1
|
Li Y, Zhao C, Ning J, Duan H, Dou X. A Class of Promising Merocyanine-Functionalized Cd 33Se 33 Quantum Dots with Strong Fluorescence Emission in Tetrahydrofuran and Acetonitrile. J Phys Chem A 2025; 129:2745-2753. [PMID: 40056127 DOI: 10.1021/acs.jpca.5c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Owing to the existence of surface defects, quantum dots (QDs) could be unstable, and thus, the design of proper ligands to improve their stability and optical performance is challenging. In this work, four D-π-A ligands were designed by modulating the D part of merocyanine and were grafted onto Cd33Se33 QD via a Cd-S bond, forming Cd33Se33@D-π-A complexes. It was found that a hole trap appeared between the HOMO and LUMO of the Cd33Se33@D-π-A complexes in vacuum, and the stronger the electron-donating capability of the D part, the higher the activation energy of the trap, which disappeared in solvent environments. The ligand-to-metal charge transfer (LMCT) mechanism of Cd33Se33@D-π-A complexes induced a fluorescence quenching phenomenon in vacuum, while in solution, the local excitation on the D-π-A ligand facilitated stronger fluorescence due to the enhanced electron-donating capability of its D part. The present study provides a strategy for improving the optical performance of functional QDs through the design and optimization of D-π-A ligands, shedding light on the development and applications of novel functional QDs.
Collapse
Affiliation(s)
- Yingxing Li
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Chuanfang Zhao
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jinliang Ning
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiming Duan
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Xincun Dou
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Kulkarni VK, Albright EL, Zeinizade E, Steele E, Chen J, Ding L, Malola S, Takano S, Harrington K, Kwon N, Levchenko TI, Nambo M, Tsukuda T, Häkkinen H, Stamplecoskie K, Zheng G, Crudden CM. Impact of Ligand Structure on Biological Activity and Photophysical Properties of NHC-Protected Au 13 Nanoclusters. J Am Chem Soc 2025; 147:4017-4025. [PMID: 39841867 DOI: 10.1021/jacs.4c12072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
N-heterocyclic carbene (NHC)-protected gold nanoclusters display high stability and high photoluminescence, making them well-suited for fluorescence imaging and photodynamic therapeutic applications. We report herein the synthesis of two bisNHC-protected Au13 nanoclusters with π-extended aromatic systems. Depending on the position of the π-extended aromatic system, changes to the structure of the ligand shell in the cluster are observed, with the ability to correlate increases in rigidity with increases in fluorescence quantum yield. Density functional theory analysis reveals that both synthesized Au13 nanoclusters are 8-electron superatoms but have distinct differences in the characteristics of the lowest unoccupied single-electron states. Qualitatively, this implies different mechanisms for excitations and their decay over the fundamental energy gap. Stability and photophysical studies were carried out to provide the emission lifetime and optical purity of the two clusters. Active intracellular uptake of the nanoclusters was confirmed in vitro using confocal microscopy in human epithelial carcinoma cells. Reactive oxygen species production was measured at 7% efficiency. The high cluster stability, photoluminescence quantum yields, and efficient cellular uptake in cancer cells suggest potential for these nanoclusters as highly efficient and tunable nanomedical platforms.
Collapse
Affiliation(s)
- Viveka K Kulkarni
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Emily L Albright
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Elham Zeinizade
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Emily Steele
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Juan Chen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Lili Ding
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sami Malola
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Centre, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Shinjiro Takano
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kristen Harrington
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Nahyun Kwon
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tetyana I Levchenko
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Tatsuya Tsukuda
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hannu Häkkinen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Centre, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Kevin Stamplecoskie
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Gang Zheng
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
3
|
Hazer MSA, Malola S, Häkkinen H. Metal-ligand bond in group-11 complexes and nanoclusters. Phys Chem Chem Phys 2024; 26:21954-21964. [PMID: 39010760 DOI: 10.1039/d4cp00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Density functional theory is used to study geometric, energetic, and electronic properties of metal-ligand bonds in a series of group-11 metal complexes and ligand-protected metal clusters. We study complexes as the forms of M-L (L = SCH3, SC8H9, PPh3, NHCMe, NHCEt, NHCiPr, NHCBn, CCMe, CCPh) and L1-M-L2 (L1 = NHCBn, PPh3, and L2 = CCPh). Furthermore, we study clusters denoted as [M13L6Br6]- (L = PPh3, NHCMe, NHCEt, NHCiPr, NHCBn). The systems were studied at the standard GGA level using the PBE functional and including vdW corrections via BEEF-vdW. Generally, Au has the highest binding energies, followed by Cu and Ag. PBE and BEEF-vdW functionals show the order Ag-L > Au-L > Cu-L for bond lengths in both M-L complexes and metal clusters. In clusters, the smallest side group (CH3) in NHCs leads to the largest binding energy whereas no significant variations are seen concerning different side groups of NHC in M-L complexes. By analyzing the projected density of states and molecular orbitals in complexes and clusters, the M-thiolate bonds were shown to have σ and π bond characteristics whereas phosphines and carbenes were creating σ bonds to the transition metals. Interestingly, this analysis revealed divergent behavior for M-alkynyl complexes: while the CCMe group displayed both σ and π bonding features, the CCPh ligand was found to possess only σ bond properties in direct head-to-head binding configuration. Moreover, synergetic effects increase the average binding strength to the metal atom significantly in complexes of two different ligands and underline the potential of adding Cu to synthesize structurally richer cluster systems. This study helps in understanding the effects of different ligands on the stability of M-L complexes and clusters and suggests that PPh3 and NHCs-protected Cu clusters are most stable after Au clusters.
