1
|
Jiang Y, Cao K, Wang Q. Linear Radical Additions-Coupling Polymerization (LRAsCP): Model, Experiment and Application. Polymers (Basel) 2025; 17:741. [PMID: 40338283 PMCID: PMC11945175 DOI: 10.3390/polym17060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 05/09/2025] Open
Abstract
Exploring new polymerization strategies for currently available monomers is a challenge in polymer science. Herein, a bifunctional initiator (BFI) is introduced for the conventional radical polymerization of a vinyl monomer, resulting in linear radical additions-coupling polymerization (LRAsCP). In LRAsCP, the coupling reaction alongside the addition reaction of the radicals contributes to the construction of polymer chains, which leads to stepwise growth of the multiblock structure. Theoretical analysis of LRAsCP predicted variation of some structural parameters of the resulting multiblock polymer (MBP) with the extent of initiation of the BFI and the termination factor of the radicals. Simultaneous and cascade initiations of the BFI were compared. LRAsCP of styrene was conducted, and a kinetics study was carried out. The increment in Mn with polymerization time demonstrated the stepwise mechanism of the formation of the MBP. The variation of the structural parameters of MBP fitted well with the theoretical prediction. Two-step LRAsCP was conducted and multiblock copolymers (MBcP) were obtained either by in situ copolymerization of styrene and MMA or by a second copolymerization of styrene and BMA. The current results demonstrate that the introduction of a BFI to conventional radical polymerization generates a new polymerization strategy, leading to a new chain architecture, which can be extended to other radical polymerizable monomers.
Collapse
Affiliation(s)
- Yudian Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310058, China;
| | - Kun Cao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China;
| | - Qi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
2
|
Fu XY, Yue TJ, Guo XH, Lu XB, Ren WM. Synthesis of highly effective polyester/polyacrylate compatibilizers using switchable polymerization. Nat Commun 2025; 16:2154. [PMID: 40038273 DOI: 10.1038/s41467-025-57449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025] Open
Abstract
Multiblock copolymers (MBCPs) comprising polyester and polyacrylate segments offer an efficient strategy for enhancing the performance of polyester and polyolefin blends but synthesis and structural modification of these MBCPs remains challenging. Here, we propose a method for synthesizing MBCPs via the switchable polymerization of epoxides, cyclic anhydrides, and acrylates using a dinuclear Co-complex, wherein the anhydride acts as a switcher. Detailed studies on the copolymerization process reveal that the successful synthesis of MBCPs is achieved by intramolecular bimetallic synergistic catalysis, producing MBCPs with controlled molecular weights and narrow dispersities. Owing to the high compatibility of the monomers, this method allows for producing MBCPs with diverse structures and block numbers. Moreover, the resulting MBCPs effectively enhance the performance of the polyester and polyacrylate blends, improving the toughness of polyesters. Studies on microphase separation show that MBCPs can effectively compatibilize immiscible blends, highlighting their potential as compatibilizers.
Collapse
Affiliation(s)
- Xiang-Yu Fu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China.
| | - Xiao-Hui Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China.
| |
Collapse
|
3
|
Chung YH, Oh JK. Research Trends in the Development of Block Copolymer-Based Biosensing Platforms. BIOSENSORS 2024; 14:542. [PMID: 39590001 PMCID: PMC11591610 DOI: 10.3390/bios14110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Biosensing technology, which aims to measure and control the signals of biological substances, has recently been developed rapidly due to increasing concerns about health and the environment. Top-down technologies have been used mainly with a focus on reducing the size of biomaterials to the nano-level. However, bottom-up technologies such as self-assembly can provide more opportunities to molecular-level arrangements such as directionality and the shape of biomaterials. In particular, block copolymers (BCPs) and their self-assembly have been significantly explored as an effective means of bottom-up technologies to achieve recent advances in molecular-level fine control and imaging technology. BCPs have been widely used in various biosensing research fields because they can artificially control highly complex nano-scale structures in a directionally controlled manner, and future application research based on interactions with biomolecules according to the development and synthesis of new BCP structures is greatly anticipated. Here, we comprehensively discuss the basic principles of BCPs technology, the current status of their applications in biosensing technology, and their limitations and future prospects. Rather than discussing a specific field in depth, this study comprehensively covers the overall content of BCPs as a biosensing platform, and through this, we hope to increase researchers' understanding of adjacent research fields and provide research inspiration, thereby bringing about great advances in the relevant research fields.
Collapse
Affiliation(s)
- Yong-Ho Chung
- Department of Chemical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
4
|
Ilyin SO. Structural Rheology in the Development and Study of Complex Polymer Materials. Polymers (Basel) 2024; 16:2458. [PMID: 39274091 PMCID: PMC11397847 DOI: 10.3390/polym16172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, and a structure of a multi-component polymer-containing material. Determination of a relation between the structure of a complex material, the structure and properties of its constituent elements, and the rheological properties of the material as a whole is the subject of structural rheology-a valuable tool for the development and study of novel materials. This work summarizes the author's structural-rheological studies of complex polymer materials for determining the conditions and rheo-manifestations of their micro- and nanostructuring. The complicated chemical composition of macromolecular chains and its role in polymer structuring via block segregation and cooperative hydrogen bonds in melt and solutions is considered using tri- and multiblock styrene/isoprene and vinyl acetate/vinyl alcohol copolymers. Specific molecular interactions are analyzed in solutions of cellulose; its acetate butyrate; a gelatin/carrageenan combination; and different acrylonitrile, oxadiazole, and benzimidazole copolymers. A homogeneous structuring may result from a conformational transition, a mesophase formation, or a macromolecular association caused by a complex chain composition or specific inter- and supramolecular interactions, which, however, may be masked by macromolecular entanglements when determining a rheological behavior. A heterogeneous structure formation implies a microscopic phase separation upon non-solvent addition, temperature change, or intense shear up to a macroscopic decomposition. Specific polymer/particle interactions have been examined using polyethylene oxide solutions, polyisobutylene melts, and cellulose gels containing solid particles of different nature, demonstrating the competition of macromolecular entanglements, interparticle interactions, and adsorption polymer/particle bonds in governing the rheological properties. Complex chain architecture has been considered using long-chain branched polybutylene-adipate-terephthalate and polyethylene melts, cross-linked sodium hyaluronate hydrogels, asphaltene solutions, and linear/highly-branched polydimethylsiloxane blends, showing that branching raises the viscosity and elasticity and can result in limited miscibility with linear isomonomer chains. Finally, some examples of composite adhesives, membranes, and greases as structured polymeric functional materials have been presented with the demonstration of the relation between their rheological and performance properties.
