1
|
Priester A, Yeng J, Zhang Y, Christofferson D, Wang R, Convertine AJ. PISA printing perfusable microcapillaries. Biomater Sci 2025. [PMID: 40421930 DOI: 10.1039/d5bm00547g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Polymerization-induced self-assembly (PISA) printing combines reversible addition-fragmentation chain transfer (RAFT) polymerization with digital light projection (DLP) photolithography to create high-resolution three-dimensional structures without permanent covalent crosslinks. Here, we intoduce a simplified, one-pot, purification-free synthesis for multi-chain transfer agent (multi-CTA) scaffolds that spontaneously form robust physical networks durnig printing, stabilized by interparticle bridges and knots. By tuning solvent-resin chemistry and polymer composition, we achieved precise control over nanoscale morphologies and selective distribution behaviors. This approach was demonstrate through successful fabrication of perfusable microvascular networks and open-channel polydimethylsiloxane (PDMS) microfluidic devices, where sacrificial scaffolds dissolved cleanly to yield stable microchannels. Collectively, these findings enhance the accessibliity, flexibility, and functionality of PISA printing, offering an efficient and adaptable platform for microfabrication, rapid prototyping, and advance d tissue engineering applications.
Collapse
Affiliation(s)
- Aaron Priester
- Department of Materials Science and Engineering, Missouri University of Science and Technology, 1400 North Bishop Avenue, Rolla, MO 65409, USA.
| | - Jimmy Yeng
- Department of Materials Science and Engineering, Missouri University of Science and Technology, 1400 North Bishop Avenue, Rolla, MO 65409, USA.
| | - Yuwei Zhang
- Department of Chemistry, Missouri University of Science and Technology, 400 W 11th Street, Rolla, MO 65409, USA
| | - David Christofferson
- Department of Materials Science and Engineering, Missouri University of Science and Technology, 1400 North Bishop Avenue, Rolla, MO 65409, USA.
| | - Risheng Wang
- Department of Chemistry, Missouri University of Science and Technology, 400 W 11th Street, Rolla, MO 65409, USA
| | - Anthony J Convertine
- Department of Materials Science and Engineering, Missouri University of Science and Technology, 1400 North Bishop Avenue, Rolla, MO 65409, USA.
| |
Collapse
|
2
|
Wu Z, He Z, Zhou Y, Kou T, Gong K, Nan F, Bezuneh TT, Han S, Boyer C, Yu WW. Design of an Ultrafast and Controlled Visible Light-Mediated Photoiniferter RAFT Polymerization for Polymerization-Induced Self-Assembly (PISA). Angew Chem Int Ed Engl 2025; 64:e202422975. [PMID: 39813637 DOI: 10.1002/anie.202422975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025]
Abstract
In this contribution, we designed a new xanthate RAFT agent by introducing (5,6,7,8-tetrahydro-2-naphthalenyl)oxy (TNO) as the Z group, namely 2-[(((5,6,7,8-Tetrahydro-2-naphthalenyl)oxycarbonothioyl)thio)ethyl propanoate] (TNXEP). Due to the presence of the TNO group, TNXEP enabled highly controlled and ultrafast photoiniferter RAFT polymerization under violet (λ=405 nm) and blue (λ=450 nm) light. This approach was effectively extended to aqueous media for polymerization-induced self-assembly (PISA), facilitating the synthesis of polymeric nanoparticles. Leveraging the rapid photolysis and extended absorption of TNXEP, we demonstrated the first photoiniferter PISA system realizing ultrafast polymerization (>90 % monomer conversion in minutes) under visible light irradiation. Enhanced visible light penetration improved photopolymerization uniformity, enabling rapid and scalable production of polymeric nanoparticles at a 30 g scale in just 10 minutes, with tunable morphologies, including spheres, worms, and vesicles.
Collapse
Affiliation(s)
- Zilong Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China
| | - Zhengyan He
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuchen Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Tongtong Kou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Kaili Gong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Fuchun Nan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Terefe Tafese Bezuneh
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Shiguo Han
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, Australian Centre for Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - William W Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, China Science Center for Material Creation and Energy Conversion, Qingdao, 266237, China
| |
Collapse
|
3
|
Melvin SJ, Yao Y, Huang X, Bell RC, Kemmerling RE, Kevlishvili I, Berg AC, Kitos Vasconcelos AP, Nelson A, Kulik HJ, Craig SL, Klausen RS. Enabling Selective Mechanochemical Scission of Network Crosslinks by Exchanging Single Carbon Atoms for Silicon. J Am Chem Soc 2025; 147:6006-6015. [PMID: 39904515 DOI: 10.1021/jacs.4c16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The tearing of a polymer network arises from mechanochemically coupled bond-breaking events in the backbone of a polymer chain. An emerging research area is the identification of molecular strategies for network toughening, such as the strategic placement of mechanochemically reactive groups (e.g., scissile mechanophores) in the crosslinks of a network instead of in the load-bearing primary strands. These mechanically labile crosslinkers have typically relied on release of ring strain or weak covalent bonds for selective covalent bond scission. Here, we report a novel chemical design for accelerated mechanochemical bond scission based on replacing a single carbon atom in a crosslinker with a silicon atom. This single-atom replacement affords up to a two-fold increase in the tearing energy. We suggest a mechanism, validated by computational modeling, for accelerated mechanochemical Si-C bond scission based on minimizing the energy required to distort the starting material toward the transition-state geometry. We demonstrated the seamless incorporation of these scissile carbosilanes to toughen 3D-printed networks, which demonstrates their suitability for additive manufacturing processes.