Collapse
Affiliation(s)
| | - Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Hannu Häkkinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
4
|
Yoshida K, Arima D, Mitsui M. Dissecting the Triplet-State Properties and Intersystem Crossing Mechanism of the Ligand-Protected Au 13 Superatom. J Phys Chem Lett 2023:10967-10973. [PMID: 38038710 DOI: 10.1021/acs.jpclett.3c02977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Icosahedral Au13 nanoclusters are among the most typical superatoms and are of great interest as promising building blocks for nanocluster-assembled materials. Herein, the key parameters involved in the intersystem crossing (ISC) process of [Au13(dppe)5Cl2]3+ (Au13; dppe = 1,2-bis(diphenylphosphino)ethane) were characterized. Quenching experiments using aromatic compounds revealed that the T1 energy of Au13 is 1.63 eV. An integrative interpretation of our experimental results and the relevant literature uncovered important facts concerning the Au13 superatom: the ISC quantum yield is unity due to the ultrafast ISC (∼1012 s-1), the lowest absorption band includes contributions of direct singlet-triplet transitions, and there exists a large S1-T1 gap of 0.73 eV. To explain the efficient ISC, the El-Sayed rule was applied to the superatomic orbitals corresponding to the excited-state hole/electron distributions obtained from theoretical calculations. The strong spin-orbit coupling between the S1 and T2-T4 states offers a reasonable explanation for the ultrafast ISC.
Collapse
Affiliation(s)
- Kouta Yoshida
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Daichi Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
5
|
Chen Z, Sun F, Tang Q. Thermal Stability and Electronic Properties of N-Heterocyclic Carbene-Protected Au 13 Nanocluster and Phosphine-Protected Analogues. J Phys Chem Lett 2023; 14:10648-10656. [PMID: 38031664 DOI: 10.1021/acs.jpclett.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Despite significant advances in manufacturing atomically precise gold nanoclusters protected by various ligands, there is a limited understanding of the thermal stability dynamics and electronic properties of ligand effects. We conducted ab initio molecular dynamics (AIMD) simulations on the well-characterized [Au13(NHCMe)9Cl3]2+ nanocluster and its counterpart [Au13(PMe3)9Cl3]2+ cluster to evaluate the thermal stability induced by N-heterocyclic carbene (NHC) and phosphine ligands. The result shows that under vacuum conditions, [Au13(PMe3)9Cl3]2+ is more stable than [Au13(NHCMe)9Cl3]2+, and both lead to metal nucleation decomposition, breaking into the Au12 fragment and L-Au-Cl (L = NHCMe or PMe3) complexes eventually. The optical and electronic properties of these two clusters change significantly due to ligand alteration. Furthermore, we have designed a novel [Au13(NHCMe)(PMe3)8Cl3]2+ cluster coprotected by NHC and phosphine ligands, displaying higher thermal stability than the homoligand protected [Au13(NHCMe)9Cl3]2+ and [Au13(PMe3)9Cl3]2+. Our hypothetical species are an interesting model for nanostructured materials, facilitating the experimental exploration of cluster synthesis and catalytic applications.
Collapse
Affiliation(s)
- Zhimin Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
6
|
Vanga M, Diroll BT, Muñoz-Castro ÁR, Dias HVR. Filling the gap with a bulky diaryl boron group: fluorinated and non-fluorinated copper pyrazolates fitted with a dimesityl boron moiety on the backbone. Dalton Trans 2023; 52:16356-16363. [PMID: 37861654 DOI: 10.1039/d3dt03167e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Successful synthesis has been reported of 4-Mes2B-3,5-(CF3)2PzH and 4-Mes2B-3,5-(CF3)2PzH bearing sterically demanding diarylboron moieties at the pyrazole ring 4-position, and their corresponding copper(I) pyrazolate complexes. They show visible blue photoluminescence in solution. The X-ray crystal structures revealed that the fluorinated {[4-BMes2-3,5-(CF3)2Pz]Cu}3 crystallizes as discrete trinuclear molecules whereas as the non-fluorinated {[4-BMes2-3,5-(CH3)2Pz]Cu}3 forms dimers of trimers with two close inter-trimer Cu⋯Cu separations. The solid {[4-BMes2-3,5-(CF3)2Pz]Cu}3 featuring a sterically confined Cu3N6 core displays bright blue phosphorescence while {[4-BMes2-3,5-(CH3)2Pz]Cu}3, which is a dimer of a trimer, is a red phosphor at room temperature. This work illustrates the modulation of photo-physical properties of metal pyrazolates by adjusting the supporting ligand steric features and introducing secondary diarylboron luminophores. Computational analysis of the structures and photophysical properties of copper complexes are also presented.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | - Álvaro R Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
7
|
Yu JH, Yuan ZR, Xu J, Wang JG, Azam M, Li TD, Li YZ, Sun D. Monoarsine-protected icosahedral cluster [Au 13(AsPh 3) 8Cl 4] +: comparative studies on ligand effect and surface reactivity with its stibine analogue. Chem Sci 2023; 14:6564-6571. [PMID: 37350827 PMCID: PMC10283507 DOI: 10.1039/d3sc01311a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023] Open
Abstract
Ligand shells of gold nanoclusters play important roles in regulating their molecular and electronic structures. However, the similar but distinct impacts of the homologous analogues of the protecting ligands remain elusive. The C2v symmetric monoarsine-protected cluster [Au13(AsPh3)8Cl4]+ (Au13As8) was facilely prepared by direct reduction of (Ph3As)AuCl with NaBH4. This cluster is isostructural with its previously reported stibine analogue [Au13(SbPh3)8Cl4]+ (Au13Sb8), enabling a comparative study between them. Au13As8 exhibits a blue-shifted electronic absorption band, and this is probably related to the stronger π-back donation interactions between the Au13 core and AsPh3 ligands, which destabilize its superatomic 1P and 1D orbitals. In comparison to the thermodynamically less stable Au13Sb8, Au13As8 achieves a better trade-off between catalytic stability and activity, as demonstrated by its excellent catalytic performance towards the aldehyde-alkyne-amine (A3) coupling reaction. Moreover, the ligand exchange reactions between Au13As8 with phosphines, as exemplified by PPh3 and Ph2P(CH2)2PPh2, suggest that Au13As8 may be a good precursor cluster for further cluster preparation through the "cluster-to-cluster" route.