Collapse
Affiliation(s)
- Sergey O Ilyin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| |
Collapse
|
5
|
Clothier GKK, Guimarães TR, Thompson SW, Howard SC, Muir BW, Moad G, Zetterlund PB. Streamlining the Generation of Advanced Polymer Materials Through the Marriage of Automation and Multiblock Copolymer Synthesis in Emulsion. Angew Chem Int Ed Engl 2024; 63:e202320154. [PMID: 38400586 DOI: 10.1002/anie.202320154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Synthetic polymers are of paramount importance in modern life - an incredibly wide range of polymeric materials possessing an impressive variety of properties have been developed to date. The recent emergence of artificial intelligence and automation presents a great opportunity to significantly speed up discovery and development of the next generation of advanced polymeric materials. We have focused on the high-throughput automated synthesis of multiblock copolymers that comprise three or more distinct polymer segments of different monomer composition bonded in linear sequence. The present work has exploited automation to prepare high molar mass multiblock copolymers (typically>100,000 g mol-1) using reversible addition-fragmentation chain transfer (RAFT) polymerization in aqueous emulsion. A variety of original multiblock copolymers have been synthesised via a Chemspeed robot, exemplified by a multiblock copolymer comprising thirteen constituent blocks. Moreover, libraries of copolymers of randomized monomer compositions (acrylates, acrylamides, methacrylates, and styrenes), block orders, and block lengths were also generated, thereby demonstrating the robustness of our synthetic approach. One multiblock copolymer contained all four monomer families listed in the pool, which is unprecedented in the literature. The present work demonstrates that automation has the power to render complex and laborious syntheses of such unprecedented materials not just possible, but facile and straightforward, thus representing the way forward to the next generation of complex macromolecular architectures.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R Guimarães
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS (UMR 5629), ENSCPB, Université de Bordeaux, 16 avenue Pey Berland, 33607, Pessac, France
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shaun C Howard
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Benjamin W Muir
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Zhao Y, Xu S, Yu Y, Liu H, Wang F, Na L, Yang Q, Zhang C, Zhang X. Preparation and Characterization of Soft-Hard Block Copolymer of 3,4-IP- b- s-1,2-PBD Using a Robust Iron-Based Catalyst System. Polymers (Basel) 2024; 16:1172. [PMID: 38675091 PMCID: PMC11053549 DOI: 10.3390/polym16081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
A series of well-defined diblock copolymers, namely, 3,4-polyisoprene-block-syndiotactic-1,2-polybutadiene (3,4-PI-b-s-1,2-PBD), with a soft-hard block sequence were synthesized via an in situ sequential polymerization process using a robust iron-based catalytic system Fe(acac)3/(isocyanoimino) triptenylphosphorane (IITP)/AliBu3. This catalyst exhibits vigorous activity and temperature tolerance, achieving a polymerization activity of 5.41 × 106 g mol(Fe)-1 h-1 at 70 °C with a [IP]/[Fe] ratio of 15,000. Moreover, the quasi-living polymerization characteristics of the catalyst were verified through kinetic experiments. The first-stage polymerization of isoprene (IP) is performed at 30 °C to give a soft 3,4-PI block, and then a quantitative amount of 1,3-butadiene was added in situ to the quasi-living polymerization system to produce a second hard s-1,2-PBD. The s-1,2-PBD segments in block copolymers display a rodlike morphology contrasting with the spherulitic morphology characteristic of s-1,2-PBD homopolymers. The precise tunability of the length of the soft and hard chain segments of these novel elastic materials with the feed ratio of IP and BD, endowing them with outstanding mechanical properties and excellent dynamic mechanical properties, which are expected to be promising high-performance rubber materials.
Collapse
Affiliation(s)
- Yingnan Zhao
- Key Laboratory of Advanced Rubber Material, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.Z.); (S.X.); (Y.Y.); (H.L.); (L.N.); (Q.Y.); (X.Z.)
- Shandong Provincial College Laboratory of Rubber Material and Engineering, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shiliang Xu
- Key Laboratory of Advanced Rubber Material, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.Z.); (S.X.); (Y.Y.); (H.L.); (L.N.); (Q.Y.); (X.Z.)
- Shandong Provincial College Laboratory of Rubber Material and Engineering, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yao Yu
- Key Laboratory of Advanced Rubber Material, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.Z.); (S.X.); (Y.Y.); (H.L.); (L.N.); (Q.Y.); (X.Z.)
- Shandong Provincial College Laboratory of Rubber Material and Engineering, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Heng Liu
- Key Laboratory of Advanced Rubber Material, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.Z.); (S.X.); (Y.Y.); (H.L.); (L.N.); (Q.Y.); (X.Z.)
- Shandong Provincial College Laboratory of Rubber Material and Engineering, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Feng Wang
- Key Laboratory of Advanced Rubber Material, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.Z.); (S.X.); (Y.Y.); (H.L.); (L.N.); (Q.Y.); (X.Z.)
- Shandong Provincial College Laboratory of Rubber Material and Engineering, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lihua Na
- Key Laboratory of Advanced Rubber Material, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.Z.); (S.X.); (Y.Y.); (H.L.); (L.N.); (Q.Y.); (X.Z.)
- Shandong Provincial College Laboratory of Rubber Material and Engineering, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Qi Yang
- Key Laboratory of Advanced Rubber Material, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.Z.); (S.X.); (Y.Y.); (H.L.); (L.N.); (Q.Y.); (X.Z.)
- Shandong Provincial College Laboratory of Rubber Material and Engineering, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Chunyu Zhang
- Key Laboratory of Advanced Rubber Material, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.Z.); (S.X.); (Y.Y.); (H.L.); (L.N.); (Q.Y.); (X.Z.)
- Shandong Provincial College Laboratory of Rubber Material and Engineering, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xuequan Zhang
- Key Laboratory of Advanced Rubber Material, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.Z.); (S.X.); (Y.Y.); (H.L.); (L.N.); (Q.Y.); (X.Z.)
- Shandong Provincial College Laboratory of Rubber Material and Engineering, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Key Lab of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
7
|
Shen T, Deng K, Chen Y, He Y, Zhu Y, Xu J, Ling J. Multiblock Poly-ε-Caprolactones: One-Step Synthesis toward Programmable Properties. Macromol Rapid Commun 2023; 44:e2300397. [PMID: 37821120 DOI: 10.1002/marc.202300397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Control of monomer sequence enables predictable structure-property relationships in versatile polymeric materials. The facile synthesis of multiblock copolymers (MBCPs) with controlled chain structure is highly challenging, particularly for those prepared via one-pot copolymerization of mixed monomers. Herein, poly-ε-caprolactone MBCPs, a series of thermoplastic elastomers with tailored thermal, mechanical, rheological, and degradable properties, are synthesized by Janus polymerization. Melting temperature, tensile strength, ductility, viscosity, and enzymatic degradability are governed by block length which is in turn dictated by the monomer-to-catalyst feed ratio. The relationships between the physicochemical properties and the architectures are investigated in detail.
