) and their key parameters that affect the efficiency of the SMPs are reviewed in addition to several prospective applications.
Collapse
|
11
|
Sikdar P, Dip TM, Dhar AK, Bhattacharjee M, Hoque MS, Ali SB. Polyurethane (
PU
) based multifunctional materials: Emerging paradigm for functional textiles, smart, and biomedical applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.52832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Partha Sikdar
- Department of Textiles, Merchandising and Interiors University of Georgia Athens Georgia USA
| | | | - Avik K. Dhar
- Department of Textiles, Merchandising and Interiors University of Georgia Athens Georgia USA
| | | | - Md. Saiful Hoque
- Department of Human Ecology University of Alberta Edmonton Alberta Canada
- Department of Textile Engineering Daffodil International University 102 Shukrabad, Dhanmondi Dhaka Bangladesh
| | | |
Collapse
|
12
|
Xi P, Wu L, Quan F, Xia Y, Fang K, Jiang Y. Scalable Nano Building Blocks of Waterborne Polyurethane and Nanocellulose for Tough and Strong Bioinspired Nanocomposites by a Self-Healing and Shape-Retaining Strategy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24787-24797. [PMID: 35603943 DOI: 10.1021/acsami.2c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nature has given us significant inspiration to reproduce bioinspired materials with high strength and toughness. The fabrication of well-defined three-dimensional (3D) hierarchically structured nanocomposite materials from nano- to the macroscale using simple, green, and scalable methods is still a big challenge. Here, we report a successful attempt at the fabrication of multidimensional bioinspired nanocomposites (fiber, films, plates, hollow tubes, chair models, etc.) with high strength and toughness through self-healing and shape-retaining methods using waterborne polyurethane (WPU) and nanocellulose. In our method, the prepared TEMPO oxide cellulose nanofiber (TOCNF)-WPU hybrid films show excellent moisture-induced self-healing and shape-retaining abilities, which can be used to fabricate all sorts of 3D bioinspired nanocomposites with internal aligned and hierarchical architectures just using water as media. The tensile and flexural strength of the self-assembled plate can reach 186.8 and 193.2 MPa, respectively, and it also has a high toughness of 11.6 MJ m-3. Because of this bottom-up self-assembly strategy, every multidimensional structure we processed has high strength and toughness. This achievement would provide a promising future to realize a large-scale and reliable production of various sorts of bioinspired multidimensional materials with high strength and toughness in a sustainable manner.
Collapse
Affiliation(s)
- Panyi Xi
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Lin Wu
- Qingdao Technical College, Qingdao, Shandong 266000, China
| | - Fengyu Quan
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yanzhi Xia
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Kuanjun Fang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yijun Jiang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| |
Collapse
|
13
|
Thermally remendable bismalemide-MWCNT/DA-epoxy nanocomposite via Diels-Alder bonding. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Huang J, Gong Z, Chen Y. A stretchable elastomer with recyclability and shape memory assisted self-healing capabilities based on dynamic disulfide bonds. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Jang D, Thompson CB, Chatterjee S, Korley LT. Engineering bio-inspired peptide-polyurea hybrids with thermo-responsive shape memory behaviour. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:1003-1015. [PMID: 35096418 PMCID: PMC8797660 DOI: 10.1039/d1me00043h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by Nature's tunability driven by the modulation of structural organization, we utilize peptide motifs as an approach to tailor not only hierarchical structure, but also thermo-responsive shape memory properties of conventional polymeric materials. Specifically, poly(β-benzyl-L-aspartate)-b-poly(dimethylsiloxane)-b-poly(β-benzyl-L-aspartate) was incorporated as the soft segment in peptide-polyurea hybrids to manipulate hierarchical ordering through peptide secondary structure and a balance of inter- and intra-molecular hydrogen bonding. Employing these bioinspired peptidic polyureas, we investigated the influence of secondary structure on microphase-separated morphology, and shape fixity and recovery via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), small-angle X-ray scattering (SAXS) and dynamic mechanical analysis (DMA). The β-sheet motifs promoted phase mixing through extensive inter-molecular hydrogen bonding between the hard block and peptide segments and provided an increased chain elasticity, resulting in decreased shape fixity compared to a non-peptidic control. In contrast, intra-molecular hydrogen bonding driven by the α-helical arrangements yielded a microphase-separated and hierarchically ordered morphology, leading to an increase in the shape fixing ratio. These results indicate that peptide secondary structure provides a convenient handle for tuning shape memory properties by regulating hydrogen bonding with the surrounding polyurea hard segment, wherein extent of hydrogen bonding and phase mixing between the peptidic block and hard segment dictate the resulting shape memory behaviour. Furthermore, the ability to shift secondary structure as a function of temperature was also demonstrated as a pathway to influence shape memory response. This research highlights that peptide secondary conformation influences the hierarchical ordering and modulates the shape memory response of peptide-polymer hybrids. We anticipate that these findings will enable the design of smart bio-inspired materials with responsive and tailored function via a balance of hydrogen bonding character, structural organization, and mechanics.