Collapse
Affiliation(s)
- Jiu-Hong Yu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Zhi-Rui Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Jin-Gui Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Tian-Duo Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Ying-Zhou Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Ji'nan 250353 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 P. R. China
| |
Collapse
|
8
|
Wei J, MacLeod Carey D, Halet JF, Kahlal S, Saillard JY, Muñoz-Castro A. From 8- to 18-Cluster Electrons Superatoms: Evaluation via DFT Calculations of the Ligand-Protected W@Au 12(dppm) 6 Cluster Displaying Distinctive Electronic and Optical Properties. Inorg Chem 2023; 62:3047-3055. [PMID: 36734972 DOI: 10.1021/acs.inorgchem.2c03771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The iconic W@Au12 icosahedral bare cluster reaches the favorable closed-shell superatomic electron configuration 1S2 1P6 1D10, making it an 18-cluster electron (18-ce) superatom. Here, we pursue the evaluation of a ligand-protected counterpart based on the construction of a fully phosphine-protected [W@Au12(dppm)6] cluster strongly related to the characterized [Au13(dppm)6]5+ homometallic counterpart. The later cluster has the same total number of valence electrons as the former but is considered an 8-ce superatom with 1S2 1P6 configuration. The fundamental differences between 8- and 18-ce species are investigated. The character of the frontier orbitals varies from 1P/1D in the 8-ce case to a 1D/ligand for 18-ce species, enabling an efficient charge transfer toward the ligands upon irradiation, being interesting for electron injection in optoelectronic devices and black absorbers applications. Excited-state properties are also revisited, showing different geometrical and electronic structure variations between 8- and 18-ce species. Moreover, the continuum between the 8- and 18-ce limits has been explored by varying the nature of the encapsulated dopant between group 6 and group 11. The transition between the 8- and 18-ce counts can be formally situated between Pt (8-ce) and Ir (18-ce). Thus, 18-ce derivatives obtained as doped counterparts of homometallic gold clusters can introduce useful alternatives to achieve different properties in related structural motifs, which can be further explored owing to their extension of the well-established versatility of current gold nanoclusters.
Collapse
Affiliation(s)
- Jianyu Wei
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Univ Rennes, CNRS, F-35000Rennes, France
| | - Desmond MacLeod Carey
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago7500912, Chile
| | - Jean-François Halet
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba305-0044, Japan
| | - Samia Kahlal
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Univ Rennes, CNRS, F-35000Rennes, France
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Univ Rennes, CNRS, F-35000Rennes, France
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago8420524, Chile
| |
Collapse
|
9
|
Hassen S, Zouaghi MO, Slimani I, Arfaoui Y, Namık Özdemir, Özdemir I, Gürbüz N, Mansour L, Gatri R, Hamdi N. Synthesis, crystal structures, DFT calculations, and catalytic application in hydrosilylation of acetophenone derivatives with triethylsilane of novel rhoduim-N-heterocyclic carbene (NHCs) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Wei J, Kahlal S, Halet JF, Muñoz-Castro A, Saillard JY. Ligand-Induced Cuboctahedral versus Icosahedral Core Isomerism within Eight-Electron Heterocyclic-Carbene-Protected Gold Nanoclusters. Inorg Chem 2022; 61:8623-8628. [PMID: 35640274 DOI: 10.1021/acs.inorgchem.2c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The controlled structural modification of ligand-protected gold clusters is evaluated by a proper variation of the size and shape of N-heterocyclic carbene (NHC) ligands. Density functional theory calculations show that the Au13 core of [Au13(NHC)8Br4]+ can be shaped into an icosahedron and/or a so far unexpected cuboctahedron depending on the sterical effect inferred by the NHC ligand side arms. As a result, the cluster properties can be modified, encouraging further exploration on controlled core isomerization in ligated gold cluster chemistry.