Collapse
Affiliation(s)
- Ting Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Junting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Ma Q, Qiao GG, An Z. Visible Light Photoiniferter Polymerization for Dispersity Control in High Molecular Weight Polymers. Angew Chem Int Ed Engl 2023; 62:e202314729. [PMID: 37814139 DOI: 10.1002/anie.202314729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The synthesis of polymers with high molecular weights, controlled sequence, and tunable dispersities remains a challenge. A simple and effective visible-light controlled photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization is reported here to realize this goal. Key to this strategy is the use of switchable RAFT agents (SRAs) to tune polymerization activities coupled with the inherent highly living nature of photoiniferter RAFT polymerization. The polymerization activities of SRAs were in situ adjusted by the addition of acid. In addition to a switchable chain-transfer coefficient, photolysis and polymerization kinetic studies revealed that neutral and protonated SRAs showed different photolysis and polymerization rates, which is unique to photoiniferter RAFT polymerization in terms of dispersity control. This strategy features no catalyst, no exogenous radical source, temporal regulation by visible light, and tunable dispersities in the unprecedented high molecular weight regime (up to 500 kg mol-1 ). Pentablock copolymers with three different dispersity combinations were also synthesized, highlighting that the highly living nature was maintained even for blocks with large dispersities. Tg was lowered for high-dispersity polymers of similar MWs due to the existence of more low-MW polymers. This strategy holds great potential for the synthesis of advanced materials with controlled molecular weight, dispersity and sequence.
Collapse
Affiliation(s)
- Qingchi Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Greg G Qiao
- Department of Chemical Engineering, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
10
|
Guo Y. Effect of Film Thickness on the Self-Assembly of CBABC Symmetric Pentablock Terpolymer Melts under 1D Confinement: A Dissipative Particle Dynamic Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6862. [PMID: 37959459 PMCID: PMC10648495 DOI: 10.3390/ma16216862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The study investigates the impact of film thickness on the phase behavior of pentablock terpolymers, denoted as C3B3A6B3C3, when subjected to wall confinement by utilizing the dissipative particle dynamics method. Phase diagrams were constructed to elucidate how factors such as block-block interaction strength, film thickness, and wall properties affect the self-assembly structures. In cases where the wall exhibits no preference for any of the blocks, lamellae phases with orientations perpendicular to the wall are observed. The order-disorder transition (ODT) temperature is found to be influenced by the interaction between the polymer and the wall in thin confinement scenarios. When the wall displays a preference for specific blocks, the orientation of lamellae structures undergoes variations. Lamellae tend to align parallel to the wall when the wall favors A or C blocks, and they orient perpendicularly when B blocks are favored. Furthermore, the mechanical properties of the lamellae structures are related to the conformations of the polymer chains. Structures where chains predominantly adopt a loop conformation exhibit enhanced elastic properties. The ratio of looping to bridging conformations can be adjusted by altering the film thickness and wall selectivity.
Collapse
Affiliation(s)
- Yingying Guo
- School of Science, Qingdao University of Technology, Qingdao 266525, China
| |
Collapse
|
11
|
Zhou H, Ye S, Xu M, Hao L, Chen J, Fang Z, Guo K, Chen Y, Wang L. Dynamic surface adapts to multiple service stages by orchestrating responsive polymers and functional peptides. Biomaterials 2023; 301:122200. [PMID: 37423184 DOI: 10.1016/j.biomaterials.2023.122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Control over the implant surface functions is highly desirable to enhance tissue healing outcomes but has remained unexplored to adapt to the different service stages. In the present study, we develop a smart titanium surface by orchestrating thermoresponsive polymer and antimicrobial peptide to enable dynamic adaptation to the implantation stage, normal physiological stage and bacterial infection stage. The optimized surface inhibited bacterial adhesion and biofilm formation during surgical implantation, while promoted osteogenesis in the physiological stage. The further temperature increase driven by bacterial infection induced polymer chain collapse to expose antimicrobial peptides by rupturing bacterial membranes, as well as protect the adhered cells from the hostile environment of infection and abnormal temperature. The engineered surface could inhibit infection and promote tissue healing in rabbit subcutaneous and bone defect infection models. This strategy enables the possibility to create a versatile surface platform to balance bacteria/cell-biomaterial interactions at different service stages of implants that has not been achieved before.
Collapse
Affiliation(s)
- Haiyan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Silin Ye
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Mingjian Xu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Lihui Hao
- Department of Stomatology, Xingtai Medical College, Xingtai 054000, China
| | - Junjian Chen
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Zhou Fang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kunzhong Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
12
|
Jafari VF, Mossayebi Z, Allison-Logan S, Shabani S, Qiao GG. The Power of Automation in Polymer Chemistry: Precision Synthesis of Multiblock Copolymers with Block Sequence Control. Chemistry 2023; 29:e202301767. [PMID: 37401148 DOI: 10.1002/chem.202301767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Machines can revolutionize the field of chemistry and material science, driving the development of new chemistries, increasing productivity, and facilitating reaction scale up. The incorporation of automated systems in the field of polymer chemistry has however proven challenging owing to the demanding reaction conditions, rendering the automation setup complex and costly. There is an imminent need for an automation platform which uses fast and simple polymerization protocols, while providing a high level of control on the structure of macromolecules via precision synthesis. This work combines an oxygen tolerant, room temperature polymerization method with a simple liquid handling robot to automatically prepare precise and high order multiblock copolymers with unprecedented livingness even after many chain extensions. The highest number of blocks synthesized in such a system is reported, demonstrating the capabilities of this automated platform for the rapid synthesis and complex polymer structure formation.
Collapse
Affiliation(s)
- Vianna F Jafari
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zahra Mossayebi
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephanie Allison-Logan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sadegh Shabani
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
13
|
Davletbaeva IM, Faizulina ZZ, Li ED, Sazonov OO, Efimov SV, Klochkov VV, Arkhipov AV, Davletbaev RS. Silicas with Polyoxyethylene Branches for Modification of Membranes Based on Microporous Block Copolymers. MEMBRANES 2023; 13:642. [PMID: 37505008 PMCID: PMC10383942 DOI: 10.3390/membranes13070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
We have synthesized cubic and linear polysiloxanes containing polyoxyethylene branches (ASiP-Cu) using tetraethoxysilane, polyoxyethylene glycol, and copper chloride as precursors; the products are stable to self-condensation. The effect of copper chloride content on the chemical structure of ASiP-Cu has been established. A special study was aimed at defining the modifying effect of ASiP-Cu on the sorption characteristics of membranes based on microporous, optically transparent block copolymers (OBCs). These OBCs were produced using 2,4-toluene diisocyanate and block copolymers of ethylene and propylene oxides. The study demonstrated significantly increased sorption capacity of the modified polymers. On the basis of the modified microporous block copolymers and 1-(2-pyridylazo)-2-naphthol (PAN) analytical reagent, an analytical test system has been developed. Additionally, the modified OBCs have the benefit of high diffusion permeability for molecules of organic dyes and metal ions. It has been shown that the volume of voids and structural features of their internal cavities contribute to the complex formation reaction involving PAN and copper chloride.