Collapse
Affiliation(s)
- Sophia J Melvin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Xiao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rowina C Bell
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryann E Kemmerling
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ilia Kevlishvili
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Angus C Berg
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Heather J Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Rebekka S Klausen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Hu Y, Luo Z, Bao Y. Trends in Photopolymerization 3D Printing for Advanced Drug Delivery Applications. Biomacromolecules 2025; 26:85-117. [PMID: 39625843 PMCID: PMC11733939 DOI: 10.1021/acs.biomac.4c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/14/2025]
Abstract
Since its invention in the 1980s, photopolymerization-based 3D printing has attracted significant attention for its capability to fabricate complex microstructures with high precision, by leveraging light patterning to initiate polymerization and cross-linking in liquid resin materials. Such precision makes it particularly suitable for biomedical applications, in particular, advanced and customized drug delivery systems. This review summarizes the latest advancements in photopolymerization 3D printing technology and the development of biocompatible and/or biodegradable materials that have been used or shown potential in the field of drug delivery. The drug loading methods and release characteristics of the 3D printing drug delivery systems are summarized. Importantly, recent trends in the drug delivery applications based on photopolymerization 3D printing, including oral formulations, microneedles, implantable devices, microrobots and recently emerging systems, are analyzed. In the end, the challenges and opportunities in photopolymerization 3D printing for customized drug delivery are discussed.
Collapse
Affiliation(s)
- Yu Hu
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Zhi Luo
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Yinyin Bao
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Department
of Chemistry, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Sarabia-Vallejos MA, Romero De la Fuente S, Cohn-Inostroza NA, Terraza CA, Rodríguez-Hernández J, González-Henríquez CM. Development of Soft Wrinkled Micropatterns on the Surface of 3D-Printed Hydrogel-Based Scaffolds via High-Resolution Digital Light Processing. Gels 2024; 10:761. [PMID: 39727518 DOI: 10.3390/gels10120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
The preparation of sophisticated hierarchically structured and cytocompatible hydrogel scaffolds is presented. For this purpose, a photosensitive resin was developed, printability was evaluated, and the optimal conditions for 3D printing were investigated. The design and fabrication by additive manufacturing of tailor-made porous scaffolds were combined with the formation of surface wrinkled micropatterns. This enabled the combination of micrometer-sized channels (100-200 microns) with microstructured wrinkled surfaces (1-3 μm wavelength). The internal pore structure was found to play a critical role in the mechanical properties. More precisely, the TPMS structure with a zero local curvature appears to be an excellent candidate for maintaining its mechanical resistance to compression stress, thus retaining its structural integrity upon large uniaxial deformations up to 70%. Finally, the washing conditions selected enabled us to produce noncytotoxic materials, as evidenced by experiments using AlamarBlue to follow the metabolic activity of the cells.
Collapse
Affiliation(s)
| | - Scarleth Romero De la Fuente
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Ignacio Valdivieso 2409, Santiago 8940000, Chile
| | - Nicolás A Cohn-Inostroza
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Ignacio Valdivieso 2409, Santiago 8940000, Chile
| | - Claudio A Terraza
- Research Laboratory for Organic Polymer (RLOP), Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain
| | - Carmen M González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Ignacio Valdivieso 2409, Santiago 8940000, Chile
| |
Collapse
|
6
|
Qin KP, Herzog-Arbeitman A, Zou W, Chakraborty S, Kristufek SL, Husted KEL, Joly GD, Craig SL, Olsen BD, Johnson JA. Toughening and Imparting Deconstructability to 3D-Printed Glassy Thermosets with "Transferinker" Additives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406600. [PMID: 39258368 DOI: 10.1002/adma.202406600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Indexed: 09/12/2024]
Abstract
Thermoset toughness and deconstructability are often opposing features; simultaneously improving both without sacrificing other mechanical properties (e.g., stiffness and tensile strength) is difficult, but, if achieved, could enhance the usage lifetime and end-of-life options for these materials. Here, a strategy that addresses this challenge in the context of photopolymer resins commonly used for 3D printing of glassy, acrylic thermosets is introduced. It is shown that incorporating bis-acrylate "transferinkers," which are cross-linkers capable of undergoing degenerative chain transfer and new strand growth, as additives (5-25 mol%) into homemade or commercially available photopolymer resins leads to photopolymer thermosets with substantially improved tensile toughness and triggered chemical deconstructability with minimal impacts on Young's moduli, tensile strengths, and glass transition temperatures. These properties result from a transferinker-driven topological transition in network structure from the densely cross-linked long, heterogeneous primary strands of traditional photopolymer networks to more uniform, star-like networks with few dangling ends; the latter structure more effectively bear stress yet is also more easily depercolated via solvolysis. Thus, transferinkers represent a simple and effective strategy for improving the mechanical properties of photopolymer thermosets and providing a mechanism for their triggered deconstructability.
Collapse
Affiliation(s)
- K Peter Qin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Abraham Herzog-Arbeitman
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Weizhong Zou
- Department of Chemical, Biological and Materials Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | | | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Keith E L Husted
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Guy D Joly
- 3 M Company, 3 M Center, St. Paul, MN, 55144, USA
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
7
|
Yuan Z, Li G, Yang C, Zhu W, Li J, Zhu J. Tuning the Mechanical Properties of 3D-Printed Objects by Mixing Chain Transfer Agents in Norrish Type I Photoinitiated RAFT Polymerization. Chem Asian J 2024; 19:e202400648. [PMID: 38946109 DOI: 10.1002/asia.202400648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/02/2024]
Abstract
Photoinduced 3D printing via photocontrolled reversible-deactivation radical polymerization (photoRDRP) techniques has emerged as a robust technique for creating polymeric materials. However, methods for precisely adjusting the mechanical properties of these materials remain limited. In this study, we present a facile approach for adjusting the mechanical properties of 3D-printed objects by adjusting the polymer dispersity within a Norrish type I photoinitiated reversible addition-fragmentation chain transfer (NTI-RAFT) polymerization-based 3D printing process. We investigated the effects of varying the concentrations and molar ratios of trithiocarbonate (BTPA) and xanthate (EXEP) on the mechanical properties of the printed materials. Our findings demonstrate that increased concentrations of RAFT agents or higher proportions of the more active BTPA lead to a decrease in Young's modulus and glass transition temperatures, along with an increase in elongation at break, which can be attributed to the enhanced homogeneity of the polymer network. Using a commercial LCD printer, the NTI-RAFT-based 3D printing system effectively produced materials with tailored mechanical properties, highlighting its potential for practical applications.
