1
|
He YW, Huang L, Huang K, Yan CG, Sun J, Han Y. Construction of Diverse Fused Chromene Frameworks via Isocyanide-Based Three-Component Reaction. J Org Chem 2024; 89:10854-10866. [PMID: 38993063 DOI: 10.1021/acs.joc.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A convenient synthetic protocol for diverse fused chromenes was successfully developed by a three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and various cyclic 1,3-dipolarophiles containing o-hydroxyphenyl group. In the absence of any catalyst, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and 3-(o-hydroxyarylidene)indolin-2-ones in tetrahydrofuran at 60 °C resulted in unique functionalized spiro[cyclobuta[c]chromene-1,3'-indolines] in good yields and with high diastereoselectivity. However, the similar three-component reaction with 2-(5-halo-2-hydroxyarylidene)indolin-2-ones afforded unexpected chain products in satisfactory yields. In addition, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and 2-(o-hydroxyarylidene)-1,3-indanediones in tetrahydrofuran at 60 °C resulted in complex indeno[2',1':5,6]pyrano[3,4-c]chromene derivatives in high yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Yu-Wei He
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Li Huang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Kun Huang
- Jiangsu Lianhuan Pharmaceutical Co., Ltd., Yangzhou 225000, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | | | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
2
|
Zhao X, Wang G, Hashmi ASK. Gold catalysis in quinoline synthesis. Chem Commun (Camb) 2024; 60:6999-7016. [PMID: 38904196 DOI: 10.1039/d4cc01915f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Quinolines are biologically and pharmaceutically important N-heterocyclic aromatic compounds, which have broad applications in medicinal chemistry. Thus, their efficient synthesis has attracted extensive attention, and a broad range of synthetic strategies have been established. Of note, gold-catalyzed methodologies for the synthesis of quinolines have greatly advanced this field. Various gold-catalyzed intermolecular annulation reactions, such as annulations of aniline derivatives with carbonyl compounds or alkynes, annulations of anthranils with alkynes, and annulations based on A3-coupling reactions, as well as intramolecular cyclization reactions of azide-tethered alkynes, 1,2-diphenylethynes, and 2-ethynyl N-aryl indoles, have been developed. This review provides an overview of this exciting research area. Typical achievements in reaction methodologies and plausible reaction mechanisms are summarized.
Collapse
Affiliation(s)
- Ximei Zhao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Guanghui Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
3
|
Zhu YL, Dong YF, Wang SR, Li YG, Wu X, Ye LW. Nucleophile-Controlled Trapping of Gold Carbene by Nitriles and Water: Synthesis of 5 H-Pyrimido[5,4- b]indoles and 2-Benzylidene-3-indolinones. Org Lett 2024; 26:631-635. [PMID: 38214532 DOI: 10.1021/acs.orglett.3c03856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A gold-catalyzed, nucleophile-controlled cascade reaction of N-(2-azidophenyl-ynyl)methanesulfonamides with nitriles and water is described that provides structurally diverse 5H-pyrimido[5,4-b]indoles and 2-benzylidene-3-indolinones in good to excellent yields. Mechanistic studies indicate that the β-sulfonamido-α-imino gold carbene is the key intermediate which is generated through the gold-catalyzed cyclization of N-(2-azidophenyl-ynyl)methanesulfonamides and undergoes formal [4 + 2] cascade annulation with nitriles and intramolecular SN2' type reaction with water, respectively.
Collapse
Affiliation(s)
- Yun-Long Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Yi-Fan Dong
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Si-Ru Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - You-Gui Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Xiang Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Chen Y, Yan YH, Zhu BH, Chen F, Li L, Qian PC. Copper-Catalyzed Tandem Cyclization/Direct C(sp 2)-H Annulation of Azide-Ynamides via α-Imino Copper Carbenes: Access to Azepino[2,3- b:4,5- b']diindoles. Org Lett 2023; 25:2063-2067. [PMID: 36939559 DOI: 10.1021/acs.orglett.3c00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A novel copper-catalyzed tandem cyclization/direct C(sp2)-H annulation of phenyl azide-ynamides via α-imino copper carbenes has been developed, which provides a concise and flexible approach for the construction of a range of valuable azepino[2,3-b:4,5-b']diindoles in mostly good to excellent yields with high chemoselectivities. This tandem reaction also exhibits a broad substrate scope, excellent functional group tolerance, simple operation, and mild reaction conditions.