Collapse
Affiliation(s)
- Ilsiya M Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Zulfiya Z Faizulina
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Ekaterina D Li
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Oleg O Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Sergey V Efimov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Vladimir V Klochkov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia
| | - Alexander V Arkhipov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya St., 195251 St. Petersburg, Russia
| | - Ruslan S Davletbaev
- Material Science and Technology of Materials Department, Kazan State Power Engineering University, 51 Krasnoselskaya Str., 420066 Kazan, Russia
| |
Collapse
|
14
|
Tanaka J, Li J, Clouthier SM, You W. Step-growth polymerization by the RAFT process. Chem Commun (Camb) 2023. [PMID: 37287313 DOI: 10.1039/d3cc01087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reversible Addition-Fragmentation Chain Transfer (RAFT) step-growth polymerization is an emerging method that synergistically combines the benefits of RAFT polymerization (functional group and user-friendly nature) and step-growth polymerization (versatility of the polymer backbone). This new polymerization method is generally achieved by using bifunctional reagents of monomer and Chain Transfer Agent (CTA), that efficiently yield Single Monomer Unit Insertion (SUMI) adducts under stoichiometrically balanced conditions. This review covers a brief history of the RAFT-SUMI process and its transformation into RAFT step-growth polymerization, followed by a comprehensive discussion of various RAFT step-growth systems. Furthermore, characterizing the molecular weight evolution of step-growth polymerization is elaborated based on the Flory model. Finally, a formula is introduced to describe the efficiency of the RAFT-SUMI process, assuming rapid chain transfer equilibrium. Examples of reported RAFT step-growth and SUMI systems are then categorized based on the driving force.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Jiajia Li
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | | | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Serbezeanu D, Vlad-Bubulac T, Macsim AM, Bǎlan V. Design and Synthesis of Amphiphilic Graft Polyphosphazene Micelles for Docetaxel Delivery. Pharmaceutics 2023; 15:pharmaceutics15051564. [PMID: 37242806 DOI: 10.3390/pharmaceutics15051564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
The structural versatility of polydichlorophosphazene derived from the inestimable possibilities to functionalize the two halogens, attached to each phosphazene main chain unit, attracted increasing attention in the last decade. This uncountable chemical derivatization is doubled by the amphiphilic roleplay demonstrated by polyphosphazenes containing twofold side-chained hydrophilic and hydrophobic moieties. Thus, it is able to encapsulate specific bioactive molecules for various targeted nanomedicine applications. A new amphiphilic graft, polyphosphazenes (PPP/PEG-NH/Hys/MAB), was synthesized via the thermal ring-opening polymerization of hexachlorocyclotriphosphazene, followed by a subsequent two-step substitution reaction of chlorine atoms with hydrophilic methoxypolyethylene glycol amine/histamine dihydrochloride adduct (PEG-NH2)/(Hys) and hydrophobic methyl-p-aminobenzoate (MAB), respectively. Fourier transform infrared spectroscopy (FTIR) and 1H and 31P-nuclear magnetic resonance spectroscopy (NMR) have been used to validate the expected architectural assembly of the copolymer. Docetaxel loaded micelles based on synthesized PPP/PEG-NH/Hys/MAB were designed by dialysis method. The micelles size was evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The drug release profiles from the PPP/PEG-NH/Hys/MAB micelles were established. In vitro cytotoxicity tests of PPP/PEG-NH/Hys/MAB micelles loaded with Docetaxel revealed that designed polymeric micelles exhibited an increased cytotoxic effect on MCF-7 cells.
Collapse
Affiliation(s)
- Diana Serbezeanu
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Tǎchițǎ Vlad-Bubulac
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ana-Maria Macsim
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vera Bǎlan
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| |
Collapse
|
16
|
Adzhieva OA, Gringolts ML, Denisova YI, Shandryuk GA, Litmanovich EA, Nikiforov RY, Belov NA, Kudryavtsev YV. Effect of Chain Structure on the Various Properties of the Copolymers of Fluorinated Norbornenes with Cyclooctene. Polymers (Basel) 2023; 15:polym15092157. [PMID: 37177303 PMCID: PMC10180767 DOI: 10.3390/polym15092157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Fluorinated polymers are attractive due to their special thermal, surface, gas separation, and other properties. In this study, new diblock, multiblock, and random copolymers of cyclooctene with two fluorinated norbornenes, 5-perfluorobutyl-2-norbornene and N-pentafluorophenyl-exo-endo-norbornene-5,6-dicarboximide, are synthesized by ring-opening metathesis copolymerization and macromolecular cross-metathesis in the presence of the first- to third-generation Grubbs' Ru-catalysts. Their thermal, surface, bulk, and solution characteristics are investigated and compared using differential scanning calorimetry, water contact angle measurements, gas permeation, and light scattering, respectively. It is demonstrated that they are correlated with the chain structure of the copolymers. The properties of multiblock copolymers are generally closer to those of diblock copolymers than of random ones, which can be explained by the presence of long blocks capable of self-organization. In particular, diblock and multiblock fluorine-imide-containing copolymers show a tendency to form micelles in chloroform solutions well below the overlap concentration. The results obtained may be of interest to a wide range of researchers involved in the design of functional copolymers.