Collapse
Affiliation(s)
- Daseul Jang
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, DE. USA. 19716
| | - Chase B. Thompson
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, DE. USA. 19716
| | - Sourav Chatterjee
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, DE. USA. 19716
| | - LaShanda T.J. Korley
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, DE. USA. 19716
- Department of Chemical and Biomolecular Engineering, University of Delaware, 151 Academy St. Newark, DE, 19716
| |
Collapse
|
16
|
Akae Y, Sakurai M, Takata T. Alcohol Moiety-Tethering Acylazides as Versatile Isocyanate Precursors for Polymerization Initiators and Monomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yosuke Akae
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Masayoshi Sakurai
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Toshikazu Takata
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
17
|
Nellepalli P, Patel T, Oh JK. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability. Macromol Rapid Commun 2021; 42:e2100391. [PMID: 34418209 DOI: 10.1002/marc.202100391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Polyurethane (PU) has not only been widely used in the daily lives, but also extensively explored as an important class of the essential polymers for various applications. In recent years, significant efforts have been made on the development of self-healable PU materials that possess high performance, extended lifetime, great reliability, and recyclability. A promising approach is the incorporation of covalent dynamic bonds into the design of PU covalently crosslinked polymers and thermoplastic elastomers that can dissociate and reform indefinitely in response to external stimuli or autonomously. This review summarizes various strategies to synthesize self-healable, reprocessable, and recyclable PU materials integrated with dynamic (reversible) Diels-Alder cycloadduct, disulfide, diselenide, imine, boronic ester, and hindered urea bond. Furthermore, various approaches utilizing the combination of dynamic covalent chemistries with nanofiller surface chemistries are described for the fabrication of dynamic heterogeneous PU composites.
Collapse
Affiliation(s)
- Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
18
|
Wang D, Wang Z, Ren S, Xu J, Wang C, Hu P, Fu J. Molecular engineering of a colorless, extremely tough, superiorly self-recoverable, and healable poly(urethane-urea) elastomer for impact-resistant applications. MATERIALS HORIZONS 2021; 8:2238-2250. [PMID: 34846428 DOI: 10.1039/d1mh00548k] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyurethane or polyurea elastomers with superb mechanical strength and toughness, good self-recoverability and healable characteristics are of key significance for practical applications. However, some mutually exclusive conflicts among these properties make it challenging to optimize them simultaneously. Herein, we report a facile strategy to fabricate a colorless healable poly(urethane-urea) elastomer with the highest reported mechanical toughness and recoverable energy dissipation capability (503.3 MJ m-3 and 37.3 MJ m-3 recovered after 7× stretching). These results were achieved via implanting a large number of irregularly arranged urea H-bonds into units of hard domains of weak and soft, self-healing polymer, which led to a dramatic increase in the Young's modulus, tensile strength, toughness, and fracture energy, while maintaining dynamic adaptiveness and responsiveness. Similar to other external stimuli, such as heat, light, or electricity, etc., trace solvent is capable of dissociating noncovalent crosslinks, promoting the mobility of polymer chains surrounding the fracture surface, and thus endowing the elastomer with healability. Impressively, this elastomer possessed outstanding impact-resistance and energy-absorbing ability, even under relatively high temperature. Moreover, it recovered this functionality even after severe deformation or accidental mechanical damage.
