1
|
Aundhia C, Parmar G, Talele C, Talele D, Seth AK. Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery. Pharm Nanotechnol 2025; 13:41-54. [PMID: 38279711 DOI: 10.2174/0122117385271651231228073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Dipali Talele
- Faculty of Pharmacy, Vishwakarma University, Survey No. 2,3,4 Laxmi Nagar, Kondhwa Budruk, Pune, India
| | - Avinsh Kumar Seth
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
2
|
Mukherjee A, Seyfried MD, Ravoo BJ. Azoheteroarene and Diazocine Molecular Photoswitches: Self-Assembly, Responsive Materials and Photopharmacology. Angew Chem Int Ed Engl 2023; 62:e202304437. [PMID: 37212536 DOI: 10.1002/anie.202304437] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/23/2023]
Abstract
Aromatic units tethered with an azo (-N=N-) functionality comprise a unique class of compounds, known as molecular photoswitches, exhibiting a reversible transformation between their E- and Z-isomers in response to photo-irradiation. Photoswitches have been explored extensively in the recent past to prepare dynamic self-assembled materials, optoelectronic devices, responsive biomaterials, and more. Most of such materials involve azobenzenes as the molecular photoswitch and to date, SciFinder lists more than 7000 articles and 1000 patents. Subsequently, a great deal of effort has been invested to improve the photo-isomerization efficiency and related mesoscopic properties of azobenzenes. Recently, azoheteroarenes and cyclic azobenzenes, such as arylazopyrazoles, arylazoisoxazoles, arylazopyridines, and diazocines, have emerged as second generation molecular photoswitches beyond conventional azobenzenes. These photoswitches offer distinct photoswitching behavior and responsive properties which make them highly promising candidates for multifaceted applications ranging from photoresponsive materials to photopharmacophores. In this minireview, we introduce the structural refinement and photoresponsive properties of azoheteroarenes and diazocines and summarize the state-of-the-art on utilizing these photoswitches as responsive building blocks in supramolecular assembly, material science and photopharmacology, highlighting their versatile photochemical behavior, enhanced functionality, and latest applications.
Collapse
Affiliation(s)
- Anurag Mukherjee
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Maximilian D Seyfried
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
3
|
Li D, Qian X, Huang R, Li C. Preparation of PNIPAM-Azo by RAFT polymerization and their application in thermo- and light-responsive hydrogel. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03541-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Uehara N, Takita M, Sato K, Ito S, Inagawa A. Ionic thermoresponsive fluorescent polymers for detecting countercharged surfactants without phase separation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Ren H, Yang P, Yu H. Recent Progress in Azopyridine-Containing Supramolecular Assembly: From Photoresponsive Liquid Crystals to Light-Driven Devices. Molecules 2022; 27:molecules27133977. [PMID: 35807219 PMCID: PMC9268027 DOI: 10.3390/molecules27133977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
Azobenzene derivatives have become one of the most famous photoresponsive chromophores in the past few decades for their reversible molecular switches upon the irradiation of actinic light. To meet the ever-increasing requirements for applications in materials science, biomedicine, and light-driven devices, it is usually necessary to adjust their photochemical property from the molecular level by changing the substituents on the benzene rings of azobenzene groups. Among the diverse azobenzene derivatives, azopyridine combines the photoresponsive feature of azobenzene groups and the supramolecular function of pyridyl moieties in one molecule. This unique feature provides pH-responsiveness and hydrogen/halogen/coordination binding sites in the same chromophore, paving a new way to prepare multi-functional responsive materials through non-covalent interactions and reversible chemical reactions. This review summarizes the photochemical and photophysical properties of azopyridine derivatives in supramolecular states (e.g., hydrogen/halogen bonding, coordination interactions, and quaternization reactions) and illustrates their applications from photoresponsive liquid crystals to light-driven devices. We hope this review can highlight azopyridine as one more versatile candidate molecule for designing novel photoresponsive materials towards light-driven applications.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China;
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China;
- Correspondence: (P.Y.); (H.Y.)