Collapse
Affiliation(s)
- Olga A Adzhieva
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Maria L Gringolts
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Yulia I Denisova
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Georgiy A Shandryuk
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Ekaterina A Litmanovich
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, 119991 Moscow, Russia
| | - Roman Yu Nikiforov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Nikolay A Belov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
| | - Yaroslav V Kudryavtsev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, 119071 Moscow, Russia
- ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
17
|
Clothier GKK, Guimarães TR, Thompson SW, Rho JY, Perrier S, Moad G, Zetterlund PB. Multiblock copolymer synthesis via RAFT emulsion polymerization. Chem Soc Rev 2023; 52:3438-3469. [PMID: 37093560 DOI: 10.1039/d2cs00115b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A multiblock copolymer is a polymer of a specific structure that consists of multiple covalently linked segments, each comprising a different monomer type. The control of the monomer sequence has often been described as the "holy grail" of synthetic polymer chemistry, with the ultimate goal being synthetic access to polymers of a "perfect" structure, where each monomeric building block is placed at a desired position along the polymer chain. Given that polymer properties are intimately linked to the microstructure and monomer distribution along the constituent chains, it goes without saying that there exist seemingly endless opportunities in terms of fine-tuning the properties of such materials by careful consideration of the length of each block, the number and order of blocks, and the inclusion of monomers with specific functional groups. The area of multiblock copolymer synthesis remains relatively unexplored, in particular with regard to structure-property relationships, and there are currently significant opportunities for the design and synthesis of advanced materials. The present review focuses on the synthesis of multiblock copolymers via reversible addition-fragmentation chain transfer (RAFT) polymerization implemented as aqueous emulsion polymerization. RAFT emulsion polymerization offers intriguing opportunities not only for the advanced synthesis of multiblock copolymers, but also provides access to polymeric nanoparticles of specific morphologies. Precise multiblock copolymer synthesis coupled with self-assembly offers material morphology control on length scales ranging from a few nanometers to a micrometer. It is imperative that polymer chemists interact with physicists and material scientists to maximize the impact of these materials of the future.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Thiago R Guimarães
- MACROARC, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Julia Y Rho
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
18
|
Ntetsikas K, Ladelta V, Bhaumik S, Hadjichristidis N. Quo Vadis Carbanionic Polymerization? ACS POLYMERS AU 2023; 3:158-181. [PMID: 37065716 PMCID: PMC10103213 DOI: 10.1021/acspolymersau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Living anionic polymerization will soon celebrate 70 years of existence. This living polymerization is considered the mother of all living and controlled/living polymerizations since it paved the way for their discovery. It provides methodologies for synthesizing polymers with absolute control of the essential parameters that affect polymer properties, including molecular weight, molecular weight distribution, composition and microstructure, chain-end/in-chain functionality, and architecture. This precise control of living anionic polymerization generated tremendous fundamental and industrial research activities, developing numerous important commodity and specialty polymers. In this Perspective, we present the high importance of living anionic polymerization of vinyl monomers by providing some examples of its significant achievements, presenting its current status, giving several insights into where it is going (Quo Vadis) and what the future holds for this powerful synthetic method. Furthermore, we attempt to explore its advantages and disadvantages compared to controlled/living radical polymerizations, the main competitors of living carbanionic polymerization.
Collapse
Affiliation(s)
- Konstantinos Ntetsikas
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Saibal Bhaumik
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Guo L, Xu J, Du B. Self-assembly of ABCBA Linear Pentablock Terpolymers. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2178008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Lei Guo
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Junting Xu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Binyang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Wan Y, He J, Zhang Y. An Arbitrarily Regulated Monomer Sequence in Multi-Block Copolymer Synthesis by Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2023; 62:e202218248. [PMID: 36577704 DOI: 10.1002/anie.202218248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Rapid access to sequence-controlled multi-block copolymers (multi-BCPs) remains as a challenging task in the polymer synthesis. Here we employ a Lewis pair (LP) composed of organophosphorus superbase and bulky organoaluminum to effectively copolymerize the mixture of methacrylate, cyclic acrylate, and two acrylates, into well-defined di-, tri-, tetra- and even a hepta-BCP in one-pot one-step manner. The combined livingness, dual-initiation and CSC feature of Lewis pair polymerization enable us to achieve not only a trihexaconta-BCP with the highest record in 8 steps by using four-component monomer mixture as building blocks, but also the arbitrarily-regulated monomer sequence in multi-BCP, simply by changing the composition and adding order of the monomer mixtures, thus demonstrating the powerful capability of our strategy in improving the efficiency and enriching the composition of multi-BCP synthesis.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| |
Collapse
|
21
|
Cwynar P, Pasikowski P, Szweda R. One-pot approach for multi-step, iterative synthesis of sequence-defined oligocarbamates. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Yang J, Chen L, Zhu M, Ishaq MW, Chen S, Li L. Investigation of the Multimer Cyclization Effect during Click Step-Growth Polymerization of AB-Type Macromonomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinxian Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lunliang Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mo Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Waqas Ishaq
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shengqi Chen
- Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
23
|
Antonopoulou MN, Whitfield R, Truong NP, Anastasaki A. Controlling polymer dispersity using switchable RAFT agents: Unravelling the effect of the organic content and degree of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Davletbaeva IM, Sazonov OO, Dzhabbarov IM, Zaripov II, Davletbaev RS, Mikhailova AV. Optically Transparent Polydimethylsiloxane-Ethylene Oxide-Propylene Oxide Multiblock Copolymers Crosslinked with Isocyanurates as Organic Compound Sorbents. Polymers (Basel) 2022; 14:polym14132678. [PMID: 35808721 PMCID: PMC9269152 DOI: 10.3390/polym14132678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
New crosslinked (polydimethylsiloxane-ethylene-propylene oxide)-polyisocyanurate multiblock copolymers (MBCs) were synthesized, and their supramolecular structure and sorption characteristics were studied. It was found that the interaction of PPEG and D4 leads to polyaddition of D4 initiated by potassium-alcoholate groups. The use of the amphiphilic silica derivatives associated in an oligomeric medium (ASiPs) leads to structuring of the MBC due to the transetherification reaction of the terminal silanol groups of the MBC with ASiPs. It was established that the supramolecular structure of an MBC is built according to the “core-shell” structure. The obtained polymers were tested as sorbents for the development of new methods for the concentration and determination of inorganic compounds. The efficiency of sorption of reagents increased with an increase in the “thickness” of the polydimethylsiloxane component of the “shell” and with a decrease in the size of the polyisocyanurate “core”. The use of the obtained polymers as adsorbents of organic reagents is promising for increasing the efficiency of field methods of chemical testing and inorganic analysis, including the determination of the elemental composition and the detection of traces of contamination.
Collapse
Affiliation(s)
- Ilsiya M. Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
- Correspondence:
| | - Oleg O. Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
| | - Ilgiz M. Dzhabbarov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
| | - Ilnaz I. Zaripov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
| | - Ruslan S. Davletbaev
- Department of Materials Science, Welding and Industrial Safety, Kazan National Research Technical University Named after A.N. Tupolev, Kazan 420111, Russia;
| | - Alla V. Mikhailova
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow 119334, Russia;
| |
Collapse
|
25
|
Maruyama K, Kanazawa A, Aoshima S. Alternating Cationic Copolymerization of Vinyl Ethers and Aryl-Substituted Cyclic Acetals: Structural Investigation of Effects of Cyclic Acetals on Copolymerizability. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuya Maruyama
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
26
|
Yang Z, Hu C, Cui F, Pang X, Huang Y, Zhou Y, Chen X. One-Pot Precision Synthesis of AB, ABA and ABC Block Copolymers via Switchable Catalysis. Angew Chem Int Ed Engl 2022; 61:e202117533. [PMID: 35038202 DOI: 10.1002/anie.202117533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 12/28/2022]
Abstract
The switchable catalysis using a commercial salenMn catalyst was firstly developed and applied in the one-pot selective copolymerization from anhydrides, epoxides, CO2 and ϵ-caprolactone (ϵ-CL) mixtures for the precise synthesis of AB, ABA and novel ABC block copolymers. The observed unique double switch process comprising three different polymerization cycles was rationalized by theoretical calculations. Surprisingly, the first block turned out to be an efficient macromolecular initiator for the consecutive introduction of carbonate linkages into copolymers, albeit with dominant cyclization with the catalyst alone. Further, through the selective reaction on different epoxides, the switchable copolymerization of up to five monomers was achieved yielding well-defined multi-block copolymers with structural diversity and functionality.