Collapse
Affiliation(s)
- Zhihan Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guangliang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chongyang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wenxuan Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Hu J, Wang D, Peng H. Photoreaction Drives Efficient, Precise, and Sustainable Additive Manufacturing. CHEM & BIO ENGINEERING 2024; 1:414-426. [PMID: 39975796 PMCID: PMC11835168 DOI: 10.1021/cbe.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 02/21/2025]
Abstract
Additive manufacturing, normally referred to as three-dimensional (3D) printing, has been maturing rapidly in recent years and widely utilized in various industrial fields, because it can create predesigned functional products with sophisticated structures that are basically difficult to achieve using traditional methods. Among all 3D printing technologies, vat photopolymerization has attracted much attention because of its outstanding advantages such as fast printing speed, high precision, and ease of formulating. In recent years, many breakthroughs in photopolymerization based 3D printing have been achieved by photoreaction design regarding photopolymerizable monomers, photoinitiating systems, inhibition functions, light sourcs, etc., but challenges remain. This Perspective attempts to highlight these great advances regarding the promotion of printing efficiency, accuracy, and sustainability. At the end, several challenges, such as longer-wavelength printing, printing of functional materials, and multimaterial printing, are discussed, which must be carefully addressed to meet the increasing requirements of future high-performance additive manufacturing.
Collapse
Affiliation(s)
- Jinghan Hu
- Key
Lab of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Dan Wang
- Key
Lab of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Haiyan Peng
- Key
Lab of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- State
Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan 430074, China
- National
Anti-counterfeit Engineering Research Center, HUST, Wuhan 430074, China
| |
Collapse
|
9
|
Lu G, Tang R, Nie J, Zhu X. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices. Macromol Rapid Commun 2024; 45:e2300661. [PMID: 38271638 DOI: 10.1002/marc.202300661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Photocuring 3D printing of hydrogels, with sophisticated, delicate structures and biocompatibility, attracts significant attention by researchers and possesses promising application in the fields of tissue engineering and flexible devices. After years of development, photocuring 3D printing technologies and hydrogel inks make great progress. Herein, the techniques of photocuring 3D printing of hydrogels, including direct ink writing (DIW), stereolithography (SLA), digital light processing (DLP), continuous liquid interface production (CLIP), volumetric additive manufacturing (VAM), and two photon polymerization (TPP) are reviewed. Further, the raw materials for hydrogel inks (photocurable polymers, monomers, photoinitiators, and additives) and applications in tissue engineering and flexible devices are also reviewed. At last, the current challenges and future perspectives of photocuring 3D printing of hydrogels are discussed.
Collapse
Affiliation(s)
- Guoqiang Lu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruifen Tang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Nie
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqun Zhu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Pan X, Li J, Li Z, Li Q, Pan X, Zhang Z, Zhu J. Tuning the Mechanical Properties of 3D-printed Objects by the RAFT Process: From Chain-Growth to Step-Growth. Angew Chem Int Ed Engl 2024; 63:e202318564. [PMID: 38230985 DOI: 10.1002/anie.202318564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Photoinduced 3D printing based on the reversible addition-fragmentation chain transfer (RAFT) process has emerged as a robust method for creating diverse functional materials. However, achieving precise control over the mechanical properties of these printed objects remains a critical challenge for practical application. Here, we demonstrated a RAFT step-growth polymerization of a bifunctional xanthate and bifunctional vinyl acetate. Additionally, we demonstrated photoinduced 3D printing through RAFT step-growth polymerization with a tetrafunctional xanthate and a bifunctional vinyl acetate. By adjusting the molar ratio of the components in the printing resins, we finely tuned the polymerization mechanism from step-growth to chain-growth. This adjustment resulted in a remarkable range of tunable Young's moduli, ranging from 7.6 MPa to 997.1 MPa. Moreover, post-functionalization and polymer welding of the printed objects with varying mechanical properties opens up a promising way to produce tailor-made materials with specific and tunable properties.