Collapse
Affiliation(s)
- Yi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yao-Hong Yan
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fan Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
5
|
Halnor SV, Dhote PS, Ramana CV. Construction of the quinobenzoxazine core via gold-catalyzed dual annulation of azide-tethered alkynones with anthranils. Org Biomol Chem 2023; 21:2127-2137. [PMID: 36794667 DOI: 10.1039/d3ob00098b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A new catalytic method for the construction of the quinobenzoxazine core has been developed employing the gold-catalyzed cyclization of o-azidoacetylenic ketones in the presence of anthranils. The overall process comprises of a gold-catalyzed 6-endo-dig cyclisation of o-azidoacetylenic ketone leading to a α-imino gold carbene and subsequent carbene transfer to anthranil leading to the 3-aryl-imino-quinoline-4-one intermediate, which undergoes 6π-electrocyclization and aromatization to form the central quinobenzoxazine core. This transformation provides a new approach to a diverse array of quinobenzoxazine structures, in addition to being scalable and having mild reaction conditions.
Collapse
Affiliation(s)
- Swapnil V Halnor
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pawan S Dhote
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India.
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Km K, Kumar S, Kumar A, Kant R, Chintakunta R. Palladium‐Catalyzed Intramolecular C‐H Heteroarylation to Access Fused Tricyclic Oxazolo[4,5‐c]Quinolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kajol Km
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Sujeet Kumar
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Amit Kumar
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Ruchir Kant
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Ramesh Chintakunta
- CSIR-CDRI: Central Drug Research Institute Medicinal and Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| |
Collapse
|
7
|
Yang M, Liu T, Gong Y, Ai QW, Zhao YL. Rhodium-catalyzed coupling-cyclization of o-alkynyl/propargyl arylazides or o-azidoaryl acetylenic ketones with arylisocyanides: synthesis of 6 H-indolo[2,3- b]quinolines, dibenzonaphthyridones and dihydrodibenzo[ b, g] [1,8]-naphthyridines. Org Chem Front 2022. [DOI: 10.1039/d2qo00503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The developed rhodium-catalyzed coupling-cyclization provides a new strategy for the assembly of 6H-indolo[2,3-b]quinolines, dibenzonaphthyridones and dihydrodibenzo[b,g] [1,8]-naphthyridines.
Collapse
Affiliation(s)
- Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yue Gong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qing-Wen Ai
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
8
|
Wu X, Zhao LP, Xie JM, Fu YM, Zhu CF, Li YG. Access to 3-Sulfonamidoquinolines by Gold-Catalyzed Cyclization of 1-(2'-Azidoaryl)propargylsulfonamides through 1,2- N Migration. J Org Chem 2021; 87:801-812. [PMID: 34928156 DOI: 10.1021/acs.joc.1c02450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a gold-catalyzed cyclization of 1-(2'-azidoaryl)propargylsulfonamides for the synthesis of 3-sulfonamidoquinolines, featuring a rare and highly selective 1,2-N migration. The key α-imino gold carbene intermediate is generated through an intramolecular nucleophilic attack of the azide group to the Au-activated triple bonds in a 6-endo-dig manner.
Collapse
Affiliation(s)
- Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li-Ping Zhao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jin-Ming Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan-Ming Fu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cheng-Feng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - You-Gui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
9
|
Zhang M, Meng Y, Wu Y, Song C. TfOH-Promoted Decyanative Cyclization toward the Synthesis of 2,1-Benzisoxazoles. J Org Chem 2021; 86:7326-7332. [PMID: 34014082 DOI: 10.1021/acs.joc.1c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel solvent-free, TfOH-promoted decyanative cyclization approach for the synthesis of 2,1-benzisoxazoles has been developed. The reactions are complete instantly at room temperature and result in the formation of the desired 2,1-benzisoxazoles in a 34-97% isolated yield.