Collapse
Affiliation(s)
- Jianyu Wei
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, Rennes F-35000, France
| | - Samia Kahlal
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, Rennes F-35000, France
| | - Jean-François Halet
- Laboratory for Innovative Key Materials and Structures, National Institute for Materials Science─Saint-Gobain, CNRS, IRL 3629, Tsukuba 305-0044, Japan
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, Rennes F-35000, France
| |
Collapse
|
11
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
12
|
|
13
|
Wang X, Zhao L, Li X, Liu Y, Wang Y, Yao Q, Xie J, Xue Q, Yan Z, Yuan X, Xing W. Atomic-precision Pt 6 nanoclusters for enhanced hydrogen electro-oxidation. Nat Commun 2022; 13:1596. [PMID: 35332161 PMCID: PMC8948276 DOI: 10.1038/s41467-022-29276-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
The discord between the insufficient abundance and the excellent electrocatalytic activity of Pt urgently requires its atomic-level engineering for minimal Pt dosage yet maximized electrocatalytic performance. Here we report the design of ultrasmall triphenylphosphine-stabilized Pt6 nanoclusters for electrocatalytic hydrogen oxidation reaction in alkaline solution. Benefiting from the self-optimized ligand effect and atomic-precision structure, the nanocluster electrocatalyst demonstrates a high mass activity, a high stability, and outperforms both Pt single atoms and Pt nanoparticle analogues, uncovering an unexpected size optimization principle for designing Pt electrocatalysts. Moreover, the nanocluster electrocatalyst delivers a high CO-tolerant ability that conventional Pt/C catalyst lacks. Theoretical calculations confirm that the enhanced electrocatalytic performance is attributable to the bifold effects of the triphenylphosphine ligand, which can not only tune the formation of atomically precise platinum nanoclusters, but also shift the d-band center of Pt atoms for favorable adsorption kinetics of *H, *OH, and CO. While Pt is an active fuel cell catalyst, it’s low abundance and high cost spurs research into boosting performances from lesser Pt amounts. Here, authors design atomically precise triphenylphosphine-stabilized Pt nanoclusters with high activities and durabilities for electrocatalytic H2 oxidation.
Collapse
Affiliation(s)
- Xiaoning Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Lianming Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Xuejin Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yesheng Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Qingzhong Xue
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
| | - Wei Xing
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China.
| |
Collapse
|
14
|
Muñoz-Castro A. N-Heterocyclic carbene derivatives to modify gold superatom characteristics. Tailorable electronic and optical properties of [Au 11(PPh 3) 7LCl 2] + as a cluster from relativistic DFT. Phys Chem Chem Phys 2022; 24:5965-5973. [PMID: 35195620 DOI: 10.1039/d1cp04310b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomically precise gold superatoms are useful building blocks whose properties can be tuned by the proper choice of ligands in the protecting ligand layer. Herein, different N-heterocyclic carbene (NHC) derivatives of the prototypical [Au11(PPh3)8Cl2]+ cluster were evaluated by the replacement of a single ligand, which led to isoelectronic [Au11(PPh3)7(NHC)Cl2]+ species, enabling further understanding of the possible changes in the resulting cluster properties. Our results reveal the great variation in the HOMO-LUMO gap and optical features when going from strong to weak σ-donor NHC ligands. The Au11 core retains similar features throughout the series, and the lowest unoccupied orbital (LUMO) is further stabilized, indicating greater π*-NHC character for the weaker σ-donor ligands, which favors directional core-ligand optical charge transfer to a single ligand. The ligand-tailored behavior of the [Au11(PPh3)7LCl2]+ cluster underlies its tunable characteristics, indicating its potential use in novel devices as building blocks of nanostructured materials, which favors further versatility and applications of superatomic clusters.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.
| |
Collapse
|
15
|
Xu C, Zhou Y, Yi J, Li D, Shi L, Cheng L. Tri- and Tetra-superatomic Molecules in Ligand-Protected Face-Fused Icosahedral (M@Au 12) n (M = Au, Pt, Ir, and Os, and n = 3 and 4) Clusters. J Phys Chem Lett 2022; 13:1931-1939. [PMID: 35187932 DOI: 10.1021/acs.jpclett.2c00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cluster assembling has been one of the hottest topics in nanochemistry. In certain ligand-protected gold clusters, bi-icosahedral cores assembled from Au13 superatoms were found to be analogues of diatomic molecules F2, N2, and singlet O2, respectively, in electronic shells, depending upon the super valence bond (SVB) model. However, challenges still remain for extending the scale in cluster assembling via the SVB model. In this work, ligand-protected tri- and tetra-superatomic clusters composed of icosahedral M@Au12 (M = Au, Pt, Ir, and Os) units are theoretically predicted. These clusters are stable with reasonable highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps and proven to be analogues of simple triatomic (Cl3-, OCl2, O3, and CO2) and tetra-atomic (N≡C-C≡N, and Cl-C≡C-Cl) molecules in both geometric and electronic structures. Moreover, a stable cluster-assembling gold nanowire is predicted following the same rules. This work provides effective electronic rules for cluster assembling on a larger scale and gives references for their experimental synthesis.