Collapse
Affiliation(s)
- Zhenjie Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yuezhou Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
27
|
Self J, Zervoudakis AJ, Peng X, Lenart WR, Macosko CW, Ellison CJ. Linear, Graft, and Beyond: Multiblock Copolymers as Next-Generation Compatibilizers. JACS AU 2022; 2:310-321. [PMID: 35252981 PMCID: PMC8889609 DOI: 10.1021/jacsau.1c00500] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 05/10/2023]
Abstract
Properly addressing the global issue of unsustainable plastic waste generation and accumulation will require a confluence of technological breakthroughs on various fronts. Mechanical recycling of plastic waste into polymer blends is one method expected to contribute to a solution. Due to phase separation of individual components, mechanical recycling of mixed polymer waste streams generally results in an unsuitable material with substantially reduced performance. However, when an appropriately designed compatibilizer is used, the recycled blend can have competitive properties to virgin materials. In its current state, polymer blend compatibilization is usually not cost-effective compared to traditional waste management, but further technical development and optimization will be essential for driving future cost competitiveness. Historically, effective compatibilizers have been diblock copolymers or in situ generated graft copolymers, but recent progress shows there is great potential for multiblock copolymer compatibilizers. In this perspective, we lay out recent advances in synthesis and understanding for two types of multiblock copolymers currently being developed as blend compatibilizers: linear and graft. Importantly, studies of appropriately designed copolymers have shown them to efficiently compatibilize model binary blends at concentrations as low as ∼0.2 wt %. These investigations pave the way for studies on more complex (ternary or higher) mixed waste streams that will require novel compatibilizer architectures. Given the progress outlined here, we believe that multiblock copolymers offer a practical and promising solution to help close the loop on plastic waste. While a complete discussion of the implementation of this technology would entail infrastructural, policy, and social developments, they are outside the scope of this perspective which instead focuses on material design considerations and the technical advancements of block copolymer compatibilizers.
Collapse
Affiliation(s)
- Jeffrey
L. Self
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aristotle J. Zervoudakis
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiayu Peng
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William R. Lenart
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher W. Macosko
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Ellison
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Yang Z, Hu C, Cui F, Pang X, Huang Y, Zhou Y, Chen X. One‐pot Precision Synthesis of AB, ABA and ABC Block Copolymers via Switchable Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhenjie Yang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Chenyang Hu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Fengchao Cui
- Northeast Normal University Department of Chemistry CHINA
| | - Xuan Pang
- Changchun Institute of Applied Chemistry Key Laboratory of Polymer Ecomaterials 5625 Renmin St. 130022 Changchun CHINA
| | - Yuezhou Huang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Yanchuan Zhou
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| |
Collapse
|
29
|
Steube M, Johann T, Barent RD, Müller AH, Frey H. Rational design of tapered multiblock copolymers for thermoplastic elastomers. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Wang Z, Lan Y, Liu P, Li X, Zhao Y. Rational design of a multi-in-one heterofunctional agent for versatile topological transformation of multisite multisegmented polystyrenes. Polym Chem 2022. [DOI: 10.1039/d2py00662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “seven-in-one” initiating, coupling and stimuli-labile agent is designed to achieve topological transformations with reduced, similar and enhanced molar masses.
Collapse
Affiliation(s)
- Zhigang Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingjia Lan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
31
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
32
|
Thompson SW, Guimarães TR, Zetterlund PB. Multiblock copolymer synthesis via aqueous RAFT polymerization-induced self-assembly (PISA). Polym Chem 2022. [DOI: 10.1039/d2py01005d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Employing RAFT PISA emulsion polymerization to synthesize high molecular weight hexablock multiblock copolymers.
Collapse
Affiliation(s)
- Steven W. Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- School of Chemistry and Physics, Queensland University of Technology (OUT), Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
33
|
Concurrent control over sequence and dispersity in multiblock copolymers. Nat Chem 2021; 14:304-312. [PMID: 34845344 DOI: 10.1038/s41557-021-00818-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Controlling monomer sequence and dispersity in synthetic macromolecules is a major goal in polymer science as both parameters determine materials' properties and functions. However, synthetic approaches that can simultaneously control both sequence and dispersity remain experimentally unattainable. Here we report a simple, one pot and rapid synthesis of sequence-controlled multiblocks with on-demand control over dispersity while maintaining a high livingness, and good agreement between theoretical and experimental molecular weights and quantitative yields. Key to our approach is the regulation in the activity of the chain transfer agent during a controlled radical polymerization that enables the preparation of multiblocks with gradually ascending (Ɖ = 1.16 → 1.60), descending (Ɖ = 1.66 → 1.22), alternating low and high dispersity values (Ɖ = 1.17 → 1.61 → 1.24 → 1.70 → 1.26) or any combination thereof. We further demonstrate the potential of our methodology through the synthesis of highly ordered pentablock, octablock and decablock copolymers, which yield multiblocks with concurrent control over both sequence and dispersity.
Collapse
|
34
|
Le AN, Liang R, Ji X, Fu X, Zhong M. Random copolymerization of macromonomers as a versatile strategy to synthesize mixed‐graft block copolymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- An N. Le
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Ruiqi Liang
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Xiaoyu Ji
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Xiaowei Fu
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
- Department of Chemistry Yale University New Haven Connecticut USA
| |
Collapse
|
35
|
Liu F, Hou X, Hu B, Li R. Intrinsically Elastic Organic Semiconductors (IEOSs). Molecules 2021; 26:molecules26206130. [PMID: 34684711 PMCID: PMC8537692 DOI: 10.3390/molecules26206130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Elastic semiconductors are becoming more and more important to the development of flexible wearable electronic devices, which can be prepared by structural engineering design, blending, and the intrinsic elastification of organic semiconductors (intrinsically elastic organic semiconductor, IEOS). Compared with the elastic semiconductors prepared by structural engineering and blending, the IEOS prepared by organic synthesis has attracted numerous attentions for its solution processability and highly tunable chemical structures. For IEOSs, reasonable designs of synthetic routes and methods are the basis for realizing good mechanical and electrical properties. This brief review begins with a concise introduction of elastic semiconductors, then follows with several synthetic methods of IEOSs, and concludes the characteristics of each method, which provides guidance for the synthesis of IEOSs in the future. Furthermore, the properties of IEOSs are involved from the aspects of electrical, mechanical properties, and the applications of the IEOSs in elastic electronic devices. Finally, the challenge and an outlook which IEOSs are facing are presented in conclusion.