Collapse
Affiliation(s)
- Mengge Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yonggang Meng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yangang Wu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Fan YX, Cao XL, Chen L, Chen YH, Yan SJ. Multicomponent cascade reactions of HKAs: synthesis of highly functionalized 5H-chromeno[4,3-d]pyrimidines. Org Chem Front 2021. [DOI: 10.1039/d1qo00666e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel protocol was developed for the construction of functionalized 5H-chromeno[4,3-d]pyrimidines from 3-formylchromones, heterocyclic ketene aminals, and amidine hydrochlorides via a novel cascade reaction involving ring-opening and 1,3-H shift reactions.
Collapse
Affiliation(s)
- Yun-Xiang Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education; School of Chemical Science and Technology
- Yunnan University
- Kunming
- P. R. China
| | - Xin-Ling Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education; School of Chemical Science and Technology
- Yunnan University
- Kunming
- P. R. China
| | - Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education; School of Chemical Science and Technology
- Yunnan University
- Kunming
- P. R. China
| | - Yi-Hua Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education; School of Chemical Science and Technology
- Yunnan University
- Kunming
- P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education; School of Chemical Science and Technology
- Yunnan University
- Kunming
- P. R. China
| |
Collapse
|
11
|
Zhou S, Liu Q, Bao M, Huang J, Wang J, Hu W, Xu X. Gold(i)-catalyzed redox transformation of o-nitroalkynes with indoles for the synthesis of 2,3′-biindole derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00134e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A gold(i)-catalyzed cascade reaction of o-nitroalkynes with indoles has been reported for the rapid assembly of 2-indolyl indolone N-oxides, which exhibit high anticancer potency against SCLC cells.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Qianqian Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jie Huang
- Guangdong Lung Cancer Institute
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer
- Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences
- Guangzhou 510080
- China
| | - Junjian Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
12
|
Liu X, Wang Z, Zhai T, Luo C, Zhang Y, Chen Y, Deng C, Liu R, Ye L. Copper‐Catalyzed Azide–Ynamide Cyclization to Generate α‐Imino Copper Carbenes: Divergent and Enantioselective Access to Polycyclic N‐Heterocycles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ze‐Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Tong‐Yi Zhai
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Chen Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yi‐Ping Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yang‐Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Rai‐Shung Liu
- Department of Chemistry National Tsing-Hua University Hsinchu Taiwan 30013 Republic of China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
13
|
Liu X, Wang ZS, Zhai TY, Luo C, Zhang YP, Chen YB, Deng C, Liu RS, Ye LW. Copper-Catalyzed Azide-Ynamide Cyclization to Generate α-Imino Copper Carbenes: Divergent and Enantioselective Access to Polycyclic N-Heterocycles. Angew Chem Int Ed Engl 2020; 59:17984-17990. [PMID: 32621338 DOI: 10.1002/anie.202007206] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Indexed: 01/23/2023]
Abstract
Here an efficient copper-catalyzed cascade cyclization of azide-ynamides via α-imino copper carbene intermediates is reported, representing the first generation of α-imino copper carbenes from alkynes. This protocol enables the practical and divergent synthesis of an array of polycyclic N-heterocycles in generally good to excellent yields with broad substrate scope and excellent diastereoselectivities. Moreover, an asymmetric azide-ynamide cyclization has been achieved with high enantioselectivities (up to 98:2 e.r.) by employing BOX-Cu complexes as chiral catalysts. Thus, this protocol constitutes the first example of an asymmetric azide-alkyne cyclization. The proposed mechanistic rationale for this cascade cyclization is further supported by theoretical calculations.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ze-Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tong-Yi Zhai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chen Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi-Ping Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, 30013, Republic of China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
14
|
Ye LW, Zhu XQ, Sahani RL, Xu Y, Qian PC, Liu RS. Nitrene Transfer and Carbene Transfer in Gold Catalysis. Chem Rev 2020; 121:9039-9112. [PMID: 32786423 DOI: 10.1021/acs.chemrev.0c00348] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic transformations involving metal carbenes are considered one of the most important aspects of homogeneous transition metal catalysis. Recently, gold-catalyzed generation of gold carbenes from readily available alkynes represents a significant advance in metal carbene chemistry. This Review summarizes the advances in the gold-catalyzed nitrene-transfer reactions of alkynes with nitrogen-transfer reagents, such as azides, nitrogen ylides, isoxazoles, and anthranils, and gold-catalyzed carbene-transfer reactions, involving oxygen atom-transfer reactions of alkynes with nitro compounds, nitrones, sulfoxides, and pyridine N-oxides, through the presumable α-imino gold carbene and α-oxo gold carbene intermediates, respectively. Gold-catalyzed processes are reviewed by highlighting their product diversity, selectivity, and applicability, and the mechanistic rationale is presented where possible.