Collapse
Affiliation(s)
- Chang Xu
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Yichun Zhou
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Jiuqi Yi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Dan Li
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
16
|
Wei J, Kahlal S, Halet JF, Saillard JY, Muñoz-Castro A. Insight Into the Stability and Electronic and Optical Properties of N-Heterocyclic Carbene Analogues of Halogen/Phosphine-Protected Au 13 Superatomic Clusters. J Phys Chem A 2022; 126:536-545. [PMID: 35044183 DOI: 10.1021/acs.jpca.1c09084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atomically precise gold nanoclusters (AuNCs) belong to a relevant area offering useful templates with tunable properties toward functional nanostructures. In this work, we explored the feasible incorporation of N-heterocyclic carbenes (NHCs), as part of the protecting-ligand shell in AuNCs. Our results, which are based on the substitution of phosphine ligands in experimentally characterized AuNCs by NHCs in various eight-electron superatoms Au13 and M4Au9 (M = Cu, Ag), indicate similar electronic structure and stability but somewhat different optical properties. These findings support the feasible obtention of novel targets for explorative synthetic efforts featuring NHC ligands on medium-sized species based on the recurrent Au13 icosahedral core. The hypothetical species appear to be interesting templates for building blocks in nanostructured materials with tuned properties, which encourage experimental exploration of ligand versatility in homo- and heterometallic superatomic clusters.
Collapse
Affiliation(s)
- Jianyu Wei
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Samia Kahlal
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Jean-François Halet
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, 8910188 Santiago, Chile
| |
Collapse
|
17
|
Day PN, Pachter R, Nguyen KA. Calculated linear and nonlinear optical absorption spectra of phosphine-ligated gold clusters. Phys Chem Chem Phys 2022; 24:11234-11248. [DOI: 10.1039/d2cp01232d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although prediction of optical excitations of ligated gold clusters by time-dependent density functional theory (TDDFT) is relatively well-established, limitations still exist, for example in the choice of the exchange-correlation functional....
Collapse
|
18
|
Abstract
Superatomic molecular orbitals (SAMOs) have symmetries (angular quantum numbers) similar to those of atoms, and thus, it is possible to realize Rydberg state excitations (RSEs) in superatomic molecules. In this Letter, the feasibility of superatomic Rydberg state excitation (SRSE) is explored using gold superatoms based on first-principles calculations. The results show that the SRSE exists in the high and low excited states of the gold superatoms and their SAMOs make a major contribution to electronic transitions. The radial distribution function of electronic density shows that the main distribution of electrons in the lowest unoccupied molecular orbitals and other unoccupied superatomic molecular orbitals is extremely far from the geometric center, and thus, they can be unambiguously identified as Rydberg orbitals. We found that due to the two-dimensional ductility of the planar SAMOs, superatoms are superior in the RSE regulation. Our findings may provide a new source of superatom-based RSE and will contribute to the regulation and efficient preparation of Rydberg states.
Collapse
Affiliation(s)
- Zheng Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xiaochen Wu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Rui Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Famin Yu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Cowan MJ, Nagarajan AV, Mpourmpakis G. Correlating structural rules with electronic properties of ligand-protected alloy nanoclusters. J Chem Phys 2021; 155:024303. [PMID: 34266280 DOI: 10.1063/5.0056690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thiolate protected gold nanoclusters (TPNCs) are a unique class of nanomaterials finding applications in various fields, such as biomedicine, optics, and catalysis. The atomic precision of their structure, characterized through single crystal x-ray diffraction, enables the accurate investigation of their physicochemical properties through electronic structure calculations. Recent experimental efforts have led to the successful heterometal doping of TPNCs, potentially unlocking a large domain of bimetallic TPNCs for targeted applications. However, how TPNC size, bimetallic composition, and location of dopants influence electronic structure is unknown. To this end, we introduce novel structure-property relationships (SPRs) that predict electronic properties such as ionization potential (IP) and electron affinity (EA) of AgAu TPNCs based on physically relevant descriptors. The models are constructed by first generating a hypothetical AgAu TPNC dataset of 368 structures with sizes varying from 36 to 279 metal atoms. Using our dataset calculated with density functional theory (DFT), we employed systematic analyses to unravel size, composition, and, importantly, core-shell effects on TPNC EA and IP behavior. We develop generalized SPRs that are able to predict electronic properties across the AgAu TPNC materials space. The models leverage the same three fundamental descriptors (i.e., size, composition, and core-shell makeup) that do not require DFT calculations and rely only on simple atom counting, opening avenues for high throughput bimetallic TPNC screening for targeted applications. This work is a first step toward finely controlling TPNC electronic properties through heterometal doping using high throughput computational means.