Collapse
Affiliation(s)
- Fei Liu
- Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xueling Hou
- Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
- Correspondence: (X.H.); (B.H.); (R.L.)
| | - Benlin Hu
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Correspondence: (X.H.); (B.H.); (R.L.)
| | - Runwei Li
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Correspondence: (X.H.); (B.H.); (R.L.)
| |
Collapse
|
36
|
Playing construction with the monomer toy box for the synthesis of multi‐stimuli responsive copolymers by reversible deactivation radical polymerization protocols. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Heck M, Botha C, Wilhelm M, Hirschberg V. One-Pot Synthesis of Alternating (Ultra-High Molecular Weight) Multiblock Copolymers via a Combination of Anionic Polymerization and Polycondensation. Macromol Rapid Commun 2021; 42:e2100448. [PMID: 34528318 DOI: 10.1002/marc.202100448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Indexed: 12/29/2022]
Abstract
This article presents a fast, straightforward synthesis approach to polymerize alternating multiblock copolymers, ultra-high molecular weight (UHMW) (homo)polymers as well as precursors for complex macromolecular topologies such as comb or barbwire architectures. The one-pot synthesis strategy proposed in this work is based on anionic polymerization via a bifunctional initiator and the subsequent linking of macro dianions with a bifunctional linker, additionally overcoming the limitations associated with the monomer reactivity. Thus, the synthetic route guarantees the repeating size of polymer blocks and an equal distribution of functional groups in precursors for complex topologies. Dianions of polystyrene (PS), polyisoprene-b-polystyrene-b-polyisoprene, and poly-2-vinylpyridine-b-polystyrene-b-poly-2-vinylpyridine are linked with α , α ' -dibromo-para-xylene to UHMW and multiblock copolymers. Multiblock copolymers with on average up to 50 well-defined alternating A and B blocks are accessible within 15 min.
Collapse
Affiliation(s)
- Matthias Heck
- Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Carlo Botha
- Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Manfred Wilhelm
- Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Valerian Hirschberg
- Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 18, 76131 Karlsruhe, Germany
| |
Collapse
|
38
|
Shahrokhinia A, Biswas P, Reuther JF. Orthogonal synthesis and modification of polymer materials. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210345] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ali Shahrokhinia
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - Priyanka Biswas
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - James F. Reuther
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| |
Collapse
|
39
|
Denisova YI, Shandryuk GA, Arinina MP, Levin IS, Zhigarev VA, Gringolts ML, Finkelshtein ES, Malkin AY, Kudryavtsev YV. Multiblock Copolymers of Norbornene and Cyclododecene: Chain Structure and Properties. Polymers (Basel) 2021; 13:1756. [PMID: 34072052 PMCID: PMC8199182 DOI: 10.3390/polym13111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
We investigate the structure-property relations of the multiblock copolymers of norbornene with cyclododecene synthesized via the macromolecular cross-metathesis reaction between amorphous polynorbornene and semicrystalline polydodecenamer in the presence of the first-generation Grubbs catalyst. By adjusting the reaction time, catalyst amount, and composition of the initial system, we obtain a set of statistical multiblock copolymers that differ in the composition and average length of norbornene and dodecenylene unit sequences. Structural, thermal, and mechanical characterization of the copolymers with NMR, XRD, DSC (including thermal fractionation by successive self-nucleation and annealing), and rotational rheology allows us to relate the reaction conditions to the average length of crystallizable unit sequences, thicknesses of corresponding lamellas, and temperatures of their melting. We demonstrate that isolated dodecenylene units can be incorporated into crystalline lamellas so that even nearly random copolymers should retain crystallinity. Weak high-temperature endotherms observed in the multiblock copolymers of norbornene with cyclododecene and other cycloolefins could indicate that the corresponding systems are microphase-separated in the melt state.
Collapse
Affiliation(s)
- Yulia I. Denisova
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia; (Y.I.D.); (G.A.S.); (M.P.A.); (I.S.L.); (V.A.Z.); (M.L.G.); (E.S.F.); (A.Y.M.)
| | - Georgiy A. Shandryuk
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia; (Y.I.D.); (G.A.S.); (M.P.A.); (I.S.L.); (V.A.Z.); (M.L.G.); (E.S.F.); (A.Y.M.)
| | - Marianna P. Arinina
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia; (Y.I.D.); (G.A.S.); (M.P.A.); (I.S.L.); (V.A.Z.); (M.L.G.); (E.S.F.); (A.Y.M.)
| | - Ivan S. Levin
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia; (Y.I.D.); (G.A.S.); (M.P.A.); (I.S.L.); (V.A.Z.); (M.L.G.); (E.S.F.); (A.Y.M.)
| | - Vsevolod A. Zhigarev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia; (Y.I.D.); (G.A.S.); (M.P.A.); (I.S.L.); (V.A.Z.); (M.L.G.); (E.S.F.); (A.Y.M.)
| | - Maria L. Gringolts
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia; (Y.I.D.); (G.A.S.); (M.P.A.); (I.S.L.); (V.A.Z.); (M.L.G.); (E.S.F.); (A.Y.M.)
| | - Eugene Sh. Finkelshtein
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia; (Y.I.D.); (G.A.S.); (M.P.A.); (I.S.L.); (V.A.Z.); (M.L.G.); (E.S.F.); (A.Y.M.)
| | - Alexander Ya. Malkin
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia; (Y.I.D.); (G.A.S.); (M.P.A.); (I.S.L.); (V.A.Z.); (M.L.G.); (E.S.F.); (A.Y.M.)