Collapse
Affiliation(s)
- Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Rajkumar Lalji Sahani
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Yin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peng-Cheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, Republic of China
| |
Collapse
|
15
|
Huang J, Su H, Bao M, Qiu L, Zhang Y, Xu X. Gold(iii)-catalyzed azide-yne cyclization/O-H insertion cascade reaction for the expeditious construction of 3-alkoxy-4-quinolinone frameworks. Org Biomol Chem 2020; 18:3888-3892. [PMID: 32373897 DOI: 10.1039/d0ob00745e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold-catalyzed 6-endo-dig azide-yne cyclization/O-H insertion cascade reaction of azide-tethered alkynes with alcohols has been developed, and it provides an expeditious access to 3-alkoxy-4-quinoline derivatives in good to high yields under mild and neutral reaction conditions with broad substrate generality. The utility of this method is emphasized by a scalable experiment and concise total synthesis of a bioactive natural product Leiokinine A, and other bioactive quinoline analogs.
Collapse
Affiliation(s)
- Jingjing Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Han Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Lihua Qiu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanqing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China. and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Xiao Q, Liu J, Nie JH, Kong LB, Lin J, Yan SJ. Silver-catalyzed cascade reactions of 3-cyanochromone with 1,1-enediamines: synthesis of highly functionalized 2-(pyridin-3-yl)-chromeno[2,3-d]pyrimidines. Org Chem Front 2020. [DOI: 10.1039/d0qo00388c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel protocol for the construction of 2-(pyridin-3-yl)-chromeno[2,3-d]pyrimidines from 3-cyanochromone with 1,1-enediamines via an unprecedented cascade reaction has been developed by simply refluxing the reactants under the catalysis of silver carbonate.
Collapse
Affiliation(s)
- Qiang Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Jin Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Jia-Hui Nie
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Ling-Bin Kong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
17
|
Liu J, Ba D, Chen Y, Wen S, Cheng G. Synthesis of 3-(2-quinolyl) chromones from ynones and quinoline N-oxides via tandem reactions under transition metal- and additive-free conditions. Chem Commun (Camb) 2020; 56:4078-4081. [DOI: 10.1039/c9cc09460a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis of 3-(2-quinolyl) chromones from ynones and quinoline N-oxides via a sequential [3+2] cycloaddition/ring-opening/O-arylation reaction under transition metal- and additive-free conditions is reported.
Collapse
Affiliation(s)
- Jing Liu
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Dan Ba
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Yanhui Chen
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Si Wen
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Guolin Cheng
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| |
Collapse
|
18
|
Wang Q, Rudolph M, Rominger F, Hashmi ASK. Gold‐Catalyzed Intermolecular Oxidative Diyne Cyclizations via 1,6‐Carbene Transfer. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qian Wang
- Institute of OrganicChemistry Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Institute of OrganicChemistry Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Institute of OrganicChemistry Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Institute of OrganicChemistry Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department, Faculty of ScienceKing Abdulaziz University (KAU) 21589 Jeddah Saudi Arabia
| |
Collapse
|