Collapse
Affiliation(s)
- Xiaofeng Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhuang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
11
|
Sarabia-Vallejos MA, De la Fuente SR, Tapia P, Cohn-Inostroza NA, Estrada M, Ortiz-Puerta D, Rodríguez-Hernández J, González-Henríquez CM. Development of Biocompatible Digital Light Processing Resins for Additive Manufacturing Using Visible Light-Induced RAFT Polymerization. Polymers (Basel) 2024; 16:472. [PMID: 38399850 PMCID: PMC10893283 DOI: 10.3390/polym16040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Patients with bone diseases often experience increased bone fragility. When bone injuries exceed the body's natural healing capacity, they become significant obstacles. The global rise in the aging population and the escalating obesity pandemic are anticipated to lead to a notable increase in acute bone injuries in the coming years. Our research developed a novel DLP resin for 3D printing, utilizing poly(ethylene glycol diacrylate) (PEGDA) and various monomers through the PET-RAFT polymerization method. To enhance the performance of bone scaffolds, triply periodic minimal surfaces (TPMS) were incorporated into the printed structure, promoting porosity and pore interconnectivity without reducing the mechanical resistance of the printed piece. The gyroid TPMS structure was the one that showed the highest mechanical resistance (0.94 ± 0.117 and 1.66 ± 0.240 MPa) for both variants of resin composition. Additionally, bioactive particles were introduced to enhance the material's biocompatibility, showcasing the potential for incorporating active compounds for specific applications. The inclusion of bioceramic particles produces an increase of 13% in bioactivity signal for osteogenic differentiation (alkaline phosphatase essay) compared to that of control resins. Our findings highlight the substantial improvement in printing precision and resolution achieved by including the photoabsorber, Rose Bengal, in the synthesized resin. This enhancement allows for creating intricately detailed and accurately defined 3D-printed parts. Furthermore, the TPMS gyroid structure significantly enhances the material's mechanical resistance, while including bioactive compounds significantly boosts the polymeric resin's biocompatibility and bioactivity (osteogenic differentiation).
Collapse
Affiliation(s)
- Mauricio A. Sarabia-Vallejos
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8420524, Chile; (M.A.S.-V.); (D.O.-P.)
| | - Scarleth Romero De la Fuente
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile; (S.R.D.l.F.); (P.T.)
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Pamela Tapia
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile; (S.R.D.l.F.); (P.T.)
| | - Nicolás A. Cohn-Inostroza
- Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile; (N.A.C.-I.); (M.E.)
| | - Manuel Estrada
- Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile; (N.A.C.-I.); (M.E.)
| | - David Ortiz-Puerta
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8420524, Chile; (M.A.S.-V.); (D.O.-P.)
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain;
| | - Carmen M. González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile; (S.R.D.l.F.); (P.T.)
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| |
Collapse
|
12
|
Mukai M, Sato M, Miyadai W, Maruo S. On-Demand Tunability of Microphase Separation Structure of 3D Printing Material by Reversible Addition/Fragmentation Chain Transfer Polymerization. Polymers (Basel) 2023; 15:3519. [PMID: 37688145 PMCID: PMC10490546 DOI: 10.3390/polym15173519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Controlling the phase-separated structure of polymer alloys is a promising method for tailoring the properties of polymers. However, controlling the morphology of phase-separated structures is challenging. Recently, phase-separated structures have been fabricated via 3D printing; however, only a few methods that enable on-demand control of phase separation have been reported. In this study, laser-scanning stereolithography, a vat photopolymerization method, is used to form a phase-separated structure via polymerization-induced microphase separation by varying the scanning speed and using macro-reversible addition/fragmentation chain transfer (macro-RAFT) agents with different average molar masses, along with multiarmed macro-RAFT agents; such structures were used to fabricate 3D-printed parts. Various phase-separated morphologies including sea-island and reverse sea-island were achieved by controlling the laser scanning speed and RAFT type. Heterogeneous structures with different material properties were also achieved by simply changing the laser scanning speed. As the deformation due to shrinkage in the process of cleaning 3D-printed parts depends on the laser scanning speed, shape correction was introduced to suppress the effect of shrinkage and obtain the desired shape.
Collapse
Affiliation(s)
- Masaru Mukai
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Mituki Sato
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (M.S.); (W.M.)
| | - Wakana Miyadai
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (M.S.); (W.M.)
| | - Shoji Maruo
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
13
|
Bagheri A. Application of RAFT in 3D Printing: Where Are the Future Opportunities? Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Ali Bagheri
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
14
|
Goldbach E, Allonas X, Croutxé-Barghorn C, Ley C, Halbardier L, L'Hostis G. Influence of thiocarbonylthio- RAFT agents on the homogeneity of polymer network and mechanical properties of 3D printed polymers. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
15
|
Zhao B, Li J, Li G, Yang X, Lu S, Pan X, Zhu J. Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207637. [PMID: 36707417 DOI: 10.1002/smll.202207637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The application of reversible deactivation radical polymerization techniques in 3D printing is emerging as a powerful method to build "living" polymer networks, which can be easily postmodified with various functionalities. However, the building speed of these systems is still limited compared to commercial systems. Herein, a digital light processing (DLP)-based 3D printing system via photoinduced free radical-promoted cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers, which can build "living" objects by a commercial DLP 3D printer at a relatively fast building speed (12.99 cm h-1 ), is reported. The polymerization behavior and printing conditions are studied in detail. The livingness of the printed objects is demonstrated by spatially controlled postmodification with a fluorescent monomer.
Collapse
Affiliation(s)
- Bowen Zhao
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guangliang Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinrui Yang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shaopu Lu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Li Z, Li J, Zhao B, Pan X, Pan X, Zhu J. Photoinduced
RAFT Step‐Growth
Polymerization toward Degradable Living Polymer Networks. CHINESE J CHEM 2023. [DOI: 10.1002/cjoc.202200620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhuang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Bowen Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiaofeng Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
17
|
Taylor NG, Reis MH, Varner TP, Rapp JL, Sarabia A, Leibfarth FA. A dual initiator approach for oxygen tolerant RAFT polymerization. Polym Chem 2022; 13:4798-4808. [PMID: 37799166 PMCID: PMC10552776 DOI: 10.1039/d2py00603k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Reversible-deactivation radical polymerizations are privileged approaches for the synthesis of functional and hybrid materials. A bottleneck for conducting these processes is the need to maintain oxygen free conditions. Herein we report a broadly applicable approach to "polymerize through" oxygen using the synergistic combination of two radical initiators having different rates of homolysis. The in situ monitoring of the concentrations of oxygen and monomer simultaneously provided insight into the function of the two initiators and enabled the identification of conditions to effectively remove dissolved oxygen and control polymerization under open-to-air conditions. By understanding how the surface area to volume ratio of reaction vessels influence open-to-air polymerizations, well-defined polymers were produced using acrylate, styrenic, and methacrylate monomers, which each represent an expansion of scope for the "polymerizing through" oxygen approach. Demonstration of this method in tubular reactors using continuous flow chemistry provided a more complete structure-reactivity understanding of how reaction headspace influences PTO RAFT polymerizations.