| | - Haifeng Yu
- Institute of New Structural Materials, School of Material Science and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
- Correspondence: (P.Y.); (H.Y.)
| |
Collapse
|
6
|
Hechenbichler M, Prause A, Gradzielski M, Laschewsky A. Thermoresponsive Self-Assembly of Twofold Fluorescently Labeled Block Copolymers in Aqueous Solution and Microemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5166-5182. [PMID: 34734729 DOI: 10.1021/acs.langmuir.1c02318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A nonionic double hydrophilic block copolymer with a long permanently hydrophilic and a small thermoresponsive block is synthesized by reversible addition-fragmentation chain-transfer polymerization (RAFT). By employing a specifically designed chain-transfer agent, the polymer is functionalized with complementary end groups which are suited for Förster resonance energy transfer (FRET). The end group attached to the permanently hydrophilic block of poly(N,N-dimethylacrylamide) pDMAm is designed as a permanently hydrophobic segment ("sticker") comprising a long alkyl chain and the 4-aminonaphthalimide fluorophore. The other end attached to the thermoresponsive block of poly(N-isopropylacrylamide) pNiPAm incorporates a coumarin fluorophore. The temperature-dependent self-assembly of the twofold fluorescently labeled copolymer is studied in pure aqueous solution as well as in an o/w microemulsion by several techniques including turbidimetry, dynamic light scattering (DLS), and fluorescence spectroscopy. It is compared to the behaviors of the analogous twofold-labeled pDMAm and pNiPAm homopolymer references. The findings indicate that the block copolymer behaves as a polymeric surfactant at low temperatures, with one relatively small hydrophobic end block and an extended hydrophilic chain forming "hairy micelles". At elevated temperatures above the LCST phase transition of the pNiPAm block, however, the copolymer behaves as an associative telechelic polymer with two nonsymmetrical hydrophobic end blocks, which do not mix. Thus, instead of a network of bridged "flower micelles", large dynamic aggregates are formed. These are connected alternatingly by the original micellar cores as well as by clusters of the collapsed pNiPAm blocks. This type of structure is even more favored in the o/w microemulsion than in pure aqueous solution, as the microemulsion droplets constitute an attractive anchoring point for the hydrophobic dodecyl sticker but not for the collapsed pNiPAm chains.
Collapse
Affiliation(s)
- Michelle Hechenbichler
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Albert Prause
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, FG Physical Chemistry/Molecular Material Science Institute of Chemistry, Technische Universität Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, FG Physical Chemistry/Molecular Material Science Institute of Chemistry, Technische Universität Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Fraunhofer Institute, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
7
|
Frolova A, Ksendzov E, Kostjuk S, Efremov Y, Solovieva A, Rochev Y, Timashev P, Kotova S. Thin Thermoresponsive Polymer Films for Cell Culture: Elucidating an Unexpected Thermal Phase Behavior by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11386-11396. [PMID: 34533951 DOI: 10.1021/acs.langmuir.1c02003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Application of poly-N-isopropylacrylamide (PNIPAM) and its more hydrophobic copolymers with N-tert-butylacrylamide (NtBA) as supports for cell sheets has been validated in numerous studies. The binary systems of these polymers with water are characterized by a lower critical solution temperature (LCST) in a physiologically favorable region. Upon lowering the temperature below the LCST, PNIPAM chains undergo a globule-to-coil transition, causing the film dissolution and cell sheet detachment. The character of the PNIPAM-water miscibility behavior is rather complex and not completely understood. Here, we applied atomic force microscopy to track the phase transition in thin films of linear thermoresponsive (co)polymers (PNIPAM and PNIPAM-co-NtBA) prepared by spin-coating. We studied the films' Young's modulus, roughness, and thickness in air and in distilled water in a full thermal cycle. In dry films, in the absence of water, all the measured parameters remained invariant. The swollen films in water above the LCST were softer by 2-3 orders of magnitude and about 10 times rougher than the corresponding dry films. Upon lowering the temperature to the LCST, the films passed through the phase transition observed as a drastic drop of Young's modulus (about an order of magnitude) and decrease in roughness in both polymers in a narrow temperature range. However, the films did not lose their integrity and demonstrated almost fully reversible changes in the mechanical properties and roughness. The thermal dependence of the films' thickness confirmed that they dissolved only partially and required an external force to induce the complete destruction. The reversible thermal behavior which is generally not expected from non-cross-linked polymers is a key finding, especially with respect to their practical application in cell culture. Both the thermodynamic and kinetic factors, as well as the confinement effect, may be responsible for this peculiar film robustness, which requires overcooling and the aid of an external force to destroy the film.