| | - Yaroslav V. Kudryavtsev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991 Moscow, Russia; (Y.I.D.); (G.A.S.); (M.P.A.); (I.S.L.); (V.A.Z.); (M.L.G.); (E.S.F.); (A.Y.M.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, 119071 Moscow, Russia
| |
Collapse
|
40
|
Clothier GKK, Guimarães TR, Moad G, Zetterlund PB. Multiblock Copolymer Synthesis via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization: Effects of Chain Mobility within Particles on Control over Molecular Weight Distribution. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Glenn K. K. Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10,l, Clayton South, Victoria 3169, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
41
|
Xiao L, Li J, Li W, Li W, Huang G. The synthesis of multiblock copolymer brush based on
DSPAAC
and
CuAAC
click reaction. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lifen Xiao
- College of Chemistry and Materials Science, Hengyang Normal University Key Laboratory of Functional Organometallic Materials of Hunan Province University Hengyang China
| | - Jie Li
- College of Chemistry and Materials Science, Hengyang Normal University Key Laboratory of Functional Organometallic Materials of Hunan Province University Hengyang China
| | - Wenyi Li
- College of Chemistry and Materials Science, Hengyang Normal University Key Laboratory of Functional Organometallic Materials of Hunan Province University Hengyang China
| | - Wei Li
- College of Chemistry and Materials Science, Hengyang Normal University Key Laboratory of Functional Organometallic Materials of Hunan Province University Hengyang China
| | - Geng Huang
- College of Chemistry and Materials Science, Hengyang Normal University Key Laboratory of Functional Organometallic Materials of Hunan Province University Hengyang China
| |
Collapse
|
42
|
Concurrent ring-opening and atom transfer radical polymerization for synthesis of block copolymers, and their comprehensive chromatographic characterization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Nutan B, Kumar A, Jewrajka SK. Library of Derivatizable Multiblock Copolymers by Nucleophilic Substitution Polymerization and Targeting Specific Properties. Biomacromolecules 2020; 21:5029-5043. [PMID: 33211470 DOI: 10.1021/acs.biomac.0c01195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiblock copolymers (MBCs) are fascinating in the field of biology-polymer chemistry interfaces. Synthesizing libraries of MBCs with tailor-made functionality is challenging as it involves multiple steps. Herein, a simple synthesis, analogous to polyurethane/Michael addition reactions, has been introduced to obtain a library of derivatizable MBCs. Nucleophilic substitution polymerization (SNP) of poly(ε-caprolactone) and poly(ethylene glycol) blocks containing activated halide termini by primary mono/di/coamines or clickable amines provides functional MBCs. The structure of amines directs the properties of the MBCs. The self-assembly of small molecular weight primary diamine-based MBCs shows controlled release of hydrophobic model guest molecules and therapeutics. The primary diamine (no dangling chain) helps to form MBC micelles having a relatively tight core with a low diffusion property. Antimicrobial property in the MBCs has been introduced by separating the cationic centers from the lipophilic groups using a coamine as a nucleophilic agent and a small molecular weight dihalide as a chain extender. Clickable MBCs were synthesized by changing the structure of the nucleophile to obtain degradable amphiphilic conetworks and hydrogels. Varieties of macromolecular entities could be obtained by switching the nucleophilic agent and introducing a small molecular weight chain extender. This synthesis approach provides an opportunity to tune the chemical functionality, topological structure, and biological properties of macromolecular entities.
Collapse
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avinash Kumar
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
44
|
Liu J, Li J, Wang CY, Ren Q. RAFT surfactant-free cationic emulsion polymerization of styrene: effect of hydrophobicity of block macro-RAFT agent. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1840923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jia Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Department of Materials Chemistry, Faculty of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Jian Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Department of Materials Chemistry, Faculty of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Chen Yi Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Department of Materials Chemistry, Faculty of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Qiang Ren
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Department of Materials Chemistry, Faculty of Materials Science and Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
45
|
Mitchell SM, Niradha Sachinthani KA, Pulukkody R, Pentzer EB. 100th Anniversary of Macromolecular Science Viewpoint: Polymerization of Cumulated Bonds: Isocyanates, Allenes, and Ketenes as Monomers. ACS Macro Lett 2020; 9:1046-1059. [PMID: 35648600 DOI: 10.1021/acsmacrolett.0c00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polymer chemistry offers exciting opportunities to tailor the properties of soft materials through control of the composition of the polymers and their interaction with each other, additives, and surfaces. Ongoing advances in the synthesis of polymeric materials demonstrate the drive for materials with tailored properties for enhanced performance in the next generation of materials and devices. One class of small molecules that can serve as monomers in chain growth polymerization are cumulated double bonds of the general form X═Y═Z. The three most common classes of these molecules are isocyanates (N═C═O), allenes (C═C═C), and ketenes (C═C═O), each of which has been explored as monomers under a variety of conditions. The orthogonality of the two pi bonds of the cumulated double bonds (i.e., lack of conjugation) enables the formation of different polymer backbones from a single monomer, provided the regioreactivity is controlled. This Viewpoint outlines the use of these three cumulated double bonds as monomers, illustrating success and current limitations to established polymerization methods. We then provide an outlook to the future of cumulated double bonds as monomers for the generation of tailored polymer compositions.
Collapse
Affiliation(s)
- Sarah M. Mitchell
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - K. A. Niradha Sachinthani
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Randinu Pulukkody
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Emily B. Pentzer
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
46
|
Gumus B, Herrera-Alonso M, Ramírez-Hernández A. Kinetically-arrested single-polymer nanostructures from amphiphilic mikto-grafted bottlebrushes in solution: a simulation study. SOFT MATTER 2020; 16:4969-4979. [PMID: 32432304 DOI: 10.1039/d0sm00771d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solution self-assembly of molecular bottlebrushes offers a rich platform to create complex functional organic nanostructures. Recently, it has become evident that kinetics, not just thermodynamics, plays an important role in defining the self-assembled structures that can be formed. In this work, we present results from extensive molecular dynamics simulations that explore the self-assembly behavior of mikto-grafted bottlebrushes when the solvent quality for one of the side blocks is changed by a rapid quench. We have performed a systematic study of the effect of different structural parameters and the degree of incompatibility between side chains on the final self-assembled nanostructures in the low concentration limit. We found that kinetically-trapped complex nanostructures are prevalent as the number of macromonomers increases. We performed a quantitative analysis of the self-assembled morphologies by computing the radius of gyration tensor and relative shape anisotropy as the different relevant parameters were varied. Our results are summarized in terms of non-equilibrium morphology diagrams.
Collapse
Affiliation(s)
- Bahar Gumus
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
47
|
Denisova YI, Roenko AV, Adzhieva OA, Gringolts ML, Shandryuk GA, Peregudov AS, Finkelshtein ES, Kudryavtsev YV. Facile synthesis of norbornene–ethylene–vinyl acetate/vinyl alcohol multiblock copolymers by the olefin cross-metathesis of polynorbornene with poly(5-acetoxy-1-octenylene). Polym Chem 2020. [DOI: 10.1039/d0py01167c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New norbornene−ethylene–vinyl acetate/vinyl alcohol multiblock copolymers are synthesized via the olefin cross-metathesis reaction of polynorbornene with poly(5-acetoxy-1-octenylene) followed by CC bond hydrogenation and acetoxy group deprotection.
Collapse
Affiliation(s)
- Yulia I. Denisova
- Topchiev Institute of Petrochemical Synthesis
- Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Alexey V. Roenko
- Topchiev Institute of Petrochemical Synthesis
- Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Olga A. Adzhieva
- Topchiev Institute of Petrochemical Synthesis
- Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Maria L. Gringolts
- Topchiev Institute of Petrochemical Synthesis
- Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Georgiy A. Shandryuk
- Topchiev Institute of Petrochemical Synthesis
- Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Alexander S. Peregudov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russia
| | | | | |
Collapse
|
48
|
Li M, Wang S, Li F, Zhou L, Lei L. Iodine-mediated photo-controlled atom transfer radical polymerization (photo-ATRP) and block polymerization combined with ring-opening polymerization (ROP) via a superbase. Polym Chem 2020. [DOI: 10.1039/d0py01031f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most organocatalysts for photo-controlled atom transfer radical polymerization (photo-ATRP) are metal complexes or synthetically elaborate organic dyes, which are toxic and expensive.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Sixuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Feifei Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Lin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Lin Lei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|