Collapse
Affiliation(s)
- Nicholas G Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcus H Reis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Travis P Varner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Johann L Rapp
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis Sarabia
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Zhao B, Li J, Li Z, Lin X, Pan X, Zhang Z, Zhu J. Photoinduced 3D Printing through a Combination of Cationic and Radical RAFT Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bowen Zhao
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jiajia Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Zhuang Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Xia Lin
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Zhengbiao Zhang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| |
Collapse
|
19
|
Bao Y. Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing. Macromol Rapid Commun 2022; 43:e2200202. [PMID: 35579565 DOI: 10.1002/marc.202200202] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/11/2022]
Abstract
3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attracted considerable attention owing to their superior print resolution, relatively high speed, low cost and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems can not only offer faster 3D printing speed and enable low-energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, 8093, Switzerland
| |
Collapse
|
20
|
Zhao B, Li J, Xiu Y, Pan X, Zhang Z, Zhu J. Xanthate-Based Photoiniferter RAFT Polymerization toward Oxygen-Tolerant and Rapid Living 3D Printing. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bowen Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuan Xiu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
21
|
Shi X, Zhang J, Corrigan N, Boyer C. Controlling mechanical properties of 3D printed polymer composites through photoinduced reversible addition–fragmentation chain transfer (RAFT) polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01283e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization has been exploited to design silica-nanoparticle-incorporated photocurable resins for 3D printing of materials with enhanced mechanical properties and complex structures.
Collapse
Affiliation(s)
- Xiaobing Shi
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
22
|
Bainbridge CWA, Wangsadijaya A, Broderick N, Jin J. Living Polymer Networks Prepared by Controlled Radical Polymerization Techniques. Polym Chem 2022. [DOI: 10.1039/d1py01692j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled radical polymerization (CRP) techniques have become widely accepted and used in polymer research and development. While much has been done towards their traditional usage in linear and branched systems,...
Collapse
|
23
|
Affiliation(s)
- Patrick Imrie
- School of Chemical Sciences The University of Auckland Auckland New Zealand
- Dodd‐Walls Centre for Quantum and Photonic Technologies Dunedin New Zealand
| | - Jianyong Jin
- School of Chemical Sciences The University of Auckland Auckland New Zealand
- Dodd‐Walls Centre for Quantum and Photonic Technologies Dunedin New Zealand
| |
Collapse
|
24
|
Li CY, Yu SS. Efficient Visible-Light-Driven RAFT Polymerization Mediated by Deep Eutectic Solvents under an Open-to-Air Environment. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chia-Yu Li
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- Core Facility Center, National Cheng Kung University, Tainan 70101, Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
25
|
Hartlieb M. Photo-Iniferter RAFT Polymerization. Macromol Rapid Commun 2021; 43:e2100514. [PMID: 34750911 DOI: 10.1002/marc.202100514] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Indexed: 12/27/2022]
Abstract
Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.
Collapse
Affiliation(s)
- Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476, Potsdam, Germany
| |
Collapse
|
26
|
Reis M, Gusev F, Taylor NG, Chung SH, Verber MD, Lee YZ, Isayev O, Leibfarth FA. Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis. J Am Chem Soc 2021; 143:17677-17689. [PMID: 34637304 PMCID: PMC10833148 DOI: 10.1021/jacs.1c08181] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern polymer science suffers from the curse of multidimensionality. The large chemical space imposed by including combinations of monomers into a statistical copolymer overwhelms polymer synthesis and characterization technology and limits the ability to systematically study structure-property relationships. To tackle this challenge in the context of 19F magnetic resonance imaging (MRI) agents, we pursued a computer-guided materials discovery approach that combines synergistic innovations in automated flow synthesis and machine learning (ML) method development. A software-controlled, continuous polymer synthesis platform was developed to enable iterative experimental-computational cycles that resulted in the synthesis of 397 unique copolymer compositions within a six-variable compositional space. The nonintuitive design criteria identified by ML, which were accomplished by exploring <0.9% of the overall compositional space, lead to the identification of >10 copolymer compositions that outperformed state-of-the-art materials.