Collapse
Affiliation(s)
- Michael J Cowan
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15216, USA
| | | | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15216, USA
| |
Collapse
|
20
|
Wei J, Rodríguez-Kessler PL, Halet JF, Kahlal S, Saillard JY, Muñoz-Castro A. On Heteronuclear Isoelectronic Alternatives to [Au13(dppe)5Cl2]3+: Electronic and Optical Properties of the 18-Electron Os@[Au12(dppe)5Cl2] Cluster from Relativistic Density Functional Theory Computations. Inorg Chem 2021; 60:8173-8180. [DOI: 10.1021/acs.inorgchem.1c00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianyu Wei
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) − UMR 6226, Rennes F-35000, France
| | - Peter L. Rodríguez-Kessler
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago 8320000, Chile
| | - Jean-François Halet
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) − UMR 6226, Rennes F-35000, France
- CNRS-Saint Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Samia Kahlal
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) − UMR 6226, Rennes F-35000, France
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) − UMR 6226, Rennes F-35000, France
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago 8320000, Chile
| |
Collapse
|
21
|
Lei Z, Pei XL, Ube H, Shionoya M. Reconstituting C-Centered Hexagold(I) Clusters with N-Heterocyclic Carbene Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Shichibu Y, Ogawa Y, Sugiuchi M, Konishi K. Chiroptical activity of Au 13 clusters: experimental and theoretical understanding of the origin of helical charge movements. NANOSCALE ADVANCES 2021; 3:1005-1011. [PMID: 36133296 PMCID: PMC9416943 DOI: 10.1039/d0na00833h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 05/07/2023]
Abstract
Ligand-protected gold clusters with an asymmetric nature have emerged as a novel class of chiral compounds, but the origins of their chiroptical activities associated with helical charge movements in electronic transitions remain unexplored. Herein, we perform experimental and theoretical studies on the structures and chiroptical properties of Au13 clusters protected by mono- and di-phosphine ligands. Based on the experimental reevaluation of diphosphine-ligated Au13 clusters, we show that these surface ligands slightly twist the Au13 cores from a true icosahedron to generate intrinsic chirality in the gold frameworks. Theoretical investigation of a monophosphine-ligated cluster model reproduced the experimentally observed circular dichroism (CD) spectrum, indicating that such a torsional twist of the Au13 core, rather than the surrounding chiral environment by helically arranged diphosphine ligands, contributes to the appearance of the chiroptical response. We also show that the calculated CD signals are dependent on the degree of asymmetry (torsion angle between the two equatorial Au5 pentagons), and provide a visual understanding of the origin of helical charge movements with transition-moment and transition-density analyses. This work provides novel insights into the chiroptical activities of ligand-protected metal clusters with intrinsically chiral cores.
Collapse
Affiliation(s)
- Yukatsu Shichibu
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
- Faculty of Environmental Earth Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Yuri Ogawa
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Mizuho Sugiuchi
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Katsuaki Konishi
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
- Faculty of Environmental Earth Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| |
Collapse
|
23
|
Linares-Flores C, Guajardo-Maturana R, Tirapegui C, Velasquez L, Arratia-Perez R, Schott E. Revising the formation and electronic properties in flavylium derivatives. A theoretical tandem towards optimized DSSCs. NEW J CHEM 2021. [DOI: 10.1039/d0nj04701e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of benzopyrylium derivatives obtained from a luminescent precursor, including the optical pathway, bonding analysis, and transmission properties, toward green energy applications.
Collapse
Affiliation(s)
- Cristian Linares-Flores
- Grupo de Investigación en Energía y Procesos Sustentables, Instituto de Ciencias Químicas Aplicadas
- Facultad de ingeniería
- Universidad Autónoma de Chile
- San Miguel
- Chile
| | - Raul Guajardo-Maturana
- Universidad SEK
- Facultad de Ciencias de la Salud
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK (I3CBSEK) Chile
- Providencia
- Chile
| | - Cristian Tirapegui
- Grupo de Investigación en Energía y Procesos Sustentables, Instituto de Ciencias Químicas Aplicadas
- Facultad de ingeniería
- Universidad Autónoma de Chile
- San Miguel
- Chile
| | - Luis Velasquez
- Universidad SEK
- Facultad de Ciencias de la Salud
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK (I3CBSEK) Chile
- Providencia
- Chile
| | - Ramiro Arratia-Perez
- Centro de Nanociencias Aplicadas
- Facultad de Ciencias Exactas
- Universidad Andrés Bello
- Santiago
- Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica
- Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile
- Santiago
- Chile
- Millenium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC)
| |
Collapse
|
24
|
Rojas-Poblete M, Rodríguez-Kessler PL, Guajardo Maturana R, Muñoz-Castro A. Coinage-metal pillarplexes hosts. Insights into host-guest interaction nature and luminescence quenching effects. Phys Chem Chem Phys 2021; 23:15917-15924. [PMID: 34086020 DOI: 10.1039/d1cp00849h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Host-guest chemistry is a relevant issue in materials science, which encourages further development of versatile host structures. Here the particular features of coinage-metal pillarplexes are evaluated towards formation of host-guest aggregates by the inclusion of 1,8-diaminooctane, as characterized for [M8(LMe)2]4+ (M = Ag, and, Au). The obtained results denotes the main contribution from van der Waals type interaction (50%), followed by a contribution from orbital polarization and electrostatic nature (20% and 30%), involving both orbitalary and electrostatic terms. Throughout the different coinage-metal based hosts (M = Cu, Ag, and Au), a similar interaction energy is found given by the large contribution of the π-surface from the organic ligand backbone to both van de Waals and electrostatic interactions. This suggests that a similar host structure can be obtained for the lighter copper counterpart, retaining similar how-guest features. Moreoves, the [Au8(LMe)2]4+ host exhibits inherent luminescent properties, involving the shortening of Au(i)-Au(i) contacts at the excited state, which is partially avoided when the guest is incorporated, accounting for the observed quenching from titration experiments. This results encourages further exploration of coinage metal hosts in the formation of inclusion complexes.