Collapse
Affiliation(s)
- Anastasia Frolova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, Moscow 119991, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, Moscow 119991, Russia
| | - Evgenii Ksendzov
- Department of Chemistry, Belarusian State University, 14 Leningradskaya Street, Minsk 220006, Belarus
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk 220006, Belarus
| | - Sergei Kostjuk
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, Moscow 119991, Russia
- Department of Chemistry, Belarusian State University, 14 Leningradskaya Street, Minsk 220006, Belarus
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk 220006, Belarus
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, Moscow 119991, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, Moscow 119991, Russia
| | - Anna Solovieva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119991, Russia
| | - Yuri Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, Moscow 119991, Russia
- National University of Ireland Galway, Galway H91 CF50, Ireland
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, Moscow 119991, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, Moscow 119991, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia
| | - Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, Moscow 119991, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119991, Russia
| |
Collapse
|
8
|
Dehkordi TF, Shirin-Abadi AR, Karimipour K, Mahdavian AR. CO2-, electric potential-, and photo-switchable-hydrophilicity membrane (x-SHM) as an efficient color-changeable tool for oil/water separation. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Ren H, Qiu XP, Shi Y, Yang P, Winnik FM. The Two Phase Transitions of Hydrophobically End-Capped Poly( N-isopropylacrylamide)s in Water. Macromolecules 2020; 53:5105-5115. [PMID: 32952216 PMCID: PMC7497654 DOI: 10.1021/acs.macromol.0c00487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Indexed: 01/03/2023]
Abstract
![]()
High-sensitivity
differential scanning calorimetry (HS-DSC) thermograms of aqueous
poly(N-isopropylacrylamide) (PNIPAM) solutions present
a sharp unimodal endotherm that signals the heat-induced dehydration/collapse
of the PNIPAM chain. Similarly, α,ω-di-n-octadecyl-PNIPAM (C18-PN-C18) aqueous solutions exhibit a unimodal
endotherm. In contrast, aqueous solutions of α,ω-hydrophobically
modified PNIPAMs with polycyclic terminal groups, such as pyrenylbutyl
(Py-PN-Py), adamantylethyl (Ad-PN-Ad), and azopyridine- (C12-PN-AzPy)
moieties, exhibit bimodal thermograms. The origin of the two transitions
was probed using microcalorimetry measurements, turbidity tests, variable
temperature 1H NMR (VT-NMR) spectroscopy, and 2-dimensional
NOESY experiments with solutions of polymers of molar mass (Mn) from 5 to 20 kDa and polymer concentrations
of 0.1 to 3.0 mg/mL. The analysis outcome led us to conclude that
the difference of the thermograms reflects the distinct self-assembly
structures of the polymers. C18-PN-C18 assembles in water in the form
of flower micelles held together by a core of tightly packed n-C18 chains. In contrast, polymers end-tagged with azopyridine,
pyrenylbutyl, or adamantylethyl form a loose core that allows chain
ends to escape from the micelles, to reinsert in them, or to dangle
in surrounding water. The predominant low temperature (T1) endotherm, which is insensitive to polymer concentration,
corresponds to the dehydration/collapse of PNIPAM chains within the
micelles, while the higher temperature (T2) endotherm is attributed to the dehydration of dangling chains and
intermicellar bridges. This study of the two phase transitions of
telechelic PNIPAM homopolymer highlights the rich variety of morphologies
attainable via responsive hydrophobically modified aqueous polymers
and may open the way to a variety of practical applications.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xing-Ping Qiu