Collapse
Affiliation(s)
- Marcus Reis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Filipp Gusev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas G Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sang Hun Chung
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew D Verber
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yueh Z Lee
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
27
|
Lu Z, Yang H, Fu X, Zhao R, Zhao Y, Cai J, Xiao L, Hou L. Fully-π conjugated covalent organic frameworks as catalyst for photo-induced atom transfer radical polymerization with ppm-level copper concentration under LED irradiation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Tomal W, Krok D, Chachaj-Brekiesz A, Ortyl J. Beneficial stilbene-based derivatives: From the synthesis of new catalytic photosensitizer to 3D printouts and fiber-reinforced composites. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Robinson LL, Self JL, Fusi AD, Bates MW, Read de Alaniz J, Hawker CJ, Bates CM, Sample CS. Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters. ACS Macro Lett 2021; 10:857-863. [PMID: 35549203 DOI: 10.1021/acsmacrolett.1c00257] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the scope of additive manufacturing broadens, interest has developed in 3D-printed objects that are derived from recyclable resins with chemical and mechanical tunability. Dynamic covalent bonds have the potential to not only increase the sustainability of 3D-printed objects, but also serve as reactive sites for postprinting derivatization. In this study, we use boronate esters as a key building block for the development of catalyst-free, 3D-printing resins with the ability to undergo room-temperature exchange at the cross-linking sites. The orthogonality of boronate esters is exploited in fast-curing, oxygen-tolerant thiol-ene resins in which the dynamic character of 3D-printed objects can be modulated by the addition of a static, covalent cross-linker with no room-temperature bond exchange. This allows the mechanical properties of printed parts to be varied between those of a traditional thermoset and a vitrimer. Objects printed with a hybrid dynamic/static resin exhibit a balance of structural stability (residual stress = 18%) and rapid exchange (characteristic relaxation time = 7 s), allowing for interfacial welding and postprinting functionalization. Modulation of the cross-linking density postprinting is enabled by selective hydrolysis of the boronate esters to generate networks with swelling capacities tunable from 1.3 to 3.3.
Collapse
|
30
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
31
|
|
32
|
Giacoletto N, Dumur F. Recent Advances in bis-Chalcone-Based Photoinitiators of Polymerization: From Mechanistic Investigations to Applications. Molecules 2021; 26:3192. [PMID: 34073491 PMCID: PMC8199041 DOI: 10.3390/molecules26113192] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/01/2023] Open
Abstract
Over the past several decades, photopolymerization has become an active research field, and the ongoing efforts to develop new photoinitiating systems are supported by the different applications in which this polymerization technique is involved-including dentistry, 3D and 4D printing, adhesives, and laser writing. In the search for new structures, bis-chalcones that combine two chalcones' moieties within a unique structure were determined as being promising photosensitizers to initiate both the free-radical polymerization of acrylates and the cationic polymerization of epoxides. In this review, an overview of the different bis-chalcones reported to date is provided. Parallel to the mechanistic investigations aiming at elucidating the polymerization mechanisms, bis-chalcones-based photoinitiating systems were used for different applications, which are detailed in this review.
Collapse
Affiliation(s)
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| |
Collapse
|
33
|
Zhao X, Zhao Y, Li MD, Li Z, Peng H, Xie T, Xie X. Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization. Nat Commun 2021; 12:2873. [PMID: 34001898 PMCID: PMC8129151 DOI: 10.1038/s41467-021-23170-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/14/2021] [Indexed: 12/04/2022] Open
Abstract
Photopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h-1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
- National Anti-Counterfeit Engineering Research Center, HUST, Wuhan, China
| | - Ye Zhao
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
- National Anti-Counterfeit Engineering Research Center, HUST, Wuhan, China
| | - Ming-De Li
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University (STU), Shantou, China
| | - Zhong'an Li
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Haiyan Peng
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.
- National Anti-Counterfeit Engineering Research Center, HUST, Wuhan, China.
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University (ZJU), Hangzhou, China
| | - Xiaolin Xie
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.
- National Anti-Counterfeit Engineering Research Center, HUST, Wuhan, China.
| |
Collapse
|
34
|
Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography. Molecules 2021; 26:molecules26092817. [PMID: 34068649 PMCID: PMC8126101 DOI: 10.3390/molecules26092817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/22/2023] Open
Abstract
Droplet microfluidics—the art and science of forming droplets—has been revolutionary for high-throughput screening, directed evolution, single-cell sequencing, and material design. However, traditional fabrication techniques for microfluidic devices suffer from several disadvantages, including multistep processing, expensive facilities, and limited three-dimensional (3D) design flexibility. High-resolution additive manufacturing—and in particular, projection micro-stereolithography (PµSL)—provides a promising path for overcoming these drawbacks. Similar to polydimethylsiloxane-based microfluidics 20 years ago, 3D printing methods, such as PµSL, have provided a path toward a new era of microfluidic device design. PµSL greatly simplifies the device fabrication process, especially the access to truly 3D geometries, is cost-effective, and it enables multimaterial processing. In this review, we discuss both the basics and recent innovations in PµSL; the material basis with emphasis on custom-made photopolymer formulations; multimaterial 3D printing; and, 3D-printed microfluidic devices for emulsion formation as our focus application. Our goal is to support researchers in setting up their own PµSL system to fabricate tailor-made microfluidics.
Collapse
|
35
|
Bagheri A, Fellows CM, Boyer C. Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003701. [PMID: 33717856 PMCID: PMC7927619 DOI: 10.1002/advs.202003701] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Indexed: 05/04/2023]
Abstract
3D printing has changed the fabrication of advanced materials as it can provide customized and on-demand 3D networks. However, 3D printing of polymer materials with the capacity to be transformed after printing remains a great challenge for engineers, material, and polymer scientists. Radical polymerization has been conventionally used in photopolymerization-based 3D printing, as in the broader context of crosslinked polymer networks. Although this reaction pathway has shown great promise, it offers limited control over chain growth, chain architecture, and thus the final properties of the polymer networks. More fundamentally, radical polymerization produces dead polymer chains incapable of postpolymerization transformations. Alternatively, the application of reversible deactivation radical polymerization (RDRP) to polymer networks allows the tuning of network homogeneity and more importantly, enables the production of advanced materials containing dormant reactivatable species that can be used for subsequent processes in a postsynthetic stage. Consequently, the opportunities that (photoactivated) RDRP-based networks offer have been leveraged through the novel concepts of structurally tailored and engineered macromolecular gels, living additive manufacturing and photoexpandable/transformable-polymer networks. Herein, the advantages of RDRP-based networks over irreversibly formed conventional networks are discussed.