Collapse
Affiliation(s)
- Dong Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhang G, Patel T, Nellepalli P, Bhagat S, Hase H, Jazani AM, Salzmann I, Ye Z, Oh JK. Macromolecularly Engineered Thermoreversible Heterogeneous Self-Healable Networks Encapsulating Reactive Multidentate Block Copolymer-Stabilized Carbon Nanotubes. Macromol Rapid Commun 2021; 42:e2000514. [PMID: 33988899 DOI: 10.1002/marc.202000514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/26/2020] [Indexed: 12/23/2022]
Abstract
The development of heterogeneous covalent adaptable networks (CANs) embedded with carbon nanotubes (CNTs) that undergo reversible dissociation/recombination through thermoreversibility has been significantly explored. However, the carbon nanotube (CNT)-incorporation methods based on physical mixing and chemical modification could result in either phase separation due to structural incompatibility or degrading conjugation due to a disruption of π-network, thus lowering their intrinsic charge transport properties. To address this issue, the versatility of a macromolecular engineering approach through thermoreversibility by physical modification of CNT surfaces with reactive multidentate block copolymers (rMDBCs) is demonstrated. The formed CNTs stabilized with rMDBCs (termed rMDBC/CNT colloids) bearing reactive furfuryl groups is functioned as a multicrosslinker that reacts with a polymaleimide to fabricate robust heterogeneous polyurethane (PU) networks crosslinked through dynamic Diels-Alder (DA)/retro-DA chemistry. Promisingly, the fabricated PU network gels in which CNTs through rMDBC covalently embedded are flexible and robust to be bendable as well as exhibit self-healing elasticity and enhanced conductivity.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Shubham Bhagat
- Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Hannes Hase
- Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Ingo Salzmann
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada.,Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
20
|
Saidi M, Kadkhodayan H. Novel electromagnetic waves absorbing nanocomposite based on polyurethane matrix containing Y3Fe5O12, La1.8Sr0.2Ni1-xCoxO4-CaCu3Ti4-xNbxO12 and polyaniline: Performance investigation an optimization. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
21
|
Zhang E, Shi J, Xiao L, Zhang Q, Lu M, Nan B, Wu K, Lu M. A highly efficient bionic self-healing flexible waterborne polyurethane elastic film based on a cyclodextrin–ferrocene host–guest interaction. Polym Chem 2021. [DOI: 10.1039/d0py01480j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flexible WPU elastic films with superior self-healing based on synergic effects between host–guest interactions and hydrogen bonds.
Collapse
Affiliation(s)
- Ending Zhang
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
- University of Chinese Academy of Sciences
| | - Jun Shi
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
- University of Chinese Academy of Sciences
| | - Luqi Xiao
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
- University of Chinese Academy of Sciences
| | - Qiang Zhang
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
- University of Chinese Academy of Sciences
| | - Maoping Lu
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
- University of Chinese Academy of Sciences
| | - Bingfei Nan
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
- University of Chinese Academy of Sciences
| | - Kun Wu
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
- University of Chinese Academy of Sciences
| | - Mangeng Lu
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
- University of Chinese Academy of Sciences
| |
Collapse
|
22
|
Huang Z, Ban J, Pan L, Cai S, Liao J. New star-shape memory polyurethanes capable of thermally induced recovery and hydrogen bond-self-healing. NEW J CHEM 2021. [DOI: 10.1039/d1nj01237a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Star-shape memory polyurethanes that combine thermally responsive and self-healing properties.