Collapse
Affiliation(s)
- Macarena Rojas-Poblete
- Instituto de Ciencias Químicas Aplicadas, Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.
| | | | | | | |
Collapse
|
25
|
Lu Z, Yang YJ, Ni WX, Li M, Zhao Y, Huang YL, Luo D, Wang X, Omary MA, Li D. Aggregation-induced phosphorescence sensitization in two heptanuclear and decanuclear gold-silver sandwich clusters. Chem Sci 2020; 12:702-708. [PMID: 34163803 PMCID: PMC8179010 DOI: 10.1039/d0sc05095d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/23/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
The strategy of aggregation-induced emission enhancement (AIEE) has been proven to be efficient in wide areas and has recently been adopted in the field of metal nanoclusters. However, the relationship between atomically precise clusters and AIEE is still unclear. Herein, we have successfully obtained two few-atom heterometallic gold-silver hepta-/decanuclear clusters, denoted Au6Ag and Au9Ag, and determined their structures by X-ray diffraction and mass spectrometry. The nature of the AuI⋯AgI interactions thereof is demonstrated through energy decomposition analysis to be far-beyond typical closed-shell metal-metal interaction dominated by dispersion interaction. Furthermore, a positive correlation has been established between the particle size of the nanoaggregates and the photoluminescence quantum yield for Au6Ag, manifesting AIEE control upon varying the stoichiometric ratio of Au : Ag in atomically-precise clusters.
Collapse
Affiliation(s)
- Zhou Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
- Department of Chemistry, University of North Texas 1155 Union Circle #305070 Denton Texas 76203 USA
| | - Yu-Jie Yang
- Department of Chemistry, Shantou University Guangdong 515063 P. R. China
| | - Wen-Xiu Ni
- Department of Chemistry, Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Mian Li
- Department of Chemistry, Shantou University Guangdong 515063 P. R. China
| | - Yifang Zhao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge Tennessee 37831-6475 USA
| | - Mohammad A Omary
- Department of Chemistry, University of North Texas 1155 Union Circle #305070 Denton Texas 76203 USA
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
26
|
Wei J, Halet JF, Kahlal S, Saillard JY, Muñoz-Castro A. Toward the Formation of N-Heterocyclic-Carbene-Protected Gold Clusters of Various Nuclearities. A Comparison with Their Phosphine-Protected Analogues from Density Functional Theory Calculations. Inorg Chem 2020; 59:15240-15249. [PMID: 33021784 DOI: 10.1021/acs.inorgchem.0c02219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The structure and bonding of a series of selected phosphine-protected gold clusters (Aun-P) of nuclearity varying from n = 6 to 13 were investigated by density functional theory (DFT) calculations and compared to those of the hypothetical homologues in which phosphines were replaced by N-heterocyclic carbene (NHC) analogues (Aun-C). Both the Aun-P and Aun-C series exhibit similar stabilities and structural features, except for n = 6, where some differences are noted. The NHC ligands are found to be even slightly more strongly bonded to the gold core (by a few kilocalories per mole per ligand) than phosphines. Investigation of the optical properties of both series using time-dependent DFT calculations indicates similarities in the nature and energies of the UV-vis optical transitions and, consequently, relatively similar shapes of the simulated spectra, with a general blue-shift tendency when going from Aun-P to Aun-C. The fluorescence behavior observed experimentally for some of the Aun-P species is expected to occur also for their Aun-C analogues, which can be extended to other carbene-ligand-protected nanoclusters. Our results show that it should be possible to stabilize gold clusters with NHC ligands, in relation to the seminal Au13-ligand-protected core, offering novel building blocks for the design of nanostructured materials with various properties.
Collapse
Affiliation(s)
- Jianyu Wei
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, F-35000 Rennes, France
| | - Jean-François Halet
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, F-35000 Rennes, France
| | - Samia Kahlal
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, F-35000 Rennes, France
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, F-35000 Rennes, France
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile
| |
Collapse
|
27
|
Nashimoto T, Yao H. Strong chiroptical activity in Au 25 clusters protected by mixed ligands of chiral phosphine and achiral thiolate. Phys Chem Chem Phys 2020; 22:15288-15294. [PMID: 32617542 DOI: 10.1039/d0cp02543g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the successful synthesis of a chiroptically active Au25 cluster protected by mixed ligands of chiral bidentate S-BINAP and achiral dodecanethiol (DDT), which can be formulated as [Au25(S-BINAP)4(DDT)5X4] (X = Cl or Br). The UV-vis absorption spectral pattern is similar to that of the well-known bi-icosahedral cluster [Au25(PPh3)10(SR)5X2]2+, so the obtained cluster should also have a similar bi-icosahedral structure assembled from two vertex-sharing icosahedral Au13 units. With a closer inspection of the optical absorption, interestingly, the lowest-energy peak is red-shifted as compared to that of [Au25(PPh3)10(SR)5X2]2+. Quantum chemical calculations for model bi-icosahedral Au25 structures suggest the reason of the red shift. On the other hand, the obtained Au25 cluster exhibits a weak CD signature in the lowest-energy transition region, whereas higher-energy transitions have very large chiroptical responses with a maximum g-factor of 1.7 × 10-3. The calculations also give implications for the origin of the CD response in the Au25 cluster. We then believe that bi-icosahedral Au25 clusters with chirality will be a good prototype for understanding the influence of constituent Au13 units on the chiroptical activity of their assembling structures.