Collapse
Affiliation(s)
- Ali Bagheri
- School of Science and TechnologyThe University of New EnglandArmidaleNSW2351Australia
| | - Christopher M. Fellows
- School of Science and TechnologyThe University of New EnglandArmidaleNSW2351Australia
- Desalination Technologies Research InstituteAl Jubail31951Kingdom of Saudi Arabia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
36
|
Lee K, Corrigan N, Boyer C. Rapid High‐Resolution 3D Printing and Surface Functionalization via Type I Photoinitiated RAFT Polymerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kenny Lee
- Cluster for Advanced Macromolecular Design School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
37
|
Lee K, Corrigan N, Boyer C. Rapid High‐Resolution 3D Printing and Surface Functionalization via Type I Photoinitiated RAFT Polymerization. Angew Chem Int Ed Engl 2021; 60:8839-8850. [DOI: 10.1002/anie.202016523] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/15/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Kenny Lee
- Cluster for Advanced Macromolecular Design School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
38
|
Zhang Y, Xu Y, Simon-Masseron A, Lalevée J. Radical photoinitiation with LEDs and applications in the 3D printing of composites. Chem Soc Rev 2021; 50:3824-3841. [PMID: 33523055 DOI: 10.1039/d0cs01411g] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radical initiation upon LED light irradiation is discussed herein as well as its application in additive manufacturing. The ability of manufacturing complex structures, freedom of design, low energy consumption, fast prototyping, and excellent spatial resolution are the main benefits of the 3D printing technology by photopolymerization. Therefore, the 3D printing of composites through photopolymerization processes is developing rapidly in the academia and industry, and has been a turning point of additive manufacturing (AM). In the present review, an overview of radical initiation with LEDs (i.e., the photopolymerization LED technology, the photoinitiating systems, and the polymerizable media) and of the main 3D printing methods by photopolymerization, materials, and their applications in different fields has been carried out. As a challenging topic, the issue of light penetration in a filled matrix for the access to composites is discussed, including the light transmittance of the composite, the mismatch of the refractive index between the filler and the monomer, the factors of the filler, and the adverse influence of low light penetration on the 3D printing process. In particular, the popular applications of 3D printing by photopolymerization in biomedical science, electronic industry, materials for adsorption, and 4D printing are discussed. Overall, this review gives an overview of the 3D printing of polymer matrix composites through photopolymerization processes as a benchmark for future research and development.
Collapse
Affiliation(s)
- Yijun Zhang
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.
| | | | | | | |
Collapse
|
39
|
Wu Y, Simpson MC, Jin J. Fast Hydrolytically Degradable 3D Printed Object Based on Aliphatic Polycarbonate Thiol‐Yne Photoresins. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yimei Wu
- School of Chemical Sciences The University of Auckland Auckland 1010 New Zealand
- Dodd‐Walls Centre for Quantum and Photonic Technologies Dunedin 9056 New Zealand
| | - Miriam Cather Simpson
- School of Chemical Sciences The University of Auckland Auckland 1010 New Zealand
- Department of Physics The University of Auckland Auckland 1010 New Zealand
- Photon Factory The University of Auckland Auckland 1010 New Zealand
- Dodd‐Walls Centre for Quantum and Photonic Technologies Dunedin 9056 New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| | - Jianyong Jin
- School of Chemical Sciences The University of Auckland Auckland 1010 New Zealand
- Dodd‐Walls Centre for Quantum and Photonic Technologies Dunedin 9056 New Zealand
| |
Collapse
|
40
|
Yee DW, Greer JR. Three‐dimensional
chemical reactors:
in situ
materials synthesis to advance vat photopolymerization. POLYM INT 2021. [DOI: 10.1002/pi.6165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daryl W. Yee
- Division of Engineering and Applied Science California Institute of Technology Pasadena CA USA
| | - Julia R. Greer
- Division of Engineering and Applied Science California Institute of Technology Pasadena CA USA
| |
Collapse
|
41
|
Tomal W, Świergosz T, Pilch M, Kasprzyk W, Ortyl J. New horizons for carbon dots: quantum nano-photoinitiating catalysts for cationic photopolymerization and three-dimensional (3D) printing under visible light. Polym Chem 2021. [DOI: 10.1039/d1py00228g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Citric acid-based carbon dots (CDs) as nano-photoinitiating catalysts for 3D printing.
Collapse
Affiliation(s)
- Wiktoria Tomal
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| | - Tomasz Świergosz
- Department of Analytical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| | - Maciej Pilch
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| | - Wiktor Kasprzyk
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| |
Collapse
|
42
|
Bainbridge CWA, Broderick N, Jin J. RAFT agent symmetry and the effects on photo-growth behavior in living polymer networks. Polym Chem 2021. [DOI: 10.1039/d1py00796c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we describe how different symmetries of RAFT agent act after growth. Asymmetric networks showed a pore-filling behaviour, while symmetric networks underwent mesh-expansion.
Collapse
Affiliation(s)
- Chris William Anderson Bainbridge
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies, Auckland 1010, New Zealand
| | - Neil Broderick
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies, Auckland 1010, New Zealand
| | - Jianyong Jin
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies, Auckland 1010, New Zealand
| |
Collapse
|
43
|
Lai H, Zhu D, Peng X, Zhang J, Lalevée J, Xiao P. N-Aryl glycines as versatile initiators for various polymerizations. Polym Chem 2021. [DOI: 10.1039/d1py00030f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
N-(1-Pyrenyl)glycine can act as a versatile initiator for various polymerizations.