Collapse
Affiliation(s)
- Zonghui Huang
- School of Materials Science and Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Jianfeng Ban
- School of Materials Science and Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Lulu Pan
- School of Materials Science and Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Shuqing Cai
- School of Materials Science and Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Junqiu Liao
- School of Materials Science and Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| |
Collapse
|
23
|
Dzhardimalieva GI, Yadav BC, Kudaibergenov SE, Uflyand IE. Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers (Basel) 2020; 12:E2594. [PMID: 33158271 PMCID: PMC7694280 DOI: 10.3390/polym12112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) as a revolutionary system for harvesting mechanical energy have demonstrated high vitality and great advantage, which open up great prospects for their application in various areas of the society of the future. The past few years have seen exponential growth in many new classes of self-healing polymers (SHPs) for TENGs. This review presents and evaluates the SHP range for TENGs, and also attempts to assess the impact of modern polymer chemistry on the development of advanced materials for TENGs. Among the most widely used SHPs for TENGs, the analysis of non-covalent (hydrogen bond, metal-ligand bond), covalent (imine bond, disulfide bond, borate bond) and multiple bond-based SHPs in TENGs has been performed. Particular attention is paid to the use of SHPs with shape memory as components of TENGs. Finally, the problems and prospects for the development of SHPs for TENGs are outlined.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Moscow Region, Russia;
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India;
| | - Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan;
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, 344006 Rostov-on-Don, Russia
| |
Collapse
|
24
|
Gorbunova MA, Anokhin DV, Badamshina ER. Recent Advances in the Synthesis and Application of Thermoplastic Semicrystalline Shape Memory Polyurethanes. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420050073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Carbonylimidazole-hydroxyl coupling chemistry: Synthesis and block copolymerization of fully bio-reducible poly(carbonate-disulfide)s. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Haskew MJ, Hardy JG. A Mini-Review of Shape-Memory Polymer-Based Materials : Stimuli-responsive shape-memory polymers. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651319x15754757916993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shape-memory polymers (SMPs) enable the production of stimuli-responsive polymer-based materials with the ability to undergo a large recoverable deformation upon the application of an external stimulus. Academic and industrial research interest in the shape-memory effects (SMEs) of
these SMP-based materials is growing for task-specific applications. This mini-review covers interesting aspects of SMP-based materials, their properties, how they may be investigated and highlights examples of the potential applications of these materials.
Collapse
Affiliation(s)
- Mathew J. Haskew
- Department of Chemistry and Materials Science Institute, Faraday Building, Lancaster University Lancaster, LA1 4YB UK
| | - John G. Hardy
- Department of Chemistry and Materials Science Institute, Faraday Building, Lancaster University Lancaster, LA1 4YB UK
| |
Collapse
|
27
|
Patel T, Kim MP, Park J, Lee TH, Nellepalli P, Noh SM, Jung HW, Ko H, Oh JK. Self-Healable Reprocessable Triboelectric Nanogenerators Fabricated with Vitrimeric Poly(hindered Urea) Networks. ACS NANO 2020; 14:11442-11451. [PMID: 32840992 DOI: 10.1021/acsnano.0c03819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, the advent of highly deformable and healable electronics is exciting and promising for next-generation electronic devices. In particular, self-healable triboelectric nanogenerators (SH-TENGs) serve as promising candidates based on the combination of the triboelectric effect, electrostatic induction, and self-healing action. However, the majority of SH-TENGs have been devised with weak polymeric networks that are healed with reversible supramolecular interactions or disulfides, thus resulting in poor mechanical properties and low resistance to creeping. To address this issue, we demonstrate the integration of mechanically strong and self-healable poly(hindered urea) (PHU) network in the fabrication of effective TENGs. The designed PHU network is flexible but shows greater mechanical property of tensile strength as high as 1.7 MPa at break. The network is capable of self-healing quickly and repeatedly as well as being reprocessable under mild conditions, enabling the recovery of triboelectric performances after the complete healing of the damaged surfaces. Furthermore, the interfacial-polarization-induced enhancement of dielectric constant endows our SH-TENG with the highest triboelectric output performance (169.9 V/cm2) among the reported healable TENGs. This work presents an avenue to the development of mechanical energy-harvesting devices and self-powered sensors with excellent stretchability, high recoverability, and good mechanical strength.