Collapse
Affiliation(s)
- Takumi Nashimoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| | | |
Collapse
|
28
|
Shi Q, Qin Z, Ping G, Liu S, Xu H, Li G. Alkynyl- and phosphine-ligated quaternary Au 2Ag 2 clusters featuring an Alkynyl-AuAg motif for multicomponent coupling. RSC Adv 2020; 10:21650-21655. [PMID: 35518730 PMCID: PMC9054367 DOI: 10.1039/d0ra02178d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/01/2020] [Indexed: 11/21/2022] Open
Abstract
The coordination motif of alkynly with a metal atom is versatile and plays a pivotal role in tailoring the kernel configuration of the atomically precise metal nanoclusters. In this study, we synthesized a new mono-valent Au(I)2Ag(I)2(C10H6NO)4(Ph3P)2 alloy cluster with a very high yield of >90%, which is well characterized by a serial of technologies, e.g. UV-vis, X-ray single crystal diffraction (SCXRD) and FT-IR. The SCXRD analysis shows the alloy cluster is composed of a quadrangular Au2Ag2 kernel protected by four alkynyl and two phosphine ligands. Intriguingly, a new divergent alkyne-metal coordination model is revealed in this cluster, the alkynyl ligands selectively bind to Au and Ag atoms via σ- and π-bond configurations and adopt a VI-shaped alkynyl-M motif. It is distinct from the convergent motif observed in big clusters featuring an IV- or V-shaped alkynyl-M motif due to the steric effect. Finally, the titanium oxide-supported Au2Ag2 cluster catalysts show good catalytic performance in the multicomponent coupling reaction of alkynes, aldehydes and amines.
Collapse
Affiliation(s)
- Quanquan Shi
- College of Science & Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Inner Mongolia Agricultural University Hohhot 010018 China
| | - Zhaoxian Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Guichen Ping
- College of Science & Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Inner Mongolia Agricultural University Hohhot 010018 China
| | - Shuang Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Hui Xu
- College of Science & Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Inner Mongolia Agricultural University Hohhot 010018 China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
29
|
Narouz MR, Takano S, Lummis PA, Levchenko TI, Nazemi A, Kaappa S, Malola S, Yousefalizadeh G, Calhoun LA, Stamplecoskie KG, Häkkinen H, Tsukuda T, Crudden CM. Robust, Highly Luminescent Au 13 Superatoms Protected by N-Heterocyclic Carbenes. J Am Chem Soc 2019; 141:14997-15002. [PMID: 31497943 DOI: 10.1021/jacs.9b07854] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gold superatom nanoclusters stabilized entirely by N-heterocyclic carbenes (NHCs) and halides are reported. The reduction of well-defined NHC-Au-Cl complexes produces clusters comprised of an icosahedral Au13 core surrounded by a symmetrical arrangement of nine NHCs and three chlorides. X-ray crystallography shows that the clusters are characterized by multiple CH-π and π-π interactions, which rigidify the ligand and likely contribute to the exceptionally high photoluminescent quantum yields observed, up to 16.0%, which is significantly greater than that of the most luminescent ligand-protected Au13 superatom cluster. Density functional theory analysis suggests that clusters are 8-electron superatoms with a wide HOMO-LUMO energy gap of 2 eV. Consistent with this, the clusters have high stability relative to phosphine stabilized clusters.
Collapse
Affiliation(s)
- Mina R Narouz
- Department of Chemistry , Queen's University , Chernoff Hall, Kingston , Ontario K7L 3N6 , Canada
| | - Shinjiro Takano
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Paul A Lummis
- Department of Chemistry , Queen's University , Chernoff Hall, Kingston , Ontario K7L 3N6 , Canada
| | - Tetyana I Levchenko
- Department of Chemistry , Queen's University , Chernoff Hall, Kingston , Ontario K7L 3N6 , Canada
| | - Ali Nazemi
- Department of Chemistry , Queen's University , Chernoff Hall, Kingston , Ontario K7L 3N6 , Canada
| | - Sami Kaappa
- Departments of Chemistry and Physics, Nanoscience Center , University of Jyväskylä , 40014 Jyväskylä , Finland
| | - Sami Malola
- Departments of Chemistry and Physics, Nanoscience Center , University of Jyväskylä , 40014 Jyväskylä , Finland
| | - Goonay Yousefalizadeh
- Department of Chemistry , Queen's University , Chernoff Hall, Kingston , Ontario K7L 3N6 , Canada
| | - Larry A Calhoun
- Department of Chemistry , University of New Brunswick Fredericton , New Brunswick E3B 5A3 , Canada
| | - Kevin G Stamplecoskie
- Department of Chemistry , Queen's University , Chernoff Hall, Kingston , Ontario K7L 3N6 , Canada
| | - Hannu Häkkinen
- Departments of Chemistry and Physics, Nanoscience Center , University of Jyväskylä , 40014 Jyväskylä , Finland
| | - Tatsuya Tsukuda
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB) , Kyoto University , Katsura , Kyoto 615-8520 , Japan
| | - Cathleen M Crudden
- Department of Chemistry , Queen's University , Chernoff Hall, Kingston , Ontario K7L 3N6 , Canada.,Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa, Nagoya 464-8602 , Japan
| |
Collapse
|