- Department of Chemistry, University of Montreal, CP 6128 Succursale Centre Ville, Montreal, Quebec H3C 3J7, Canada
| | - Yan Shi
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Françoise M Winnik
- Laboratory of Polymer Chemistry, Department of Chemistry, PB 55, University of Helsinki, Helsinki, FI00140 Finland.,International Center for Materials Nanoarchitectonics, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan.,Department of Macromolecular Science, School of Graduate Studies, University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
10
|
Shova S, Vlad A, Damoc M, Tiron V, Dascalu M, Novitchi G, Ursu C, Cazacu M. Nanoscale Coordination Polymer of Dimanganese(II) as Infinite, Flexible Nanosheets with Photo‐Switchable Morphology. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sergiu Shova
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Angelica Vlad
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Madalin Damoc
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Vasile Tiron
- Faculty of Physics Alexandru Ioan Cuza University of Iasi Blvd. Carol I no. 11 700506 Iași Romania
| | - Mihaela Dascalu
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Ghenadie Novitchi
- CNRS UPR 3228 Laboratoire National des Champs Magnétiques Intenses 25 Rue des Martyrs 38042 Grenoble France
| | - Cristian Ursu
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Maria Cazacu
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| |
Collapse
|
11
|
Maleki R, Afrouzi HH, Hosseini M, Toghraie D, Rostami S. Molecular dynamics simulation of Doxorubicin loading with N-isopropyl acrylamide carbon nanotube in a drug delivery system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105303. [PMID: 31901633 DOI: 10.1016/j.cmpb.2019.105303] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Doxorubicin is one of the common drugs used for cancer therapy. Molecular dynamics were applied to investigate the loading of Doxorubicin with thermosensitive N-isopropyl acrylamide Carbon nanotube carrier. METHODS The results showed that the smaller polymer chain length has more decrease of gyration radius. A decrease of gyration radius resulted in more concentrated aggregation with stronger bonds. Therefore, the shorter the polymer chain lengths, the more stable polymer interaction and better Doxorubicin delivery. Smaller polymers also form more hydrogen bonds with the drug leading to stronger and more stable carriers. RESULTS A lower amount of wall shear stress was found near the inner wall of the artery, distal to the plaque region (stenosis), and in both percentages of stenosis the maximum wall shear stress will accrue in the middle of the stenosis; however it is much more in the higher rate of stenosis. CONCLUSIONS The results indicated that N-isopropyl acrylamide - Carbon nanotube is suitable for the delivery of Doxorubicin, and five mer N-isopropyl acrylamide is the optimum carrier for Doxorubicin loading.
Collapse
Affiliation(s)
- Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | | | - Mirollah Hosseini
- Department of Mechanical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Mazandaran, Iran
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Sara Rostami
- Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
12
|
Ren H, Yang P, Winnik FM. Azopyridine: a smart photo- and chemo-responsive substituent for polymers and supramolecular assemblies. Polym Chem 2020. [DOI: 10.1039/d0py01093f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This mini-review summarizes key features of the photoisomerization of polymer-tethered azopyridine in aqueous media and describes recent accomplishments on the fast thermal cis-to-trans relaxation of azopyridinium or H-bonded azopyridine.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Françoise M. Winnik
- Laboratory of Polymer Chemistry
- Department of Chemistry
- PB 55
- University of Helsinki
- Helsinki
| |
Collapse
|