Collapse
Affiliation(s)
- H. Lai
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - D. Zhu
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - X. Peng
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - J. Zhang
- Department of Chemical Engineering
- Monash University
- Clayton
- Australia
| | - J. Lalevée
- Université de Haute-Alsace
- CNRS
- F-68100 Mulhouse
- France
- Université de Strasbourg
| | - P. Xiao
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
- Université de Haute-Alsace
| |
Collapse
|
44
|
Ahn D, Stevens LM, Zhou K, Page ZA. Rapid High-Resolution Visible Light 3D Printing. ACS CENTRAL SCIENCE 2020; 6:1555-1563. [PMID: 32999930 PMCID: PMC7517116 DOI: 10.1021/acscentsci.0c00929] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 05/10/2023]
Abstract
Light-driven 3D printing to convert liquid resins into solid objects (i.e., photocuring) has traditionally been dominated by engineering disciplines, yielding the fastest build speeds and highest resolution of any additive manufacturing process. However, the reliance on high-energy UV/violet light limits the materials scope due to degradation and attenuation (e.g., absorption and/or scattering). Chemical innovation to shift the spectrum into more mild and tunable visible wavelengths promises to improve compatibility and expand the repertoire of accessible objects, including those containing biological compounds, nanocomposites, and multimaterial structures. Photochemistry at these longer wavelengths currently suffers from slow reaction times precluding its utility. Herein, novel panchromatic photopolymer resins were developed and applied for the first time to realize rapid high-resolution visible light 3D printing. The combination of electron-deficient and electron-rich coinitiators was critical to overcoming the speed-limited photocuring with visible light. Furthermore, azo-dyes were identified as vital resin components to confine curing to irradiation zones, improving spatial resolution. A unique screening method was used to streamline optimization (e.g., exposure time and azo-dye loading) and correlate resin composition to resolution, cure rate, and mechanical performance. Ultimately, a versatile and general visible-light-based printing method was shown to afford (1) stiff and soft objects with feature sizes <100 μm, (2) build speeds up to 45 mm/h, and (3) mechanical isotropy, rivaling modern UV-based 3D printing technology and providing a foundation from which bio- and composite-printing can emerge.
Collapse
Affiliation(s)
- Dowon Ahn
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Lynn M. Stevens
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Kevin Zhou
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Zachariah A. Page
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
45
|
Tomal W, Chachaj-Brekiesz A, Popielarz R, Ortyl J. Multifunctional biphenyl derivatives as photosensitisers in various types of photopolymerization processes, including IPN formation, 3D printing of photocurable multiwalled carbon nanotubes (MWCNTs) fluorescent composites. RSC Adv 2020; 10:32162-32182. [PMID: 35518164 PMCID: PMC9056632 DOI: 10.1039/d0ra04146g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
Summary of properties and applications of multifunctional of biphenyl derivatives as photosensitisers in various types of photopolymerization processes, including IPN formation, 3D printing of photocurable multiwalled carbon nanotubes (MWCNTs) fluorescent composites.
Collapse
Affiliation(s)
- Wiktoria Tomal
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| | | | - Roman Popielarz
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
- Photo HiTech Ltd
| |
Collapse
|
46
|
Bainbridge CWA, Engel KE, Jin J. 3D printing and growth induced bending based on PET-RAFT polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00600a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated a method for PET-RAFT growth induced bending of a 3D printed strip using visible light, where the growth on one side of the strip causes stress and the strip bends accordingly to reach a more comfortable position.
Collapse
Affiliation(s)
- Chris William Anderson Bainbridge
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies
| | - Kyle Edward Engel
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies
| | - Jianyong Jin
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies
| |
Collapse
|
47
|
Wang W, Zhong S, Wang G, Cao H, Gao Y, Zhang W. Photo-controlled RAFT polymerization mediated by organic/inorganic hybrid photoredox catalysts: enhanced catalytic efficiency. Polym Chem 2020. [DOI: 10.1039/d0py00171f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Photo-controlled RAFT polymerization mediated by an organic/inorganic hybrid photoredox catalyst (ZnTPP–POSS) was performed and showed enhanced catalytic efficiency compared with the ZnTPP photocatalyst.
Collapse
Affiliation(s)
- Wulong Wang
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Sheng Zhong
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Guicheng Wang
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hongliang Cao
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yun Gao
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weian Zhang
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
48
|
Tomal W, Pilch M, Chachaj-Brekiesz A, Galek M, Morlet-Savary F, Graff B, Dietlin C, Lalevée J, Ortyl J. Photoinitiator-catalyst systems based on meta-terphenyl derivatives as photosensitisers of iodonium and thianthrenium salts for visible photopolymerization in 3D printing processes. Polym Chem 2020. [DOI: 10.1039/d0py00597e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Application of new photoinitiator-catalyst systems based on meta-terphenyl derivatives as photosensitisers of iodonium and thianthrenium salts for visible photopolymerization in 3D printing.
Collapse
Affiliation(s)
- Wiktoria Tomal
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| | - Maciej Pilch
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| | | | | | - Fabrice Morlet-Savary
- Institute de Science des Matériaux de Mulhouse IS2M
- UMR CNRS 7361
- UHA
- Cedex 68057 Mulhouse
- France
| | - Bernadette Graff
- Institute de Science des Matériaux de Mulhouse IS2M
- UMR CNRS 7361
- UHA
- Cedex 68057 Mulhouse
- France
| | - Céline Dietlin
- Institute de Science des Matériaux de Mulhouse IS2M
- UMR CNRS 7361
- UHA
- Cedex 68057 Mulhouse
- France
| | - Jacques Lalevée
- Institute de Science des Matériaux de Mulhouse IS2M
- UMR CNRS 7361
- UHA
- Cedex 68057 Mulhouse
- France
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| |
Collapse
|