Collapse
Affiliation(s)
- Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec Canada H4B 1R6
| | - Minsoo P Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Junyoung Park
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hee Lee
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | | | - Seung Man Noh
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec Canada H4B 1R6
| |
Collapse
|
28
|
Qu Q, Wang H, He J, Qin T, Da Y, Tian X. Analysis of the microphase structure and performance of self-healing polyurethanes containing dynamic disulfide bonds. SOFT MATTER 2020; 16:9128-9139. [PMID: 32926046 DOI: 10.1039/d0sm01072c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-healable polyurethanes can be used in various fields for extended service life and reduced maintenance costs. It is generally believed that the shape memory effect is helpful for achieving a high healing efficiency. The morphological features were focused on in this study as microphase separation is one of the main factors affecting various performances of polyurethanes, including their shape memory behavior and mechanical properties. Microphase separation can be regulated by changing the content and types of the hard segments. With this in mind, polyurethanes from polycaprolactone diol, hexamethylene diisocyanate, and different chain extenders were synthesized, characterized, and designed as promising self-healing polymers. All the polyurethane specimens were equipped with a similar content of hard segments but diverse types, such as aliphatic, aromatic, and disulfide-bonded. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffractometry, infrared spectroscopy, and atomic force microscopy were used to describe the microstructures of the polyurethanes, including the crystalline regions. The relationship between the microphase separation structures and material properties was focused on in this examination. Various properties, including the thermal stability, mechanical behavior, hydrophobicity, and self-healing efficiency showed significant differences due to the change in the hard segments' structure and multiphase distribution. The aliphatic disulfide stimulated the conformation of a proper microphase separation structure (the large heterogeneous structure at physical length scales as well as a more sufficient combination of soft and hard phases), which helped to improve the healing effect as much as possible by effective wound closure and the exchange reactions of disulfide bonds.
Collapse
Affiliation(s)
- Qiqi Qu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hua Wang
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and Hefei Institute of Technology Innovation, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Jing He
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tengfei Qin
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yunsheng Da
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingyou Tian
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
29
|
He W, Kang P, Fang Z, Hao J, Wu H, Zhu Y, Guo K. Flow Reactor Synthesis of Bio-Based Polyol from Soybean Oil for the Production of Rigid Polyurethane Foam. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Kang
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingying Hao
- The Research Institute of SINOPEC Co., Ltd, Tianjin Branch, Tianjin 10000, China
| | - Hao Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuchen Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
30
|
Sawada J, Sogawa H, Marubayashi H, Nojima S, Otsuka H, Nakajima K, Akae Y, Takata T. Segmented polyurethanes containing movable rotaxane units on the main chain: Synthesis, structure, and mechanical properties. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Kaiser KMA. Recycling of multilayer packaging using a reversible cross‐linking adhesive. J Appl Polym Sci 2020. [DOI: 10.1002/app.49230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Katharina M. A. Kaiser
- TUM School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
- Process Development for Polymer Recycling, Fraunhofer Institute for Process Engineering and Packaging IVV Freising Germany
| |
Collapse
|
32
|
Dzhardimalieva GI, Yadav BC, Singh S, Uflyand IE. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalton Trans 2020; 49:3042-3087. [DOI: 10.1039/c9dt04360h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent achievements and problems associated with the use of metallopolymers as self-healing and shape memory materials are presented and evaluated.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Shakti Singh
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|